




A.1 construction

Figure 57.: Hyperbolic paraboloid: The red triangular patch represents the reference
parameter triangle, with 4 steps of midpoint subdivision. The purple trian-
gulation represents the parametric surface, computed (a) from parameter
values and (b) from control points and interpolation coefficients.

values) and control points (polarized function values at the various combinations of
polar variables r, s, t). We detail again the example of the hyperbolic paraboloid:

F =


F1(U, V ) = U

F2(U, V ) = V

F3(U, V ) =
1
10U

2 − 1
10V

2

f(r, s, t) X Y Z
f(r, r) 0.0 11.547 -13.3333
f(r, s) -5.0 2.88765 6.66666

f(r, t) 5.0 2.88765 6.66666

f(s, r) -5.0 2.88765 6.66666

f(s, s) -10.0 -5.7735 6.66666
f(s, t) 0.0 -5.7735 -13.3333

f(t, r) 5.0 2.88675 6.66666

f(t, s) 0.0 -5.7735 -13.3333

f(t, t) 10.0 -5.7735 6.66666

Table 14.: Control point values for the hyperbolic paraboloid, with all the repeats.
These values are based on the reference triangle 4r, s, t of parameter co-
ordinates r(0 .0, 11 .5470), s(−10 .0, −5 .7735), t(10 .0, −5 .7735).
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A.1 construction

This surface, considered as a total degree surface of degree 2, will polarize as fol-
lows:

f
(
(u1 , v1), (u2 , v2)

)
=


f1

(
(u1 , v1), (u2 , v2)

)
= u1+u2

2

f2

(
(u1 , v1), (u2 , v2)

)
= v1+v2

2

f3

(
(u1 , v1), (u2 , v2)

)
= 1
10 (u1u2 − v1v2)

The 9 control points are represented in Table 14. We chose to keep the repeated
control points as such, in order to retain the ability to use the matrix system from
Equation 51, which is only 3 × 3 for surfaces of total degree m = 2, obeying the
general size of 3m control points (thus 32 control points for m = 2, arranged in a 3× 3
matrix), but exhibiting only C2m+2 =

(m+1)(m+2)
2 (in this case (2+1)(2+2)

2 = 6) non-
repeat terms, as can be verified informally for m = 2 from Table 14.

Of these control points, only some are on the surface: those that correspond to actual
function values: f(r, r) ≡ F(r), f(s, s) ≡ F(s), and f(t, t) ≡ F(t) (remembering
that f is the total degree polar form of F). In Table 15 we show the points generated
through direct computation from parameters, as well as through interpolation, for the
same reference triangle, with 2 subdivision steps, and the control points highlighted.

u v λ µ ν x(u, v) y(u, v) z(u, v)

-10.0 -5.7735 0.0 1.0 0.0 -10.0 -5.7735 6.66667
-7.5 -1.44338 0.25 0.75 0.0 -7.5 -1.44337 5.41667

-5.0 -5.7735 0.0 0.75 0.25 -5.0 -5.7735 -0.83333

-5.0 2.88675 0.5 0.5 0.0 -5.0 2.88675 1.66667

-2.5 -1.44338 0.25 0.5 0.25 -2.5 -1.44338 0.416667

-2.5 7.21687 0.75 0.25 0.0 -2.5 7.21687 -4.58333

0.0 -5.7735 0.0 0.5 0.5 0.0 -5.7735 -3.33333

0.0 2.88675 0.5 0.25 0.25 0.0 2.88675 -0.833333

0.0 11.547 1.0 0.0 0.0 0.0 11.547 -13.3333
2.5 -1.44338 0.25 0.25 0.5 2.5 -1.44337 0.416667

2.5 7.21687 0.75 0.0 0.25 2.5 7.21687 -4.58333

5.0 -5.7735 0.0 0.25 0.75 5.0 -5.7735 -0.83333

5.0 2.88675 0.5 0.0 0.5 5.0 2.88765 1.66667

7.5 -1.44338 0.25 0.0 0.75 7.5 -1.44337 5.41667

10.0 -5.7735 0.0 0.0 1.0 10.0 -5.7735 6.66667

Table 15.: Hyperbolic paraboloid point values, from equations vs. interpolation. The
boldface values are also control points, as cross-referenced with Table 14.
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A.2 approximation

Figure 58.: Hyperbolic paraboloid in two resolutions, showing the control points.

a.2 approximation

Given real data points, the goal is to generate an approximating surface not necessar-
ily passing through them, when the surface is unknown except at the data points, and
the control points are unknown. The least squares approximation method generates
control points from Bernstein coefficients calculated at the parameter points corre-
sponding to the data points, and from the real data points. Using these data-trained
control points, it computes new points on the surface from 2D new resamples and
from the Bernstein coefficients calculated at the resamples.

a.2.1 Data-Trained Control Points

Calculating the control points through a computation inverse to the one yielding a sur-
face point from a support net of degree 〈p, q〉 and Bernstein coefficients Bi,j(u)Bi,j(v),
with i ∈ {1, . . . , p}, j ∈ {1, . . . , q} is equivalent to finding the pseudo-inverse of the
non-square Bernstein matrix:


b0,0

...
bp,q

 =


B
p
0 (u0)B

q
0 (v0) . . . B

p
p(u0)B

q
q(v0)

...
. . .

...
B
p
0 (uk)B

q
0 (vk) . . . B

p
p(uk)B

q
q(vk)


−1

left

·


p0
...

pk

 , (54)
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A.2 approximation

where 〈p, q〉 is the polar degree of F (unkown), λ is the interpolation ratio1, Bpi (u(λ)) =
Cinλ

i(1 − λ)p−i, with Cin = n !
i !(n−i) ! and i ∈ {0, . . . , p}, j ∈ {0, . . . , q}. The vector

of control points (b0,0 . . . bp,q)
T is a linearized version of the control points sequence,

the Bernstein coefficients matrix is calculated from parameter values corresponding to
original data points, and the vector (p0 . . . pk)

T are the data points themselves.

a.2.2 Least-Squares Reconstruction

Calculating the surface points from the data-trained control points (b0,0 . . . bp,q) at
the new 2D resamples (u′0 , v′0), . . . , (u′j , v′j) requires the recalculation of the Bern-
stein matrix of coefficients to suit resampled parameter points and the control net
calculated in the previous step.

p′0
...

p′k

 =


B
p
0 (u

′
0)B

q
0 (v

′
0) . . . B

p
p(u

′
0)B

q
q(v

′
0)

...
. . .

