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Abstract

It is known that pivoting-free Gaussian elimination is numerically unsafe but can run signifi-
cantly faster than GEPP. We prove and confirm experimentally that randomized preconditioning
combined with iterative refinement can to some extent replace pivoting in numerical Gaussian
elimination. The resulting algorithms compute solution more rapidly than GEPP and still with
high accuracy. In the case of Toeplitz, Hankel, and other structured inputs we yield acceleration
from cubic to nearly linear arithmetic time. Our auxiliary estimates for the condition number
of the product of fixed and random matrices can be of independent interest.

2000 Math. Subject Classification: 65F05, 65F22, 65F35

Key Words: Gaussian elimination, Pivoting, Randomized preconditioning, Toeplitz matrix com-
putations

1 Gaussian Elimination with No Pivoting

Gaussian elimination with no pivoting (hereafter we refer to it as GENP) generally fails to pro-
duce uncorrupted numerical solution to a linear system of equations because of the propagation of
rounding errors. Pivoting, that is row or column interchange, however, takes its toll. It ”usually
degrades the performance” [GL96, page 119] by interrupting the string of arithmetic computations
with the foreign operations of comparisons. Furthermore pivoting rapidly destroys matrix structure
of Toeplitz and Hankel types, which increases the running time of the solution dramatically, from
nearly linear to cubic. We refer the reader to [VBHK01, Introduction] and the references cited there
on various methods of solving or circumventing this problem. They rely on using normal equations
and augmentation, look ahead techniques, and displacement transformation. On the latter method
we also cite the original source [P90] and [P01, Sections 4.8, 4.9, and 5.6].

For which classes of input matrices can we safely avoid pivoting? In addition to the classical
examples of diagonally-dominant and positive definite matrices, we point out random matrices.

∗Supported by PSC CUNY Awards 69330–0038 and 61406–0039
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Indeed random matrices tend to be strongly well conditioned [D88], [E88], and if they are, then
numerical safety of GENP can be proved (see Sections 5 and 6).

In computational practice the input matrices are rarely random, but we prove that pre- and post-
multiplication of a matrix by random multipliers randomize it enough to expect that application
of GENP becomes numerically safe. Moreover in our extensive tests we observe this tendency of
GENP even in the case of circulant multipliers filled with random integers +1 and −1.

In our tests the relative residual norms of the output were a little greater in the case of GENP
with preprocessing than with GEPP but remained small enough to support rapid and noncostly
iterative refinement of the resulting approximate solutions.

We apply our approach to recursive block GENP and block Gauss-Jordan elimination with
no pivoting (hereafter referred to as GJENP). These variations support superfast solution (that is
solution in nearly linear time) of structured linear systems of equations of Toeplitz, Hankel and some
other types. We believe that our present demonstration of the power of randomized preconditioning
shows just the tip of an iceberg. Distinct variants of our approach in [PQa], [PQb], [PY] facilitate
the solution of linear systems of equations, matrix inversion based on augmentaion (cf. also our
Section 7), matrix eigen-solving, and root-finding for polynomial and secular equations. Randomized
preconditioning seems to be a natural means for the acceleration of structured matrix inversion via
Newton’s iteration, which is highly effective where the input matrix is structured and well conditioned
[P01, Chapter 6], [PRW02], [CPV04], [PKRK06], [P08].

Our estimates for the condition number of the product of fixed and random matrices in Section
3 have further applications in [PQa] and [PQb] and may be of independent interest.

We organize our paper as follows. We devote the next section to definitions and auxiliary results
supporting our randomized preconditioning. In Sections 3 and 8 we recal and extend the known
estimates for condition numbers of random matrices and of their products with fixed matrices.
Section 4 covers the basic 2 × 2 block triangular factorizations, Section 5 their recursive extension
(which include GENP and GJENP as special cases), Section 6 the respective numerical properties and
randomized preconditioning, and Section 7 the extension of our study to the case of structured input
matrices and random structured preconditioners. Section 9 describes our numerical experiments,
designed by the first author and performed by his coauthors, mostly by the second author. Otherwise
(tests excluding), the paper is due to the first author and should be cited as his work.

2 Definitions and basic facts

2.1 General matrices

We use and extend the customary definitions (cf. [GL96]).
“GENP” and “GJENP” (resp. “GEPP” and “GJEPP”) stand for “Gaussian Elimination with

No Pivoting” and “Gauss-Jordan Elimination with No Pivoting” (resp. “with Partial Pivoting”).
C (resp. R) is the field of complex (resp. real) numbers.
MT and MH denote the transpose and the Hermitian transpose of an m × n matrix M , re-

spectively (MH = MT for a real matrix M), ρ = rank M denotes its rank, nulM = n − ρ its
nullity, N(A) its null space, M (k×l) its k× l leading (that is northwestern) block submatrix, so that
M = M (m×n). Hereater we write M (k) for M (k×k). A matrix M of a rank ρ has generic rank profile
if all its leading blocks M (k) of size k× k for k ≤ ρ are nonsingular. If in addition ρ = n, the matrix
is strongly nonsingular.

(B1 , . . . , Bk) = (Bj)k
j=1 is a 1 × k block matrix with blocks B1, . . . , Bk. diag(B1, . . . , Bk) =

diag(Bj)k
j=1 is a k × k block diagonal matrix with diagonal blocks B1, . . . , Bk.

In or just I denote the n× n identity matrix. ei is its ith column vector, i = 0, 1, . . . , n− 1. 0 is
a matrix filled with zeros. A matrix U is unitary or orthonornmal if UHU = I.

If the columns of a matrix B of full column rank span the null space N(A), then B is a null
matrix basis or nmb for a matrix A.

M(n) flops suffice to multiply a pair of n × n matrices, M(n) ≤ Cn2.375 for immense constants
C [CW90], M(n) ≤ (2n − 1)n2.
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2.2 Structured matrices

Z = (zi,j)n−1
i,j=0 where zi,i−1 = 1 for all i and zi,j = 0 for j �= i − 1 is the lower shift matrix.

Zf = Z + fe0eT
n−1 for any scalar f , so that Z = Z0, Zn

f = fI.
An f-circulant matrix Zf (v) =

∑n−1
i=0 viZ

i
f is defined by its first column vector v = (vi)n−1

i=0 and
a scalar f �= 0 and is called circulant if f = 1 and skew circulant if f = −1.

