Master's Theses

Date of Award

2017

Document Type

Thesis

Department

Engineering

First Advisor

Bo Yuan

Abstract

The purpose of this study is to briefly learn the theory and implementation of three most commonly used Machine Learning algorithms: k-Nearest Neighbors (kNN), Decision Trees and Naïve Bayes. All these algorithms fall under the Classification algorithm category of Unsupervised Machine Learning. This paper is constructed structurally in explaining the working theory behind each algorithm and an implementation of a Machine Learning problem solved by each algorithm. KNN algorithm is designed using Euclidean distance measurement and Decision Trees make use of ID3 algorithm as a basis. We conclude the study by providing an overall picture of its strengths and weaknesses in solving different types of problems. Also a major point to note is that this paper is not a comparison between these three algorithms.

 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.