...
B
p
0 (u

′
j)B

q
0 (v

′
j) . . . B

p
p(u

′
j)B

q
q(v

′
j)

 ·


b0,0
...

bp,q

 (55)

The calculation of the points (p′0 . . . p′k)
T from only the control points and the Bern-

stein polynomial coefficients is possible in the absence of the surface polynomial(s)
due to the fact that multilinear interpolation of parametric polynomials only depends
on the control points and the ratio of interpolation of the resamples. The shape of
the function is entirely encapsulated in the control points, while the Bernstein polyno-
mials only contain information on the ratio of interpolation for the new points. The
degree of the polynomial is “transferred” onto the part expressing the ratio of interpo-
lation, through the size of the matrix of Bernstein coefficients, while the actual point
computation is being done over fixed points (the control points). Examples of partic-
ular cases of second-degree parametric curves and third-degree parametric surfaces
will be given in the section on reconstruction.

There are more types of surface construction, using rational fractions (rational poly-
nomials), as well as using multiple functions on adjoining domains (such as cubic
B-splines, described in Bartels et al. [1987]). In the latter case, at the points of juncture
between curve/surface segments, called knots, various degrees of continuity and knot
multiplicity conditions define the level of interpolation vs. approximation of the data
points, i.e. how precisely the curve/surface conforms to the control polygon (smooth

1 It can be different in each direction for rectangular patches, while for triangular patches it is a composite
of barycentric coordinates. This explanation is enough to convey the idea that the Bernstein polynomials
depend entirely on the ratio of interpolation and the degree of the function being interpolated/approxi-
mated.
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A.2 approximation

approximation vs. less smooth interpolation). Since, in this case, the shape of the
cubic polynomials is a priori determined from the continuity conditions for the four
segments defining each basis function, and therefore known and fixed, and since the
shape of the curve/surface is a linear combination of the basis functions weighted by
the control points, the extension of this method to data fitting is more immediate in
applications where a fixed number of points needs to be represented in the original
data granularity and (possibly) resampled at different locations.

In our case, the original data is densely sampled, which means that a simple linear
interpolation within each original mesh triangle is sufficient to locate 2D resampled
parameter points. In the future, it would be interesting to relate a cubic B-spline recon-
struction (based on the patches from our segmentation) to the local linear interpolation
scheme about to be described next, in Section A.2.3.

a.2.3 Approximation through Local Linear Interpolation

Finding positions on the surface at points in-between data points (resampling) in
the parameter domain by assuming a certain shape of the surface (i.e. committing
to a certain number of interpolation steps2) In this formulation of the problem, the
phase of surface reconstruction uses the method from Paragraph 1.4, by taking the
resample a = λr + µs + νt within the parameter reference triangle t = 4rst ∈ P

and computing a linear or polynomial image F(a). For example, in the linear case,
if T = 4ABC φ−→ t = 4rst, where φ : R3 −→ R2 is a geometry-preserving
parametrization function that can generate the parameter domain from the data points,
the surface can be bilinearly interpolated as follows:

F(a) =


F1(u, v) = x(u, v) = λxA(u, v) + µxB(u, v) + νxC(u, v)

F2(u, v) = y(u, v) = λyA(u, v) + µyB(u, v) + νyC(u, v)

F3(u, v) = z(u, v) = λzA(u, v) + µzB(u, v) + νzC(u, v),

(56)

where the barycentric coefficients of a are equivalent to a linear interpolation in the
direction of each vector −→rs = s − r,

−→
rt = t − r ∈ t, but dependent on parametric

coordinates (u, v) with respect to a local coordinate system, thus defining a bilinear
interpolation of F in u and v. If we denote, for simplification,

λ(u, v)
notation
= λa , µ(u, v)

notation
= µa , ν(u, v)

notation
= νa , (57)

2 We use piecewise linear in our implementation, meaning linear within each reference triangle, with one
interpolation step.
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A.2 approximation

then a(u, v) ∈ t = 4rst will be located with barycentric coordinates as:
u = λaur + µaus + νaut

v = λavr + µavs + νavt

λa + µa + νa = 1,

(58)

or, in matrix form: ur us ut

vr vs vt

1 1 1


λa

µa

νa

 =

uv
1

 (59)

Thus, in the linear case, the support net for the interpolation consists of only one tri-
angle (the reference triangle T = F(t) = F(4rst)) and one step of two-dimensional,
linear interpolation with barycentric coefficients (λaµaνa)

T , corresponding to a dis-
crete bivariate polynomial of degree one

F(U, V ) ≈ φ−1(U, V ), (60)

where φ : R3 −→ R2 , F ≈ φ−1 : R2 −→ R3 , with control points retrieved through
the inverse of the discrete parametrization φ:

BF(4r,s,t) = F(b4r,s,t) = φ−1(b4r,s,t) = 4A, B, C (61)

exactly as the original data points. We consider the original triangular structure as a
control net over which only one step of linear interpolation is performed.

The reconstructed point F(a) ∈ F(4rst)3 can be therefore retrieved as:

xy
z

 =

xA xB xC

yA yB yC

zA zB zC


ur us ut

vr vs vt

1 1 1


−1uv

1

 (62)

For higher order polynomials, interpolation is done by deriving the control points
(or approximations thereof) from a data set and using these data-trained control points
to calculate new 3D points at 2D resamples in the parameter space.

3 For simplicity of notation, the literature replaces F(4rst) with just triplets (r, s, t), which may confusingly
imply that the interpolation over control points is still in parameter space.
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A.3 subdivision

a.3 subdivision

Since all that is needed for generating the surface at any point, once the control points
are calculated, is an interpolation ratio that will generate the Bernstein polynomial
coefficients, subdivision can also be used for surface reconstruction. Given a control
net and a subdivision scheme in the parameter space, new control nets can be created
to generate the unknown polynomial surface at finer detail. The difference between
subdivision and interpolation consists of the fact that subdivision requires an initial
control net and generates new control nets at each step, while interpolation departs
from a single initial control net. The shifting of focus towards subdivision stems from
the complexity of control nets necessary to design surfaces of higher degrees, and
of joining differently defined surfaces, which subdivision avoids through simplifying
the interpolation rules by using only barycentric (linear) interpolation, combined with
stencil weight masks and, in an approximation setting, an update of the stencil vertices
themselves. The Loop scheme is an example of a subdivision approximating scheme,
while the Butterfly subdivision is interpolating.

a.4 interpolation

Data-Trained Control Points

Through a system similar to the one derived from Equation 45, the p · q (for the
bipolynomial case) and the (m+1)(m+2)

2 (for the total degree case) control points can
be derived from a forward system, in which the data points and their Bernstein coeffi-
cients are known, provided that a good parametrization of the data points is available.
The control points are the unknown. For a single data point:

x(λ, γ) =
(
B
p
0 (λ) . . . B

p
p(λ)

)
b00 . . . b0q

...
. . .