Theorem 2.1. (See [CPW74].) We have Z1(v) = Ω−1D(Ωv)Ω. More generally, for any f �= 0, we
have Zfn (v) = U−1

f D(Uf v)Uf where Uf = ΩD(f ), f = (f i)n−1
i=0 , D(u) = diag(ui)n−1

i=0 for a vector
u = (ui)n−1

i=0 , and Ω = (ωij
n )n−1

i,j=0 is the n × n matrix of the discrete Fourier transform at n points,
ωn = exp(2π

√−1/n) being the primitive n-th root of one.

The theorem implies that multiplication and inversion of f-circulant matrices (wherever feasible)
produce f-circulant matrices and can be performed in O(n log n) flops based on FFT.

T is an n × n Toeplitz matrix (resp. Toeplitz-like matrix of displacement rank d) if it can be
nonuniquely represented as the sum of a pair of n × n circulant and skew circulant matrices (resp.
as the sum

∑d
k=1 Z1(gk)Z−1(hk)T for d pairs of vectors (gk, hk) of dimension n), although the

standard representation of a Toeplitz matrix T = (ti−j)
m−1,n−1
i=0,j=0 is by its m + n − 1 distinct entries

t1−n, . . . , tm−1.
J = Jn = (ji,k)n−1

i,k=0 is the reflection matrix, ji,n−1−i = 1, ji,k = 0 unless i+k = n−1. (J2 = I.)
H is a Hankel matrix (resp. Hankel-like matrix of displacement rank d) if and only if HJ is a
Toeplitz matrix (resp. Toeplitz-like matrix of displacement rank d).

See, e.g., [P01] on these and other popular classes of structured matrices, such as Vandermonde
matrices V = (tji )

m−1,n−1
i=0,j=0 , Cauchy matrices C = ( 1

si−tj
)m−1,n−1
i=0,j=0 , and matrices with similar struc-

tures.

2.3 Matrix norms, SVDs, inverses, and condition numbers

||A||h denotes the h-norm of a matrix A, h = 1, 2,∞. We write ||A||2 = ||A||. For A = (ai,j)
m,n
i,j=1

we have
maxm,n

i,j=1|ai,j| ≤ ||A|| = ||AH || ≤ √
mn maxm,n

i,j=1|ai,j|. (2.1)

A = SAΣATH
A is a full SVD of an m × n matrix A of a rank ρ provided SASH

A = SH
A SA = Im,

TATH
A = TH

A TA = In, ΣA = diag(Σ̂A, 0m−ρ,n−ρ), Σ̂A = diag(σj(A))ρ
j=1, σj = σj(A) = σj(AH) is

the jth largest singular value of a matrix A, having its minimax characterization

σj = max
dim(S)=j

min
x∈S,||x||=1

||Ax|| (2.2)

where S denotes linear spaces [GL96, Theorem 8.6.1] and j = 1, . . . , ρ. It follows that

σ1 = max
||x||=1

||Ax|| = ||A||, σn = min
||x||=1

||Ax||. (2.3)

The matrix X = A(I) is a left (resp. right) inverse of a matrix A if XA = I (resp. AX = I).
A(I)=A−1 for a nonsingular matrix A.

cond A = σ1(A)/σρ(A) is the condition number of a matrix A of a rank ρ. Such a matrix is ill
conditioned if σ1(A) � σρ(A) and is well conditioned otherwise. The concepts “large”, “ill” and “well
conditioned” are quantified in the context of the computational task and computer environment.

2.4 Singular values of submatrices and matrix products

The two following theorems are used in the proofs of Theorems 3.4 and 3.5 in Section 3. The first
of them follows from minimax characterization (2.2).

Theorem 2.2. Fix four positive integers p, q, m, and n, assume that A0 is a p× q submatrix of an
m × n matrix A. Then σj(A) ≥ σj(A0) for j = 1, 2, . . . , min{p, q}.
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Theorem 2.3. Let A ∈ Cm×r and B ∈ Cr×n and write rA = rank A, rB = rank B, r− =
min{rA, rB} and r+ = max{rA, rB}. Let r+ = r. (In particular this holds if at least one of
the matrices A and B is nonsingular.) Then rank(AB) = r−, σr−(AB) ≥ σrA(A)σrB (B) and
cond(AB) ≤ (cond A) cond B.

Proof. Let M = SMΣMTH
M be a full SVD where ΣM = diag(Σ̂M , 0s,t), Σ̂M = diag(σj(M))rM

j=1 for
M = A, s = m − rA, t = r − rA as well as for M = B, s = r − rB, t = n − rB. Let the matrix
Â ∈ CrA×r (resp. B̂H ∈ CrB×r) be obtained by deleting the zero rows of the matrix ΣATH

A = SH
A A

(resp. ΣBSH
B = TH

B BH), so that ÂB̂ ∈ CrA×rB . This pruning keeps all singular values (and
therefore the ranks) of the matrices A, B, and AB intact. Clearly Â and B̂ are full rank matrices.
Furthermore the equation r+ = r implies that at least one of the matrices Â and B̂ is nonsingular
and the product ÂB̂ has full rank r− = rank(AB).

Suppose rA = r. Then m ≥ rA = r+ = r ≥ rB . From minimax characterization (2.2) we
obtain σr−(ÂB̂) = ||ÂB̂x|| where ||x|| = 1. We have B̂x �= 0 because B̂ ∈ Cr×rB . Therefore
σr−(ÂB̂) = σAσB where σA = ||Ây||, y = B̂x/||B̂x||, σB = ||B̂x||. Since Â ∈ CrA×r = CrA×rA ,
we can apply equation (2.3) for A = Â and n = rA to obtain that σrA(Â) = min||z||=1 ||Âz|.
Consequently σrA(Â) ≤ σA. Likewise B̂ ∈ Cr×rB , and so we can apply equation (2.3) for A = B̂

and n = rB to obtain that σrB(B̂) = min||z||=1 ||B̂z||. Therefore σB ≥ σrB (B). Consequently
σr−(AB) = σr−(ÂB̂) = σAσB ≥ σrA(A)σrB (B).

If rA < r+ = r = rB, then the same argument shows that σr−(AB) = σr−(BHAH) ≥
σrA(BH)σrB (AH) = σrA(A)σrB (B).

Finally recall that ||AB|| ≤ ||A|| ||B||, and so cond(AB) ≤ (cond A) cond B.

Remark 2.1. cond(AB) can be arbitrarily large even for m × r unitary matrices A and BH if
m > r.