...
bp0 . . . bpq



B
q
0 (γ)

...
B
q
q(γ)


For each resampled point, the elements of the Bernstein coefficient vectors, consisting
of 2p and 2q entries respectively, can be computed for a complete matrix of control
points of size 2p2q = 2p+q, or, based on repeat entries, can be collapsed into p+ 1, q+
1 vectors, for a reduced matrix of control points of size (p+ 1)(q+ 1).
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A.4 interpolation

For example, in the quadratic case:

x(λ, γ) =
(
(1− λ)2 (1− λ)λ λ(1− λ) λ2

)
B


(1− γ)2

(1− γ)γ

γ(1− γ)

γ2


can be collapsed into

(
C22(1− λ)

2 C12(1− λ)λ C02λ
2
)
B

C
2
2(1− γ)

2

C12(1− γ)γ

C02γ
2


For K = (m+ 1)(n+ 1) data points whose parameter values can be associated with

the Bernstein coefficients per point as above, we can build the system:


x00 . . . x0n

...
. . .

...
xm0 . . . xmn


︸ ︷︷ ︸

(m+1)×(n+1)

=


B0p(u0) . . . B

p
p(u0)

...
. . .

...
B0p(um) . . . B

p
p(um)


︸ ︷︷ ︸

(m+1)×(p+1)

B︸︷︷︸
(p+1)×(q+1)


B0q(v0) . . . B

q
q(v0)

...
. . .

...
B0q(vn) . . . B

q
q(vn)


T

︸ ︷︷ ︸
(q+1)×(n+1)

,

where
Bjp(ui)

∣∣∣
i=0,m+1

= Cjp(1− λi)
jλ
p−j
i

and, similarly,
Bkq(vi)

∣∣∣
i=0,m+1

= Ckq(1− γvi)
kγq−kvi .

Solving first for the unkown control points matrix B, this can be used to generate new
3D points X at new 2D resamples in parameter space.

Reconstructed Points

Using the now computed control points from Section A.4, calculating the image points
F(a) ∈ R3, where a = (u, v) ∈ P ⊂ R2, is equivalent to two matrix-vector multiplica-
tions, leading to the calculation of X = F(a). This applies to surfaces whose points
can be organized into rectangular patches (m+ 1)(n+ 1), i.e. tensor product surfaces.
This section described tensor product interpolation.
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B
PA R A M E T R I Z AT I O N F U N D A M E N TA L S

b.0.1 The Euclidean Metric Tensor

We consider the mapping F : Ω ⊂ R2 −→ S′ ⊂ R3. Then the vector du(u, v) ⊂ Ωmaps
to the vector dr

(
x(u, v), y(u, v), z(u, v)

)
⊂ R3. We want to approximate the variation

dF(du) of vector du under F:

dF =
∂F

∂u
du+

∂F

∂v
dv, where F =


x(u, v) = F1(u, v)

y(u, v) = F2(u, v)

z(u, v) = F3(u, v)

For the purpose of this approximation, we need the images F(u, v) and F(u+ du, v+

dv), forming the vector dr, so we can calculate dr as the vector difference F(u+du, v+
dv) − F(u, v). First, we note that:

F(u+ du, v+ dv) = F(u, v) + dF(u, v) + o(
√
du2 + dv2),

with o(
√
du2 + dv2) ≈ 0. Then:

dr ≡ F(u+ du, v+ dv) − F(u, v) ' dF(u, v),

and thus dF approximates the image dr of vector du under F:

dr ' dF = ∂F

∂u
du+

∂F

∂v
dv = rudu+ rvdv

The dot product dr · dr encapsulates this difference as a positive scalar. When du, dv
are small, vector dr approximates a spatial elementary arc of curve based at F(u, v) ∈
S′, for which the following quantity is introduced:

I = dr · dr = (ru du+ rv dv) · (ru du+ rv dv) =

= (ru · ru) du2 + 2(ru · rv) du dv+ (rv · rv) dv2,
(63)
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where

ru =
∂F

∂u
=
∂x

∂u
i +

∂y

∂u
j +

∂z

∂u
k, and rv =

∂F

∂v
=
∂x

∂v
i +

∂y

∂v
j +

∂z

∂v
k.

With the notations:

E = ru · ru, F = ru · rv, and G = rv · rv,

the quantity dr ·dr from Equation 63, called the first fundamental form of surface r(u, v),
becomes

I = E du2 + 2F du dv+G dv2.

Because it characterizes the change of du under F, the first fundamental form can then
be interpreted as the stretch of an elementary vector du under the parametric mapping F.
When the surface S is given, and the parametric domain must be computed discretely,
the mapping F−1 must ideally satisfy the condition of minimizing this stretch.

With the alternate notations:

g11 = E =
∂r
∂x1
· ∂r
∂x1

, g12 = g21 = F =
∂r
∂x1
· ∂r
∂x2

, and g22 = G =
∂r
∂x2
· ∂r
∂x2

,

we get

I = g11 (dx1)2 + g12 dx
1 dx2 + g21 dx

1 dx2 + g22 (dx2)2 =

2∑
i,j=1

gij dx
i dxj,

(or with the summation convention I = gij dx
i dxj). The fundamental metric tensor is

defined as the matrix

G =

(
g11 g12

g21 g22

)
(64)

Its determinant is the quantity:

g = detG =

∣∣∣∣∣g11 g12

g21 g22

∣∣∣∣∣ = g11g22 − g12g21 = EG− F2.

The following quantities are further introduced:

g11 =
g22
g
, g12 = g21 = −

g12
g
, and g22 =

g11
g
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They are the components of the conjugate metric tensor, which is the inverse of the
fundamental metric tensor:

(
gij
)
nn

=
1

det
(
g
) ( g22 −g21

−g12 g11

)
=
(
gij
)−1
nn

In tensor analysis,
(
gij
)

is a covariant tensor of the second order1, because it trans-
forms as follows under a coordinate system transformation from xi to x̄i:

ḡij = grs
∂xr

∂xi
∂xs

∂xj
.

An equally useful result is the following relationship between the metric tensor ma-

trix G and the Jacobian matrix J =
(dx̄1
dxi

)
associated with the change of coordinates

transformation from a system (xi) to a rectangular system (x̄i):

G = JT J. (65)

If calculating the trace of the matrix G using 65, the following interesting result ap-
pears, as carried out in Hormann and Greiner [2000]. First, note that

trace(G) = trace(JJT ), (66)

where

(UΣVT )(UΣVT )T = UΣ(VTV)ΣTUT = UΣIΣTUT = UΣ2UT = (u1|u2)

(
σ21 0

0 σ22

)(
u1

u2

)

As trace(A) =
∑
i λi, where λi are the eigenvalues of A, and the square roots of the

singular values of AAT , then the trace of the metric tensor matrix and that of the
conjugate metric tensor matrix G−1 can be calculated immediately as:

trace(G) = σ21 + σ
2
2 and trace(G−1) =

trace(G)
detG

=
σ21 + σ

2
2

σ21σ
2
2

, (67)

based on the well-known identity detA =
∏
i λi, which applied to G means

detG = det JJT = (det J)2 = (σ1σ2)
2.