2.5 Random sampling and random matrices

|∆| is the cardinality of a set ∆. Random sampling of elements from a set ∆ is their selection from
this set at random, independently of each other, and under the uniform probability distribution on
∆. A matrix is random if its entries are randomly sampled (from a fixed set ∆).

Lemma 2.1. [DL78] (cf. also [S80], [Z79]). For a set ∆ of cardinality |∆| (in a fixed ring), let a
polynomial in m variables have total degree d, let it not vanish identically on the set ∆m, and let
the values of its variables be randomly sampled from the set ∆. Then the polynomial vanishes with
a probability of at most d/|∆|.
Corollary 2.1. An m × n matrix with entries sampled at random from a set ∆ has full rank with
a probability of at least 1 − l/|∆| for l = min{m, n}. Such a matrix of a rank ρ has generic rank
profile with a probability of at least 1 − (ρ + 1)ρ/|∆|
Proof. The determinant of a r × r matrix is a nonvanishing polynomial of degree r in its entries. It
remains to apply Lemma 2.1 to r × r submatrices of the input matrix.

Definition 2.1. FX(y) = Probability{X ≤ y} for a real random variable X is the cumulative
distribution function (CDF) of X evaluated at y. FA(y) = Fσl(A)(y) for an m× n matrix A and an
integer l = min{m, n}. A matrix (resp. vector) is a Gaussian random matrix (resp. vector) with a
mean µ and a variance σ2 if it is filled with independent Gaussian random variables, all having the
same mean µ and variance σ2. If µ = 0 and σ2 = 1, this is a standard Gaussian random matrix (resp.
vector). Fµ,σ(y) = 1

σ
√

2π

∫ y

−∞ exp(− (x−µ)2

2σ2 )dx is the CDF for a Gaussian random variable with a

mean µ and a variance σ2. Φµ,σ(y) = Fµ,σ(y) − Fµ,σ(−y) = 1
σ
√

2π

∫ y

−y exp(− (x−µ)2

2σ2 )dx for y ≥ 0.

We use the two following lemmas (the first of them is immediately verified).
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Lemma 2.2. For positive y, y1, and y2 we have
FX(y) ≤ FX1(y1) + FX2(y2) if X ≤ min{X1y/y1 , X2y/y2},
1 − FX(y) ≤ 2 − FX1(y1) − FX2(y2) if X ≥ max{X1y/y1, X2y/y2}.
Lemma 2.3. We have

a) y
σ

√
2
π

exp(− (|µ|+y)2

2σ2 ) ≤ Φµ,σ(y) ≤ y
σ

√
2
π

for y ≥ 0,

b) Φµ,σ(y) ≤ y
σ

√
2
π exp(− (|µ|−y)2

2σ2 ) for 0 ≤ y < |µ|,
c) Φµ,σ(y) ≈ y

σ

√
2
π

exp(−µ2

2
) for y ≈ 0,

d) 1 − Φµ,σ(y) ≤ σ√
2π

( 1
y−µ exp(− (y−µ)2

2σ2 ) + 1
y+µ exp(− (y+µ)2

2σ2 )) for y ≥ |µ| + σ,

e) 1 − Φµ,σ(y) ≤ 1
a

√
2
π exp(−a2

2 ) for y ≥ |µ|+ aσ, a ≥ 1,

f) k(1 − Φµ,σ(y)) ≤ 1
a+b

√
2
π

exp(− (a+2b)a
2

) for y ≥ |µ| + (a + b)σ, b =
√

2 lnk, k ≥ 2, a + b ≥ 1.

Proof. Parts a)–c) are immediately verified. Observe that Φµ,σ(y) = Φ0,1(y−µ
σ

) = F0,1(y−µ
σ

) −
F0,1(−y−µ

σ
) and F0,1(−y−µ

σ
) = 1−F0,1(y+µ

σ
). Deduce that 1−Φµ,σ(y) = 2−F0,1(y−µ

σ
)−F0,1(y+µ

σ
).

Combine this equation with the bound 1 − F0,1(z) ≤ 1
z
√

2π
exp(−z2

2 ) for z = y±µ
σ ≥ 1 from [SST06,

Lemma A.1] and obtain part d). Part e) follows from part d) and implies part f).

3 Extremal singular values of random matrices and of their

products with fixed matrices

Gaussian random matrices (cf. Definition 2.1) tend to be well conditioned [D88], [E88], and even
perturbations by such a matrix A is expected to make a matrix M well conditioned if the norms
||A|| and ||M || have the same order [SST06]. Next we specify and extend the respective estimates
using a constant c ≤ 2.35 from [SST06].

Theorem 3.1. Assume an m × n matrix A filled with d random variables X1, . . . , Xd. (d =
m + n − 1 for random Toeplitz and Hankel matrices A, d = mn for random general matrix A.)
Write F−(y) = mind

i=1 F|Xi|(y) for y ≥ 0. Then a) F−(y) = Φµ,σ(y) where X1, . . . , Xd are Gaussian
random variables with a mean µ and a variance σ, whereas b) F−(y) = y/a (resp. F−(y) = (y/a)2)
where 0 ≤ y ≤ a and the random variables X1, . . . , Xd are uniformly distributed on the real line
segments [−a, a] or [0, a] (resp. the circle {x : |x| ≤ a} on the complex plane). Furthermore we
have c) 1−F||A||(y) ≤ (1−F−(y/

√
mn ))d, which is a trivial bound unless F−(y/

√
mn ) > 1− 1/d,

and d) F||A||(y) ≥ (F−(y/
√

mn ))d if the d random variables are independent of each other.

Proof. Parts a) and b) are immediately verified. Part d) follows because bounds (2.1) imply that
||A|| ≤ y if |Xi| ≤ y/

√
mn for all i. Apply Lemma 2.2 to deduce part c).

Theorem 3.2. (See [DS01, Theorem II.7].) Suppose A ∈ Tn×n is a Gaussian random matrix with
mean zero and variance σ2. Then F||A||(y) ≥ 1 − exp(−x2/2) for x = y/σ − 2

√
n ≥ 0.

Theorem 3.3. (See [SST06, Theorem 3.3].) Suppose M ∈ Tm×n, Ū ∈ Tm×m, and V̄ ∈ Tn×n

are three fixed matrices, Ū and V̄ are unitary matrices, A ∈ Tm×n is a Gaussian random matrix
independent of the matrix M and having mean zero and a variance σ2, W = Ū(A + M)V̄ , l =
min{m, n}, and y ≥ 0. Then FW (y) ≤ cy

√
l/σ.

Combining the two latter theorems implies the following result.

Corollary 3.1. (See [SST06, Theorem 3.1].) Under the assumptions of Theorem 3.3, let ||M || ≤ √
l.

Then Fcond W (y) ≥ 1 − (c1 + c2

√
(lny)/n)n/(yσ) for c1 = 14.1, c2 = 4.7

√
2, and all y ≥ 1.

On a further improvement of this bound by the factor of
√

log n, see [W04].
Let us employ our results in Section 2.4 to extend the estimates of Theorem 3.3 to yield proba-

bilistic lower bounds on the smallest singular values of the products of fixed and random matrices.
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Theorem 3.4. Suppose that G ∈ Tq×m, H ∈ Tn×r, and a random matrix W ∈ Tm×n have full
rank ρ with probability one. Write rG = rank G and rH = rank H. Let y ≥ 0. Then FGW (y) ≤
FW (y/σrG (G)) if rG = m, whereas FWH(y) ≤ FW (y/σrG (H)) if rH = n.

Proof. The theorem follows from Theorem 2.3.

In view of Remark 2.1, we cannot merely drop the above assumptions that rG ≥ m and rH ≥ n,
but the next theorem (employing Theorem 3.4) circumvents the problem. We use this theorem only
for Ū = 0 and V̄ = 0.

Theorem 3.5. Suppose T ∈ C or T ∈ R, G ∈ TrG×m, H ∈ Tn×rH , X ∈ Tm×n, Ũ ∈ TrG×n,
Ṽ ∈ Tm×rH , rank G = rG < m, rankH = rH < n, the assumptions of Theorem 3.3 hold for the
matrix X replacing W , and y ≥ 0. Then

a) FGX+Ũ (y) ≤ cy
√

l/(σrG(G)σ) and
b) FXH+Ṽ (y) ≤ cy

√
l/(σrH (H)σ).

Proof. Let Ḡ maximize the value σrG(Ḡ) among all rG × rG block submatrices Ḡ of the matrix G,
which implies that the matrix Ḡ is nonsingular. Write G = Ḡ(G1, IrG , G2), XT = (XT

1 , X̄T , XT
2 ),

and GX+Ū = Ḡ(A+M) where A = X̄ and M = G1X1+G2X2+Ū . Observe that the assumptions of
Theorem 3.4 hold for G replaced by Ḡ and W by A+M . Deduce that FGX(y) ≤ FA+M (y/σrG (Ḡ)).
Obtain Theorem 3.5a by combining this estimate with the bounds FA+M (y) ≤ cy

√
l/σ (implied by

Theorem 3.3) and σrG(Ḡ) ≤ σrG(G) (implied by Theorem 2.2). Obtain Theorem 3.5b by applying
Theorem 3.5a to the matrices XT , HT , (XH)T , and V replacing the matrices X, G, GX, and U ,
respectively.

Corollary 3.2. Suppose k, m, and n are integers, 1 ≤ k ≤ m ≤ n, T ∈ C or T ∈ R, G, HT ∈ Tm×n,
rank G = rankH = n, X is a standard Gaussian random matrix with a mean µ and a variance σ,
and y ≥ 0. Then

a) F(GX)(k)(y) ≤ cy
√

k/(σn(G)σ) and
b) F(XH)(k)(y) ≤ cy

√
k/(σn(H)σ).

Corollary 3.3. Under the assumptions of Corollary 3.2 choose a scalar z ≥ 2σ
√

n. Then
a) Fcond(GX)(k)(yz||G||) ≥ 1 − exp( (z−2σ

√
n)2

2σ2 ) − cy
√

k/(σn(G)σ) and

b) Fcond(XH)(k)(yz||H ||) ≥ 1 − exp( (z−2σ
√

n)2

2σ2 ) − cy
√

k/(σn(H)σ).

Proof. a) Theorem 3.2 for y = z and Corollary 3.2a) together imply that F||X|| σk(GX)(k)(yz) ≥
1−exp( (z−2σ

√
n)2

2σ2 )−cy
√

k/(σn(G)σ). Recall that ||(GX)(k)|| ≤ ||GX|| ≤ ||G|| ||X|| and obtain part
a). Part b) is proved similarly.

Our next definition extends the class of strongly nonsingular matrices.

Definition 3.1. A matrix M is strongly well conditioned if all its leading submatrices M (k) are
well conditioned.

Suppose G and H are well conditioned matrices of full rank. Corollary 3.3 implies that their
preconditioning with a Gaussian random matrix X is expected to yield strongly well conditioned
matrices GX and XH. If the above matrix G (resp. H) is ill conditioned but has a k × l well
conditioned submatrix F in its row set αk and column set βl, then one can obtain from the corollary
that any k × l submatrix of the matrix GX in its row set αk (resp. of the matrix XH in its
column set βl) is expected to be strongly well conditioned provided X is standard Gaussian random
matrix in Tn×n. Furthermore one can deduce that the k × l leading submatrix of the matrix Y GX
(resp. XHY ) for standard Gaussian random matrix Y ∈ Tm×m is expected to be strongly well
conditioned. This property holds even in the Hermitian preprocessing where X = Y H is standard
Gaussian random matrix, in which case we can preserve the Hermitian structure of the input matrix.

In the next sections we elaborate upon application of such preconditioning as a substitution for
pivoting in the basic and block recursive versions of GEPP and GJEPP.
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4 Basic block factorizations

Let n, k, and r = n − k be positive integers and let M00 = M (k) be the nonsingular k × k leading

block of an n × n matrix M =
(

M00 M01

M10 M11

)
, represented as a 2 × 2 block matrix. Then a single

step of block GENP and block GJENP outputs the block factorizations

M =
(

Ik 0
M10M

−1
00 Ir

)(
M00 M01

0 S

)
(4.1)

and

M =
(

Ik 0
M10M

−1
00 Ir

) (
M00 0
0 S

)(
Ir M−1

00 M01

0 Ir

)
(4.2)

where
S = S(M (k), M) = M11 − M01M

−1
00 M01 (4.3)

denotes the Schur complement of M00 = M (k) in M . These factorizations are infeasible (resp.
numerically unstable) if the block M00 is singular (resp. ill conditioned). If the matrices M and S
are nonsingular, then we have

M−1 =
(

M−1
00 −M−1

00 M01S
−1

0 S−1

) (
Ik 0

−M10M
−1
00 Ir

)
(4.4)

and

M−1 =
(

Ir −M−1
00 M01

0 Ir

)(
M−1

00 0
0 S−1

) (
Ik 0

−M10M
−1
00 Ir

)
. (4.5)

Note that S−1 is the trailing (southeastern) block of M−1.