1 It thus has lower coefficients. Upper coefficients indicate a contravariant tensor.
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b.0.2 Equiareal (Authalic) Maps

r(u, v)
r(u+du, v)

r(u+du, v+dv)
r(u, v+dv)

rudu

rvd
v

rudu×
 rvdv

Figure 59.: Three-dimensional surface patch as a mapping of a planar patch.

The transformation of a two-dimensional rectangular patch into a surface curvilin-
ear patch can be analyzed similar to the transformation of a two-dimensional vec-
tor into a three-dimensional curve under a mapping F. The area of a small curvilin-
ear quasi-rectangular patch bounded by points r(u, v), r(u+ du, v), r(u, v+ dv), and
r(u+ du, v+ dv) can be approximated as the area of the parallelogram formed by the
vectors ru(u, v) and rv(u, v):

Area(A) = |ru × rv| du dv =

∣∣∣∣∣∣∣∣∣
i j k
∂x

∂u

∂y

∂u

∂z

∂u
∂x

∂v

∂y

∂v

∂z

∂v

∣∣∣∣∣∣∣∣∣ du dv =

=

∣∣∣∣∣(∂y∂u ∂z∂v − ∂z

∂u

∂y

∂v

)
i −
(∂x
∂u

∂z

∂v
−
∂z

∂u

∂x

∂v

)
j +
(∂x
∂u

∂y

∂v
−
∂y

∂u

∂x

∂v

)
k

∣∣∣∣∣ =
=

∣∣∣∣∣∂(y, z)∂(u, v)
i +

∂(z, x)

∂(u, v)
j +

∂(x, y)

∂(u, v)
k

∣∣∣∣∣ =
√[∂(x, y)

∂(u, v)

]2
+
[∂(y, z)
∂(u, v)

]2
+
[ ∂(x, z)
∂(u, v)

]2
Using the identity

|a× b|2 = |a|2|b|2 − |a · b|2, ∀a,b ∈ Rn ⇐⇒ |a× b| =
√

|a|2|b|2 − |a · b|2,

we find that

Area(A) = |ru × rv| du dv =
√

|ru|2|rv|2 − |ru · rv|2 du dv =
√
EG− F2 du dv.
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In order for the areas over the whole respective domains to be equal, Area(S′) =

Area(Ω), using the Theorem of Change of Variables in a Double Integral, we get:∫∫
S′
f(x, y, z) dx dy dz =

∫∫
Ω

f(r(u, v))|ru × rv| du dv,

or ∫∫
S′
f(x, y, z) dx dy dz =

∫∫
Ω

f(r(u, v))
√
EG− F2 du dv,

which requires that √
EG− F2 = 1.

b.0.3 Conformal Maps

We assume the change of coordinates is taking place between orthogonal systems, i.e.
(xi) = (i, j) and (x̄i) = (i, j,k). In order for a transformation to be conformal, the angle
formed by the tangent vectors to two intersecting curves on the surface S′, given by

cosαS′ =
dr · δr
|dr||δr|

=
(ru du+ rv dv) · (ru δu+ rv δv)
|ru du+ rv dv||ru δu+ rv δv|

=

=
E du δu+ F(du δv+ dv δu) +G dv δv√

E du2 + 2F du dv+G dv2
√
E δu2 + 2F δu δv+G δv2

must be equal to the angle formed by the corresponding vectors in parameter space:

cosαΩ =
(du + dv) · (δu + δv)
|du + dv||δu + δv|

=
du δu+ (du · δv + dv · δu) + dv δv√

du2 + dv2
√
δu2 + δv2

.

By imposing cosαS′ = cosαΩ, after reduction of the orthogonal components du · δv =

dv · δu = 0, we get:
E = G = η, and F = 0. (68)

This result is consistent with the differential geometry theory, which asserts the gen-
eral principle of equivalence between the condition of proportionality of the coeffi-
cients of the first fundamental form and the conformal property of the mapping. As a
particular case, the condition for a 3D to 2D mapping to be conformal, given that the
systems of coordinates are orthogonal, is then derived as follows.

If the change of coordinates is taking place between two surfaces, S and S∗, repre-
sented as r = r

(
u1(t), u2(t)

)
and r∗ = r∗

(
u1(t), u2(t)

)
, we remind that:

dr =
∂r
∂u1

du1 +
∂r
∂u2

du2 = rαduα, where rα =
∂r
∂uα

, α = 1, 2.
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The angle between two curves on S, uα = hα(t) and uα = hα∗(t) is given by

cosγ =
gαβh

α′hβ∗′√
gµνhµ′hν′

√
gστhσ∗′hτ∗′

, (69)

where gαβ = rαrβ characterizes the change of coordinates and hα′ =
dhα

dt
are the

coordinate-independent components of the tangent vectors to the two curves. Then,
according to Kreyszig [1991], pp.193-194, we have the following

Theorem B.0.1 An allowable mapping of a portion S of a surface onto a portion S∗ of a surface
is conformal if and only if, when on S and S∗ the same coordinate systems have been introduced,
the coefficients gαβ and g∗αβ of the first fundamental forms of S and S∗, respectively, are
proportional,

g∗αβ = η(u1, u2)gαβ, η > 0, α, β = 1, 2. (70)

As an immediate corollary to Theorem B.0.1, under an allowable2 mapping of a por-
tion S of a surface into a plane, with (u1, u2) as Cartesian coordinates in the plane, if
(u1, u2) are introduced on S, and the mapping is conformal, then

(dr)2 = η(u1, u2)
[
(du1)2 + (du2)2

]
, (71)

which, compared to

(dr)2 = I = E du2 + 2F du dv+G dv2,

becomes equivalent to 68:

E = G = η(u1, u2), and F = 0 (72)

(The difference from the previous proof lies in the proof of proportionality3 being
done prior to the introduction of the condition of the orthogonality of the coordinate
systems).