5 Recursive (block) factorizations, GENP and GJENP

We can extend factorizations (4.1)–(4.5) to the diagonal blocks M00, S, M−1
00 and S−1 as long as these

blocks are not scalars, are nonsingular, and have nonsingular leading blocks. If these assumptions
hold recursively, we can recursively extend the factorization process until it ends where all diagonal
blocks turn into scalars. At this point we can multiply together all lower triangular factors in (4.1)
(resp. all lower triangular factors as well as all upper triangular factors in (4.2)) to arrive at the
unique LU (resp. LDU1) factorization of the matrix M , where the factor D is diagonal, the factor
U is upper triangular, and the factor L is (resp. both factors L and UT

1 are) unit lower triangular.
The computation of the recursive factorizations (4.1) and (4.2) represents block GENP and block
GJENP, respectively, and is completely defined by the choices of the dimensions k and r in all steps.
These processes turn into GENP and GJENP, respectively, if we always choose k = 1 in all steps,
that is choose the size 1×1 for all the leading blocks involved. We call the recursive process balanced
if |k − r| ≤ 1 in all its steps.

Due to equations (4.4) and (4.5) the same processes also define recusive factorizations of the
inverse M−1 if M is a nonsingular matrix.

Theorem 5.1. Suppose the recursive block factorization process based on (4.1) or (4.2) has been
completed for an n × n input matrix M . Then (a) this takes O(n3) flops for the GENP process
and (b) O(M(n)) flops of level 3 BLAS for the balanced process (cf. Section 2 and [GL96]). If
M is a Toeplitz-like or Hankel-like matrix having a displacement rank d and represented with its
displacement generator of lengths O(r), then displacement representations of lengths O(d) for all
auxiliary matrices involved can be computed by using (c) O(dn2) flops in the case of the GENP
process and (d) O(d2n log2 n) flops in the case of the balanced processes. (e) Given a complete
recursive factorization of a matrix M based on equations (4.1)–(4.3), we can compute the value
det M in n− 1 flops and the vector M−1b in O(n2) flops for general nonsingular matrix M and in
O(nd logn) flops for a Toeplitz-like or Hankel-like matrix M having a displacement rank d.
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Proof. See, e.g., [GL96] on part (a), [AHU74] on part (b), [GKO95] on part (c), and [M80], [BA80],
[P01, Chapter 5] on part (d).

The output LU and LDU1 factorizations do not depend on the order of decreasing the block sizes
to 1 × 1. The auxiliary Schur complements in these factorizations are completely defined by their
locations in the matrix M .

Theorem 5.2. In every step of the recursive block factorization process based on (4.1) or (4.2)
every diagonal block of a block diagonal factor is either a leading block of the input matrix M or the
Schur complement

S(M (h), M (k)) = (S(M (h), M))(h) (5.1)

for some integers h and k, 0 < h < k ≤ n.

Corollary 5.1. (Cf. Corollary 2.1.) a) The recursive block factorization process based on equations
(4.1) or (4.2) can be completed if and only if the input matrix M is strongly nonsingular. b)
Generally, for any input matrx M , this process completes the recursive block factorization of the
strongly nonsingular leading block of this matrix that has the largest size ρ × ρ, ρ ≤ rank M . The
flop estimates in Theorem 5.1 with n replaced by ρ can be applied to these restricted computations.
c) For matrices M having generic rank profile ρ = rank M , S(M (ρ), M) = 0, and a nmb of the
matrix M is given by the matrix

F =
(−M−1

00 M01

Ir

)
. (5.2)

6 Numerical behavior of recursive block GENP and GJENP

and randomized preconditioning

Theorem 6.1. Let us write N = ||M || and N− = maxn
k=1 ||(M (k))−1||. Then cond D ≤ (1 +

N−N)NN− for every diagonal block in the recursive factorization of the matrix M in Section 4.

Proof. For the blocks M00 of M and S−1 of M−1 we surely have ||M00|| ≤ N , ||M−1
00 || ≤ N−, and

||S−1|| ≤ ||M−1|| ≤ N−. We also have ||S|| ≤ N + N−N2, due to (4.3). Now the claimed bound
follows from Theorem 5.2.

Clearly the bound (1 + N−N)NN− is not large if and only if the matrix M is strongly well
conditioned, and if so, recursive GENP and GJENP for this matrix are numerically stable.

Our study implies that GENP and GJENP (as well as recursive GENP and GJENP) for a matrix
M (ρ) where ρ = rank M are feasible and well conditioned if and only if the matrix M (ρ) is strongly
nonsingular and strongly well conditioned. Furthermore these properties are expected to hold for
the matrices XMY (ρ) if the matrix M (ρ) is nonsingular and well conditioned and if X and Y are
square standard Gaussian random matrices (cf. Corollary 3.3).

7 Random structured input matrices and preconditioners.
Inversion via randomized augmentation

In the case of structured input matrices the standard and recursive GENP and GJENP can be
performed in nearly linear arithmetic time (see Theorem 5.1), but these superfast algorithms are
prone to numerical stability problems [B85]. Can we extend our formal study in the previous sections
to support structured preconditioners? The answer is negative, except for the results in the next
section on circulant matrices and the norm bounds in Theorems 3.1 and 3.2, which hold for or
can be readily extended to sparse and structured matrices. In particular no good estimates for the
smallest positive singular values seem to be available for random Toeplitz, Hankel, banded and other
sparse matrices yet, whereas random Vandermonde and Cauchy matrices tend to be ill conditioned
(cf. [GI88]). Respectively we have no extension of Theorems 3.3–3.5 and Corollaries 3.1–3.3 to
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structured matrices of these classes. Our extensive experiments (see Section 9) show, however, that
random Toeplitz (and therefore random Hankel) matrices tend to be well conditioned, although less
eagerly than random general and circulant matrices (cf. Tables 9.1–9.3).

Multiplication by Toeplitz and Hankel matrices does not destroy Toeplitz and Hankel structure
but a little spoils it. Let us outline randomized augmentation techniques, which perfectly preserve

the input structure (cf. [PQb]). Let K →
(

W V
B A

)
for a positive r and nonsingular matrices

A ∈ Cn×n, W ∈ Cr×r , and K ∈ C(n+r)×(n+r). (If the matrix A is Hermitian, we can keep this
property for the matrix K by choosing B = V H and a Hermitian matrix W .) According to the
formal study in [PQb], we can expect that condK(h) has the order of the ratio σ1(A(h))/σh−r(A(h))
for h = r + 1, . . . , n in the case of random and properly scaled matrices B, V , and W . In the
experiments in [PQb] this property was consistently observed also where B, V , and W were scaled
random structured matrices, which allowed us to keep the structure of the matrix A intact in the
transition A → K. For a large class of well conditioned but not strongly well conditioned matrices
A this transition is expected to yield strongly well conditioned matrices K, even where the positive
integers r are small. In this case the inverses K−1 can be safely and rapidly computed by means of
recursive block GENP or GJENP, and then we can readily recover the inverse A−1 as follows.

Recall that K−1 =
(

X Y
Z F

)
for F = (A − BW−1V )−1. Apply the Sherman–Morrison–Wood-

bury formula [GL96, page 50] and obtain that A−1 = F − FUG−1V HF for U = BW−1 and
G = Ir − V HFU . The original inversion problem is reduced to the case of the matrices W and G of
smaller size.

Remark 7.1. If A is a Toeplitz matrix, then to yield a Toeplitz matrix K, we must fix the Toeplitz
matrix W . We can, however, vary the matrix W if we apply our approach to invert the Hankel
matrix H = JA and then obtain A−1 = H−1J .

8 The norms of random f-circulant matrices and of their

inverses

In this section we estimate the norms of random f-circulant matrices and their inverses. The
estimates show that such matrices can be expected to be well conditioned for f of the order 1± c/n
and positive constants c.

Theorem 8.1. Let an n × n circulant matrix A = Z1(v) =
∑n−1

i=0 viZ
i
f be defined by a Gaussian

random vector v = (vi)n−1
i=0 having a mean µ and a variance σ2. Then we have

F||A||(y) ≥ (n − 1)(Φ0,2σ
√

n(y) − 1) + Φµn,σ
√

n(y),

FA(y) ≤ (n − 1)Φ
0,σ

√
n/

√
2
(y) + Φµn,σ

√
n(y)

for all nonnegative y and for Φµ,σ(y) in Definition 2.1.

Proof. Represent the matrix A as in Theorem 2.1 and write B = ΩAΩ−1 = D(Ωv). Recall that
1√
n
Ω is a unitary matrix, so that σj(A) = σj(B) for all j.
Write u = (ui)n−1

i=0 = Ωv. We have σ1(B) = maxj |uj| and σn(B) = minj |uj| because B =
diag(ui)n−1

i=0 . Our next goal is to define Gaussian random variables si and ti such that

|si| ≤ |ui| ≤ |ti| (8.1)

for all i and thus (cf. Lemma 2.2)

F||A||(y) = Fmaxi |ui|(y) ≥ 1 −
∑

i

(1 − F|ui|(y)) ≥ 1 − n +
∑

i

F|si|(y), (8.2)
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1 − FA(y) = 1 − Fmini |ui|(y) ≥ 1 −
∑

i

F|ui|(y) ≥ 1 −
∑

i

F|ti|(y). (8.3)

Clearly u0 =
∑n−1

j=0 vj is a Gaussian random variable with the mean µn and variance nσ2, so that
s0 = t0 = u0,

F|s0| = F|t0| = F|u0|(y) = Φµn,σ
√

n(y). (8.4)

Now represent the vector u as ū+ ũ
√−1 where ū = (ūi)n−1

i=0 = Re u, ũ = (ũi)n−1
i=0 = Im u, and Re z

and Im z stand for the real and imaginary parts of a complex vector z, respectively. ū and ũ are
real Gaussian random vectors because they are filled with real linear functions ūi =

∑n−1
j=0 vjcos 2πij

n

and ũi =
∑n−1

j=0 vjsin2πij
n of independent Gaussian random variables v0, . . . , vn−1. For all positive

i the Gaussian random variables ūi and ũi have the same mean zero (because Ω(1, 1, . . . , 1)T =
(n, 0, . . . , 0)T )) and the variances σ̄2

i = σ2
∑n−1

j=0 (cos 2πij
n )2 and σ̃2

i = σ2
∑n−1

j=0 (sin2πij
n )2, respectively.

Therefore σ̄2
i + σ̃2

i = nσ2 and thus σ
√

n/
√

2 ≤ max{|σ̄i|, |σ̃i|} ≤ σ
√

n for all i. Now note that
|ui|/2 ≤ max{|ūi|, |ũi|} ≤ |ui| and arrive at the desired Gaussian random variables si and ti satisfying
bounds (8.1) for all positive i and having the mean zero and the variances σ2n/

√
2 and 4σ2n,

respectively. Therefore |Φ
0,σ

√
n/

√
2
(y) ≤ F|ui|(y) ≤ Φ0,2σ

√
n(y) for all positive i. Combine these

bounds with relationships (8.2)–(8.4) and obtain the theorem.

Corollary 8.1. Under the assumptions of Theorem 8.1 we have
a) F||A||(y) ≥ 1 −

√
2
π
( 1

a+b
exp(− (a+2b)a

2
) + 1

c
exp(− c2

2
))

for y ≥ max{2(a + b)σ
√

n, |µ|+ cσ
√

n}, a + b ≥ 1, b =
√

2 ln(n − 1) > 0, c ≥ 1,

b) FA(y) ≤ ((n − 1)21/4 + 1) y
σ

√
2

π n
for y ≥ 0.

Proof. Combine Theorem 8.1 with Lemma 2.3 a), e), f).

Theorem 2.1 implies that 1
g(n)σj(Z1(v)) ≤ σj(Zf (v)) ≤ g(n)σj(Z1(v)) for all vectors v, scalars

f , and j = 1, 2, . . . , n provided g(n) = max{1, |f |2n} max{1, 1
|f|n }. This enables us to extend the

estimates of Theorem 8.1 to f-circulant matrices for f �= 0. In particular these estimates do not
change in the case of skew circulant matrices (for which f = −1) and show that n × n f-circulant
matrices can be expected to be well conditioned where log g(n) = O(log n).

Remark 8.1. Our extensive experiments (cf. Table 9.2) suggest that the estimates of Theorem 8.1
are rather pessimistic. This is probably because they rely on the bounds of Lemma 2.2, which are
crude in this application.