2 The Jacobian of the transformation is not null.
3 The proof to Theorem B.0.1 is presented in [Kreyszig, 1991] on pp.193-194.
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We now develop the coefficients of I adding the conformality condition from 68:

E = ru · ru =

(
∂x

∂u
i +

∂y

∂u
j +

∂z

∂u
k

)(
∂x

∂u
i +

∂y

∂u
j +

∂z

∂u
k

)
= η

G = rv · rv =

(
∂x

∂v
i +

∂y

∂v
j +

∂z

∂v
k

)(
∂x

∂v
i +

∂y

∂v
j +

∂z

∂v
k

)
= η

F = ru · rv =

(
∂x

∂u
i +

∂y

∂u
j +

∂z

∂u
k

)(
∂x

∂v
i +

∂y

∂v
j +

∂z

∂v
k

)
= 0

By developing the dot products, after eliminating the null products containing orthog-
onal unit vectors, we get: (∂x

∂u

)2
+
(∂y
∂u

)2
+
( ∂z
∂u

)2
= η (73)

(∂x
∂v

)2
+
(∂y
∂v

)2
+
(∂z
∂v

)2
= η (74)

∂x

∂u

∂x

∂v
+
∂y

∂u

∂y

∂v
+
∂z

∂u

∂z

∂v
= 0 (75)

By differentiation with respect to u and v in any of the equations 73–75, we further
obtain:

∂2x

∂u2
+
∂2y

∂u2
+
∂2z

∂u2
= 0, and

∂2x

∂v2
+
∂2y

∂v2
+
∂2z

∂v2
= 0

After adding and rearranging:(
∂2x

∂u2
+
∂2x

∂v2

)
+

(
∂2y

∂u2
+
∂2y

∂v2

)
+

(
∂2z

∂u2
+
∂2z

∂v2

)
= 0,

we obtain again

∇2x(u, v) +∇2y(u, v) +∇2z(u, v) = 0⇐⇒ ∆F(u, v) = 0.

Thus we find the conformal mapping be approximated by the solution F(u, v) to
the Laplace equation, therefore by a harmonic function relating the surface to its
parametrization. The loss of generality from strictly conformal to harmonic occurs
as the solution to the Laplace equation becomes more restrictive than the first order
PDEs it was derived from. In what follows, the focus will be on how to approximate
the Laplace condition on discrete domains, such as triangulated surfaces.
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b.0.4 Discrete Harmonic Maps

To find a discrete solution to the Laplace equation describing the harmonic function
we are looking for, F(du) = dr(u, v) of minimal I, and its inverse, F−1, we establish first
that we are looking at an elliptic PDE, because its characteristic polynomial exhibits
a negative discriminant. Furthermore, because there are no lower order differential
terms, and we have a boundary condition, we find ourselves in the case of the Dirichlet
boundary problem, where

∇2F = f in Ω

F = g on Γ,

where Γ = ∂Ω, Γ
⋃
Ω = Ω, i.e. Γ is the boundary of the open planar region Ω, F is

the transformation function, f is the value of ∇2F inside Ω, and g is its value on the
boundary Γ . The inspirational paper by Pinkall and Polthier [1993] states the goal of
the approximation sought for a discrete solution to this PDE, which is to minimize EC,
the conformal energy of the map, defined as the difference:

EC(F) = ED(F) − Area(F(Ω)), (76)

where ED(F) is the so-called Dirichlet energy associated with F. We will derive the
expression of, and the necessity for the minimization of this energy in what follows.

The Dirichlet energy and the meaning of its minimization

Looking at our previous results imposing constraints for the singular values of the
Jacobian of the transformation in the equiareal and the conformal cases, if a mini-
mization of both the area distortion and of the shape (angle) distortion is sought, the
following conflicting conditions have to be both fulfilled as closely as possible at the
same time:

σ1
σ2
≈ 1 and σ1 · σ2 ≈ 1.

In order to meet the goals of minimization of both area and shape distortion, the
following imposes itself as the governing minimizing condition:

min
u

(σ1
σ2

+
σ2
σ1

)
. (77)
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In Hormann and Greiner [2000] the following derivation is given4, putting the Frobe-
nius norm — defined as in 77 — in relationship with the tensor metric matrix G and
the Jacobian J of the transformation denoted u in our Section B.0.4:

‖J‖F‖J−1‖F =
√

trace(G) · trace(G−1) =

=

√
(σ21 + σ

2
2)

(σ21 + σ
2
2)

σ21σ
2
2

,

which leads to the useful expression for the Frobenius norm for matrix J:

κF(J) = ‖J‖F‖J−1‖F =
σ21 + σ

2
2

σ1σ2
=
σ1
σ2

+
σ2
σ1

.

This is exactly our minimization argument from 77, or re-written in terms of G and J,

κF(J) =
trace(G)

det J
=

trace(JJT )
det J

(78)

With these prerequisites, the Dirichlet energy, taken as just the numerator of κF and

scaled by a constant factor of
1

2
, will only satisfy the minimization of

σ1
σ2

, and therefore

will only ensure conformality:

ED(F) ∼ trace(G) = trace(JJT ) = κF(J)det J = σ21 + σ
2
2∑

ti∈Ω
ED(F) =

1

2

∫
ti

trace(J) =
1

2

∫
ti

[(∂x̄1
∂x1

)2
+
(∂x̄2
∂x2

)2]
=
1

2

∫
ti

‖∇F‖2,
(79)

where ti are the 2D triangles whose individual mappings compose the image of the
domain Ω under the mapping F.

Note: A large number of papers take the minimization of ED for granted and omit
to justify why. I came across Cohen-Steiner and Desbrun [2002], a short erratum is-
sued by David Cohen-Steiner and Mathieu Desbrun, authors of numerous papers on
parametrization, in which they indirectly confirm that the minimization of the Dirich-
let energy is perpetuated in the literature without checks. The case in point was the
equivalence between the Least-Squares Conformal Maps (LSCMs), minimizing EC,
and the Discrete Natural Conformal Parametrization (DNCP), minimizing ED, pre-
sented in two different papers as two different methods, but proved in the erratum
to characterize the same thing, namely the conformal property of the mapping. (We
arrived at the same conclusion independently, above).

4 For trace(G) and trace(G−1) refer to our equations 67
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In addition, as professor Dennis Zorin of NYU points out in his lecture notes Zorin
[2002], due to the inequality5

det J 6 ‖u1‖ · ‖u2‖ 6
1

2
(‖u1‖2 + ‖u2‖2),

the conformality condition (third quantity) appears as less restrictive than the area
condition (first quantity), as it should be, and therefore would not guarantee size
(area) preservation unless a combination of both criteria was used. Hormann and
Greiner [2000] agree that ED alone does not fulfil the “no scaling” criterion (which
angle preservation alone wouldn’t necessarily achieve).

In search for a perfect criterion, other authors have suggested various minimization
expressions, some of whom, as Eck et al. in Eck et al. [1995], consider only ED,
while others still, like Maillot et al. [1993], define their own minimization criteria,
in this case the Green-Lagrange deformation tensor matrix I − I2 as the object of the
minimization proposed. While this corroborates our result from 68, it is still only a
measure of conformality. Choosing a good minimization criterion to enforce area and
angle preservation is still an open problem.