9 Numerical Experiments

Our numerical experiments with random general, Toeplitz and circulant matrices have been per-
formed in the Graduate Center of the City University of New York. We conducted the tests on a
Dell server with a dual core 1.86 GHz Xeon processor and 2G memory running Windows Server
2003 R2. The test Fortran code was compiled with the GNU gfortran compiler within the Cygwin
environment. Random numbers were generated with the random number intrincic Fortran function,
assuming the uniform probability distribution over the range {x : −1 ≤ x < 1}.

9.1 Conditioning tests

We computed the condition numbers of n × n random general, Toeplitz, and circulant matrices for
n = 2k, k = 5, 6, . . . , with the entries sampled in the range [−1, 1). We also performed the same
tests with complex general matrices whose entries had real and imaginary parts sampled at random
in the same range [−1, 1). We computed the values cond1 T = ||T ||1 ||T−1||1 for Toeplitz matrices
T and the values condM = ||M || ||M−1|| for general and circulant matrices M . We performed
m = 100 tests for each dimension n and represented the test results in Tables 9.1–9.3.
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9.2 Solution of linear systems of equations with multiplicative precondi-
tioning

We solved 1000 linear systems of equations Mx = b for each input class for vectors b with random
coordinates from the range [−1, 1) and matrices M specified below.

Input Matrices:

M =
(

Mk A
B C

)
is an n × n matrix, Mk is a k × k matrix, A, B, and C are random Toeplitz

matrices such that ||A|| ≈ ||B|| ≈ ||C|| ≈ ||Mk|| ≈ 1, n = 2s, s = 5, 6, 7, 8, 10, and k = n/2. We have
chosen the matrices Mk as follows.

1) General matrices Mk = UΣV H where Σ = diag(σi)k
i=1, σi = 1 for i = 1, . . . , k − h, σi = 0 for

i = k−h +1, . . . , k, h = 4, and U and V are k× k random orthonormal matrices, that is the factors
Q in the QR factorization of k×k random matrices where the factor R has positive diagonal entries
(cf. [H02, Section 28.3]).

2) Toeplitz-like matrices Mk with nullity h = 4. Mk = c(T, TS) for random Toeplitz matrices T
of size k×(k−h) and S of size (k−h)×h, for h = 4, and for a positive scalar c such that ||Mk|| ≈ 1.

Multiplicative preconditioners:
(a) n × n circulant multipliers, each defined by its first column with the n entries +1 and −1

chosen at random,
(b) Householder multipliers H =

∏h
i=1 Hi, Hi = I − 2vivT

i /vT
i vi, with the vectors vi filled with

the integers +1 and −1 chosen at random for all i.

Tables
Tables 9.4 and 9.5 show the test results for the solution of linear systems where we apply GENP

with randomized structured preconditioning. For all tests the tables display min, max, and average
values of the relative residual norm ||Mx− b||/||b|| and the standard deviations. For GENP with
preconditioning we show these data before we performed iterative refinement and after the first and
sometimes also the third step of it. We continued iterative refinement until we decreased the output
residual norms to the level of 10−14 (achieved by GEPP). The columns iterations in our tables
show the respective numbers of steps of iterative refinement.

Due to the singularity of the leading block Mk, the relative residual norms in GENP without
preconditioning stayed in the range [10, 108] and were too large to allow iterative refinement. With
our randomized structured preconditioning, however, these norms were always small enough to allow
rapid iterative refinement to the level achieved in GEPP.

Our tests have also showed that with the growth of the input size the growth of the relative norm
was limited.

We repeated our computations where the input entries of the matrix M were truncated to the
single precision. In this case double-precision multipication by our multipliers was error-free. The
residual norms remained essentially the same as for the double precision input. This showed that
the rounding errors have made all their impact at the elimination stage rather than at the stage of
multiplication by preconditioners.

9.3 Computation of nmbs

Input Matrices:

We first defined auxiliary matrices M̂ =
(

Mk A
B C

)
where the blocks Mk, A, B, and C were

defined as in Section 9.2 but for n replaced by n = 2s−r, r = 4. Then we defined the input matrices

M =
(

M̂ E
G K

)
where the block G was a random r × (2s − r) Toeplitz matrix,

(
E
K

)
=

(
M̂
G

)
T ,

and T was a random (n − r) × r Toeplitz matrix.
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We generated multiplicative preconditioners in the same way as in Section 9.2. Tables 9.6
and 9.7 display the results of the computation of nmbs for the matrices M based on GJENP with
weakly random preconditioning (cf. (5.2)). The same format as in Tables 9.4 and 9.5 is used, except
that now the tables display the data on the relative residual norms ||MB||/(||M ||||B||).

Table 9.1: condition numbers of random matrices

size type min max mean std
32 real 2.4× 101 1.8× 103 2.4× 102 3.3 × 102

32 complex 2.7× 101 8.7× 102 1.1× 102 1.1 × 102

64 real 4.6× 101 1.1× 104 5.0× 102 1.1 × 103

64 complex 5.2× 101 4.2× 103 2.7× 102 4.6 × 102

128 real 1.0× 102 2.7× 104 1.1× 103 3.0 × 103

128 complex 1.3× 102 2.5× 103 3.9× 102 3.3 × 102

256 real 2.4× 102 8.4× 104 3.7× 103 9.7 × 103

256 complex 2.5× 102 1.4× 104 1.0× 103 1.5 × 103

512 real 3.9× 102 7.4× 105 1.8× 104 8.5 × 104

512 complex 5.7× 102 3.2× 104 2.3× 103 3.5 × 103

1024 real 8.8× 102 2.3× 105 8.8× 103 2.4 × 104

1024 complex 7.2× 102 1.3× 105 5.4× 103 1.4 × 104

2048 real 2.1× 103 2.0× 105 1.8× 104 3.2 × 104

2048 complex 2.3× 103 5.7× 104 6.7× 103 7.2 × 103

Table 9.2: condition numbers cond1 T of random Toeplitz matrices T
size min mean max std
256 9.1× 102 9.2× 103 1.3 × 105 1.8× 104