The Cotangent Formula

Figure 60.: Minimal surfaces transformation f.

Pinkall and Polthier [1993] propose a discrete method to compute minimal surfaces,
which are characterized by the condition that they locally minimize area. Their result
has influenced numerous studies on mapping. They compute iterative surfaces, in
which each iteration minimizes not the Dirichlet energy of the 3D to 2D mapping, but
rather of the 3D to 3D mappings that compare each iterated surface approximation to
the original shape:

Mi+1 = min
M

1

2

∫
Mi

|∇f : Mi −→M|2.

5 As before, J is the block vector matrix J =
(
u1|u2

)
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If f : Ω ⊂ R2 −→ f(Ω) ⊂ R3 is a parametrization of a surface f(Ω) over a 2D domain
Ω ⊂ R2, then the area of f(Ω) is given by

Area(f) =
∫
Ω

J(f)

with its associated Dirichlet energy defined as derived in our Section B.0.4, ED(f) =
1

2

∫
Ω |∇f|2g, where g is the metric tensor representing f(Ω). Then, the energy of an

entire map between discrete surfaces is the sum of the energies of all linear triangular
mappings fi : (ti, g) −→ (Ti, h), where ti is the ith triangle of the 2D triangulation, Ti
its image under the 3D triangulation, fi is the local mapping, and g, h are the metrics
associated to the two triangulations. Correspondingly, the integrated energy over all
individual mappings fi are given by

ED(fi) =
1

2

∫
ti,g

|∇gfi|2h,

where ∇g is the derivative operator with respect to g and | · |h is the norm in image
space with respect to h.

With these preliminaries, the main contribution of Pinkall and Polthier [1993] is in
proving the following formula:

ED(f) =
1

4

3∑
i=1

cotαi · ‖ai‖2h, (80)

where αi are the angles of ti and ‖·‖h is the vector norm applied to the sides of the
image triangle Ti.

Proof : Let ϕ,ψ two functions such that:

(e1, e2)
ϕ−→ (v,w)

(e1, e2)
ψ−→ (a, b)

(v,w)
f−→ (a, b),

(v,w)
f−−−−→ (a, b)xϕ xψ

(e1, e2) (e1, e2)

meaning that f = ψ(ϕ−1) = ϕ−1 ◦ψ6 . With this function composition set up, our
goal is to express ED(f) =

∫
trace(JTf · Jf) as ED(ψ(ϕ−1)), in other words to express

trace(JTf · Jf) in terms of Jψ and Jϕ:

6 Sometimes the function composition is shown as f = ψ(ϕ−1) = ψ ◦ϕ−1, although the feed line should
be left to right, as in f = ψ(ϕ−1) = ϕ−1 ◦ψ, because the output of the argument function is evaluated
first, and the outer function next. However, it is only a matter of convention.
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f = ϕ−1 ◦ψ = ψ(ϕ−1)

Jf = Jϕ−1◦ψ = Jψ · Jϕ−1

JTf = JTϕ−1◦ψ = (Jψ · Jϕ−1)T = JTϕ−1 · JTψ
=⇒ JTf · Jf = (JTϕ−1 · JTψ) · (Jψ · Jϕ−1)

In calculating trace(JTf · Jf) we hope to group the Jacobian matrices of ψ and ϕ−1

and their respective transposes two by two, so we can calculate them according to
their definitions — according to the respective changes of coordinates that they rep-
resent. The grouping is possible because the trace is a commutative operation (i.e.
trace(AB) = trace(BA)):

trace(JTf · Jf) = trace
[
(JTϕ−1 · JTψ) · (Jψ · Jϕ−1)

]
= = trace(JTψ · Jψ · Jϕ−1 · JTϕ−1) (81)

We therefore need to compute separately JTψ · Jψ and Jϕ−1 · JT
ϕ−1 :

JTψ · Jψ =

(
∂(a,b)
∂(e1, e2)

)T
·

(
∂(a,b)
∂(e1, e2)

)
=

(
〈a, a〉 〈a,b〉
〈a,b〉 〈b,b〉

)
, (82)

For Jϕ−1 · JT
ϕ−1 , a few preliminary calculations are necessary:

Jϕ−1 · JTϕ−1 = J
−1
ϕ · (J−1ϕ )T = = J−1ϕ · (JTϕ)−1 = (JTϕ · Jϕ)−1

where we used the identities (A−1)T = (AT )−1 and A−1 ·B−1 = (B ·A)−1.

Now, for JTϕ · Jϕ can write an expression similar to 82:

JTϕ · Jϕ =

(
∂(v,w)

∂(e1, e2)

)T
·

(
∂(v,w)

∂(e1, e2)

)
=

(
〈v, v〉 〈v,w〉
〈v,w〉 〈w,w〉

)
(83)

The inverse of the matrix from 83 is therefore:

(JTϕ · Jϕ)−1 =
1

det JTϕ · Jϕ

(
〈w,w〉 −〈v,w〉
−〈v,w〉 〈v, v〉

)
(84)
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Finally from equations 81, 82, and 84 we can compute:

trace(JTf · Jf) = trace
[
(Jϕ−1 · JTϕ−1) · (JTϕ · Jϕ)−1

]
=

=
1

det JTϕ · det Jϕ
· trace

[(
〈a, a〉 〈a,b〉
〈a,b〉 〈b,b〉

)
·

(
〈w,w〉 −〈v,w〉
−〈v,w〉 〈v, v〉

)]
=

=
1

det Jϕ2
·
(
〈a, a〉〈w,w〉− 2〈a,b〉〈v,w〉+ 〈b,b〉〈v, v〉

)
= . . .

Now we introduce the substitution c← b − a, where ‖c‖2 = (‖a‖+ ‖b‖)2, and ‖c‖2 −
‖a‖2− ‖b‖2 = −〈a,b〉 will replace −〈a,b〉 in the second term in the parentheses above:

. . . =
1

det Jϕ2
·
(
〈a, a〉〈w,w〉+ (〈c, c〉− 〈a, a〉− 〈b,b〉)〈v,w〉+ 〈v, v〉〈v, v〉

)
=

=
1

det Jϕ2
·
[
〈a, a〉

(
〈w,w〉− 〈v,w〉

)
+ 〈b,b〉

(
〈v, v〉− 〈v,w〉

)
− 〈c, c〉〈v,w〉

]
= . . .

Expanding the dot products and denoting γ = ∠(v,w) we get:

. . . =
1

|Jϕ|2

[
‖a‖2

(
‖w‖2 − ‖v‖‖w‖ cosγ

)
+ ‖b‖2

(
‖v‖2 − ‖v‖‖w‖ cosγ

)
+ ‖c‖2‖v‖‖w‖ cosγ

]
= . . .

We now develop the determinant of the Jacobian Jϕ:

|Jϕ| =

∣∣∣∣∣∣∣
∂v

∂e1

∂v

∂e2
∂w

∂e1

∂w

∂e2

∣∣∣∣∣∣∣ = ‖v×w‖ = ‖v‖‖w‖ sinγ

and insert it into the (now ongoing) equation:

. . . =
1

|Jϕ|

[
a2
w(w− v cosγ)
vw sinγ

+ b2
v(v−w cosγ)
vw sinγ

+ c2
vw cosγ
vw sinγ

]
=

= . . . =
1

|Jϕ|

[
a2
w− v cosγ
v sinγ

+ b2
v−w cosγ
w sinγ

+ c2
cosγ
sinγ

]
=

=
1

|Jϕ|

[
a2
dw

hw
+ b2

dv

hv
+ c2 cotγ

]
,

where

dw = w − v cos γ is the difference between the length of w and v’s projection onto
w

hw = v sin γ is the length of the perpendicular from v’s tip onto w

dv = v − w cos γ, same as above, with the roles of v and w reversed

hv = w sin γ, idem.
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We now introduce the other two angles in the triangle formed by v and w: let α ←

∠(−w, v − w) and β ← ∠(−v,w − v). With these notations, we have
dw

hw
= cot α

and
dv

hv
= cot β, and replacing these quantities in our equation we get our cotangent

formula:

trace(JTf · Jf) =
1

|Jϕ |

[
a2 cot α + b2 cot β + c2 cot γ

]
(85)

After insertion into the expression for the Dirichlet energy, this becomes:

ED =
∑
ti

ED(fi) =
1

2

∑
4i

(trace(JTfi · Jfi )) =

=
1

2

∑
ti

[
a2i cot αi + b2i cot βi + c2i cot γi

]∣∣Jϕ−1
i

∣∣ =
=
1

4

∑
ti

[
a2i cot αi + b2i cot βi + c2i cot γi

]
,

where triangles ti as well as angles αi , βi , and γi are in the source domain Ω ⊂ R2 ,
while the segment lengths ai , bi , and ci are the lengths of the transformed triangles

in the image f(Ω) ⊂ R3 . The area of triangle te = 4(e1 , e2) = det Jϕ−1
i

=
1

2
is

asserted knowing that (e1 , e2) is an orthonormal unit vector system.

With the additional observation that each shared edge will appear twice over a do-
main, once for each adjacent triangle it belongs to, the same formula can be converted
to minimize a Dirichlet energy over the edges, instead of triangles:

ED(f) =
1

4

∑
edges ei

(cot θi + cot φi)‖e‖2 ,

where angles θi , φi are angles opposed to e in the two adjacent triangles sharing e.
In this representation, the non-existing triangle in case of a boundary edge will annull
one of the two terms in the parentheses. The reduction to two terms reflects the edge-

based as opposed to triangle-based formula, while the constant coefficient
1

4
remains

unchanged.

For a point-based minimization formula, again observing that each edge will appear
twice in the characterization of each point in a domain, the energy can be translated
once more into:

ED(f) =
1

8

∑
vi∈Ω

∑
vj∈Ni

(cot θi + cot φi)‖vi − vj‖2 (86)
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Here, the number of occurrences of each vertex were diminished exactly by one half,

hence the coefficient was changed to
1

8
.

Under a discrete conformal parametrization, each vertex will suffer a transformation
of the following type:

v′i =


arg min

vi∈Ω

{ 1
8

∑
vj∈Ni

(cot θi + cot φi)‖vi − vj‖2
}
, if vj ∈ Ni ,

0, if if vj /∈ Ni

The Mean Value Coordinates

��

��

����

����
βj-1

αjαj-1

γj-1
βj

γj
��

����

����

Figure 61.: Mean value coordinates: the neighborhood around vertex vi.

In Floater [2003], the weights from Equation 92 are derived departing from the mean
value property of harmonic functions. As a preliminary result, the author introduces
the following

Lemma B.0.1 If f : Ti −→ R is a linear function and vj ∈ Ni , then∫
Γj ,vj∈Ni

f(v)ds = rαif(vi) + r
2 tan

αi
2

( f(vj) − f(vi)
‖vj − vi‖

+
f(vj+1) − f(vi)

‖vj+1 − vi‖
)

(87)

Proof : We represent v ∈ Γj in polar coordinates w.r.t. vi:

v = vi + r(cos θ, sin θ), r = ‖v − vi‖ .

In particular,

vj = vi + rj(cos θj , sin θj),

vj+1 = vi + rj+1(cos θj+1 , sin θj+1)
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are the points vj , vj+1 ∈ Ni , at distances from vi:

rj = ‖vj − vi‖, rj+1 = ‖vj+1 − vi‖

Due to f’s linearity, we have f(v) as a linear combination of the surrounding points:

f(v) = f(vi) + λ1
[
f(vj) − f(vi)

]
+ λ2

[
f(vj+1) − f(vi)

]
, (88)

where

λ1 =
A1

A
=

Area(4vi vvj+1)

Area(4vi vj vj+1)
and λ2 =

A2

A
=

Area(4vi vvj)

Area(4vi vj vj+1)
.

On the other hand, the value of f(v) on the arc Γj from θj to θj+1 is expressible as∫
Γj

f(v)ds = r

∫ θj+1
θj

f(v)dθ . (89)

We can now expand the linear expression of f(v) from 88 into 89, including the area
substitutions:∫

Γj

f(v)ds = r

∫ θj+1
θj

{
f(vi) +

A1

A

[
f(vj) − f(vi)

]
+

A2

A

[
f(vj+1) − f(vi)

]}
dθ

We will now express the triangle areas using the Theorem of the Sines. The angles are
taken relative to a reference line relative to which both |vi vj | and |vi vj+1 | are on the
same side. We denote αi = θj+1 − θj.

A1

A
=

rrj+1 sin(θj+1 − θ)
2

rjrj+1 sin(θj+1 − θj)
2

=
r

rj

sin(θj+1 − θ)
sin αi

A2

A
=

rrj sin(θ − θj)

2
rjrj+1 sin(θj+1 − θj)

2

=
r

rj+1

sin(θ − θj)

sin αi

As the only factors dependent on θ, we can calculate ahead of time the integrals:

∫ θj+1
θj

sin(θj+1 − θ)dθ =
[

cos(θj+1 − θ) + C
]∣∣∣∣θj+1
θj

= 1 − cos αi

∫ θj+1
θj

sin(θj − θ)dθ =
[

cos(θ − θj) + C
]∣∣∣∣θj+1
θj

= 1 − cos αi
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We substitute the area ratios in the integral of f(v) over Γj:∫
Γi

f(v)ds = r

∫ θj+1
θj

f(v)dθ =

= r
{ ∫ θj+1

θj

f(vi)dθ +
(1 − cos αi)r
rj sin αi

[
f(vj) − f(vi)

]
+

(1 − cos αi)r
rj+1 sin αi

[
f(vj+1) − f(vi)

]}
=

= rf(vi)θ

∣∣∣∣θj+1
θj

+
(1 − cos αi)r2

rj sin αi

[
f(vj) − f(vi)

]
+

(1 − cos αi)r2

rj+1 sin αi

[
f(vj+1) − f(vi)

]
=

= rαif(vi) +
(1 − cos αi)r2

rj sin αi

[
f(vj) − f(vi)

]
+

(1 − cos αi)r2

rj+1 sin αi

[
f(vj+1) − f(vi)

]

Using the trigonometric relation tan αi
2 =

1 − cos αi
sin αi

, we get:

∫
Γi

f(v)ds = rαif(vi) +
r2

rj
tan

αi
2

[
f(vj) − f(vi)

]
+

r2

rj+1
tan

αi
2

[
f(vj+1) − f(vi)

]
,

(90)
which is exactly the expression 89 sought by Lemma B.0.1.

Now, according to the mean value theorem, we can calculate the weights λij to
compute f(vi) as a linear combination of its neighbors vj ∈ Ni :

f(vi) =
1

2πr

∫
Γ

f(v)ds =
∑
j

[
1

2πr

∫
Γj

f(v)ds
]

The summation takes place over j arcs, throughout the neighborhood Ni of vi. With
the appropriate substitutions in this latest form, we get:

f(vi) =
∑
j

1

2πr
rαif(vi) +

+
∑
j

1

2πr

r2

rj
tan

αi
2

[
f(vj) − f(vi)

]
+

+
∑
j

1

2πr

r2

rj+1
tan

αi
2

[
f(vj+1) − f(vi)

]
=

= f(vi) +
r

2π

∑
j

tan
αi
2

f(vj) − f(vi)

rj
+

r

2π

∑
j

tan
αi
2

f(vj+1) − f(vi)

rj+1
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parametrization fundamentals

We now isolate f(vi), after reducing, in the remaining instances from the neighbor
formulas:

∑
j

tan
αi
2

f(vj) − f(vi)

rj
+
∑
j

tan
αi
2

f(vj+1) − f(vi)

rj+1
= 0

∑
j

tan
αi
2

[ f(vi)

rj
+
f(vi)

rj+1

]
=
∑
j

tan
αi
2

[ f(vj)

rj
+
f(vj+1)

rj+1

]
Finally, f(vi), which does not depend on j, can be expressed as:

f(vi) =

∑
j tan αi

2

[
f(vj)

rj
+
f(vj+1)

rj+1

]
∑
j tan αi

2

[
1
rj

+ 1
rj+1

] (91)

At the numerator, we subtract and add, in the sum, the amount tan αi+1
2

f(vj+1)

rj+1
:

∑
j

[
tan

αi
2

f(vj)

rj
− tan

αi+1
2

f(vj+1)

rj+1

]
+
∑
j

[
tan

αi
2

+ tan
αi+1
2

] f(vj+1)

rj+1

At the denominator, we repeat the artifice with the amount tan αi+1
2

1
rj+1

:

∑
j

[
tan

αi
2

1

rj
− tan

αi+1
2

1

rj+1

]
+
∑
j

[
tan

αi
2

+ tan
αi+1
2

] 1

rj+1

Noticing that the first sums vanish in each case, we reassemble the fraction into the
final Mean Value Coordinates formula:

f(vi) =

∑
j

[
tan αi

2 + tan αi+1
2

]
f(vj)

rj∑
j

[
tan αi

2 + tan αi+1
2

]
1
rj

(92)
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C
S L O P E M O N O T O N I C I T Y A N A LY S I S F O R T H E E R R O R M E T R I C S

Let f1(x) = sin2 x and f2(x) = sin4 x, where x ← α−β
2 . We calculate the first and

second derivatives of these functions. In the case of ECohen-Steiner:

f′1(x) = (sin2 x)′ = 2 sin x cos x = sin 2x = sin(α − β)

f′′1 (x) = (sin 2x)′ = 2 cos 2x = 2 cos(α − β)

In the case of EWise:

f′2(x) = (sin4 x)′ = 4 sin3 x cos x = (2 sin x cos x) · 2 sin2 x =

= 2(sin 2x) sin2 x = 2(sin 2x)
1 − cos 2x

2
= sin 2x(1 − cos 2x) =

= sin(α − β)
[
1 − cos(α − β)

]
f′′2 (x) = (sin 2x)′(1 − cos 2x) + sin 2x(1 − cos 2x)′ =

= 2 cos 2x(1 − cos 2x) + sin 2x(2 sin 2x) = 2(cos 2x − cos2 2x + sin2 2x) =

= 2(cos 2x − cos 4x) = 2[cos(α − β) − cos 2(α − β)]

To find f1’s inflexion point, we set f′′1 = 0:

2 cos(α − β) = 0 ⇒ α − β =
π

2
+ kπ, k ∈ Z (93)

Proceeding in the same fashion for f2 , and keeping the expression for f′′2 only in terms
of cos 2x, we obtain:

f′′2 (x) = −2(2 cos2 2x − cos 2x − 1) = 0

By making the change of variables u ← cos 2x, we get the second degree equation:

2u2 − u − 1 = 0

with solutions:

u1,2 =
1 ±

√
(−1)2 − 4 · 2 · (−1)

2 · 2
=
1 ± 3
4

u1 = −
1

2
, u2 = 1
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slope monotonicity analysis for the error metrics

We get the cases:

(i) cos(α − β) = −
1

2
⇒ α − β = ± 2π

3
+ 2kπ, k ∈ Z

(ii) cos(α − β) = 1 ⇒ α − β = 2kπ, k ∈ Z

(94)

After setting k = 0 for convenience, we find from Equations 93 and 94 that the slope
of f1 grows up to x = π

4 (or α − β = π
2 ), while the slope of f2 keeps growing up

to x = π
3 (or α − β = 2π

3 ). Since on x ∈
[
0 ; π2

]
f1 is consistently greater than

f2 , it follows that f2’s slope stays slower longer than f1’s (from f′2 6 f′1 we get
α − β = 2x ∈

[
− π
2 + 2kπ ; π2 + 2kπ

]
), therefore f2 grows more slowly for smaller

angle differences, which gives our error its smoother segmentation characteristic we
found useful in curvy and noisy models.
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