512 2.3× 103 3.0× 104 2.4 × 105 4.9× 104

1024 5.6× 103 7.0× 104 1.8 × 106 2.0× 105

2048 1.7× 104 1.8× 105 4.2 × 106 5.4× 105

4096 4.3× 104 2.7× 105 1.9 × 106 3.4× 105

8192 8.8× 104 1.2× 106 1.3 × 107 2.2× 106
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Table 9.4: residual norms of the solutions of Toeplitz-like linear systems

multiplier size iterations min max mean std
circulant 32 0 7.8× 10−15 1.6× 10−10 3.6 × 10−12 1.8× 10−11

circulant 32 1 8.3× 10−16 5.7× 10−12 7.4 × 10−14 5.7× 10−13

circulant 64 0 5.9× 10−14 1.6 × 10−9 2.4 × 10−11 1.6× 10−10

circulant 64 1 1.7× 10−15 7.3× 10−13 4.9 × 10−14 1.2× 10−13

circulant 128 0 3.1× 10−13 1.9 × 10−8 3.5 × 10−10 2.1× 10−9

circulant 128 1 5.2× 10−15 1.3× 10−10 1.6 × 10−12 1.3× 10−11

circulant 256 0 2.7× 10−12 3.6 × 10−9 1.7 × 10−10 4.6× 10−10

circulant 256 1 8.8× 10−15 2.8× 10−12 1.6 × 10−13 3.5× 10−13

circulant 1024 0 4.0× 10−10 3.8 × 10−9 1.5× 10−9 1.5× 10−9

circulant 1024 1 1.2× 10−13 5.1× 10−13 2.3 × 10−13 1.9× 10−13

Householder 32 0 4.9× 10−11 1.8 × 10−7 5.8× 10−9 2.0× 10−8

Householder 32 1 4.6× 10−16 1.1× 10−13 6.1 × 10−15 1.7× 10−14
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Table 9.5: residual norms of the solutions of linear systems in the case of general matrices Mk

multiplier size iterations min max mean std
circulant 32 0 9.1× 10−15 5.4× 10−12 5.7 × 10−13 1.1× 10−12

circulant 32 1 1.1× 10−15 7.8× 10−14 9.7 × 10−15 1.4× 10−14

circulant 64 0 4.7× 10−14 8.0× 10−11 4.0 × 10−12 1.1× 10−11

circulant 64 1 1.9× 10−15 5.3× 10−13 2.3 × 10−14 5.4× 10−14

circulant 128 0 2.8× 10−13 2.1× 10−10 1.6 × 10−11 3.1× 10−11

circulant 128 1 4.3× 10−15 1.6× 10−12 6.6 × 10−14 1.8× 10−13

circulant 256 0 1.7× 10−12 1.4 × 10−7 2.0× 10−9 1.5× 10−8

circulant 256 1 8.3× 10−15 4.3× 10−10 4.5 × 10−12 4.3× 10−11

circulant 1024 0 1.7× 10−10 4.4 × 10−9 1.4× 10−9 2.1× 10−9

circulant 1024 1 3.4× 10−14 9.9× 10−14 6.8 × 10−14 2.7× 10−14

Householder 32 0 5.5× 10−15 2.3× 10−11 1.0 × 10−12 3.1× 10−12

Householder 32 1 4.1× 10−16 1.8× 10−13 4.5 × 10−15 1.8× 10−14

Householder 64 0 2.9× 10−14 1.8× 10−10 3.6 × 10−12 1.9× 10−11

Householder 64 1 5.8× 10−16 3.6× 10−13 9.0 × 10−15 3.8× 10−14

Householder 128 0 1.2× 10−13 9.1× 10−10 2.4 × 10−11 1.0× 10−10

Householder 128 1 1.2× 10−15 4.8× 10−13 1.9 × 10−14 6.0× 10−14

Householder 256 0 1.1× 10−12 3.2 × 10−8 4.5 × 10−10 3.2× 10−9

Householder 256 1 2.0× 10−15 6.4× 10−13 2.7 × 10−14 8.2× 10−14

Householder 1024 0 3.2× 10−11 2.7 × 10−9 8.6 × 10−10 1.3× 10−9

Householder 1024 1 1.6× 10−14 9.5× 10−14 4.3 × 10−14 3.7× 10−14
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Table 9.6: residual norms of approximate nmbs in the case of Toeplitz-like matrices Mk

multiplier size iterations min max mean std
circulant 32 0 4.4× 10−13 6.0 × 10−9 2.0 × 10−10 7.9× 10−10

circulant 32 1 4.4× 10−17 2.3× 10−15 3.2 × 10−16 3.9× 10−16

circulant 64 0 6.1× 10−13 6.2 × 10−9 2.3 × 10−10 8.9× 10−10

circulant 64 1 3.9× 10−17 3.1× 10−15 3.0 × 10−16 4.2× 10−16

circulant 128 0 1.9× 10−13 3.8 × 10−9 1.3 × 10−10 4.7× 10−10

circulant 128 1 3.6× 10−17 2.5× 10−15 3.7 × 10−16 4.2× 10−16

circulant 256 0 1.7× 10−12 1.4 × 10−8 3.8 × 10−10 1.8× 10−9

circulant 256 1 2.1× 10−17 2.1× 10−14 5.8 × 10−16 2.2× 10−15

circulant 1024 0 9.3× 10−12 5.4× 10−11 3.2 × 10−11 2.2× 10−11

circulant 1024 1 1.7× 10−16 2.2× 10−16 2.0 × 10−16 2.2× 10−17

circulant 1024 3 6.2× 10−17 4.7× 10−16 2.0 × 10−16 1.8× 10−16

Householder 32 0 3.5× 10−15 2.6 × 10−5 2.7× 10−7 2.6× 10−6

Householder 32 1 1.1× 10−20 1.9 × 10−9 1.9 × 10−11 1.9× 10−10

Householder 32 3 1.9× 10−20 5.5× 10−15 2.4 × 10−16 6.6× 10−16

Householder 64 0 3.3× 10−14 4.3 × 10−7 1.4× 10−8 5.1× 10−8

Householder 64 1 1.7× 10−20 8.1× 10−15 5.7 × 10−16 1.4× 10−15

Householder 128 0 7.5× 10−14 4.1 × 10−7 1.5× 10−8 4.7× 10−8

Householder 128 1 1.7× 10−20 4.2× 10−14 1.1 × 10−15 4.8× 10−15

Householder 256 0 9.7× 10−14 1.4 × 10−6 3.7× 10−8 1.6× 10−7

Householder 256 1 3.5× 10−20 1.6× 10−13 3.4 × 10−15 1.7× 10−14

Householder 1024 0 1.8× 10−11 1.2 × 10−6 3.3× 10−7 5.6× 10−7

Householder 1024 1 6.0× 10−18 1.3× 10−12 3.2 × 10−13 6.4× 10−13

Householder 1024 3 1.5× 10−19 1.0× 10−14 3.2 × 10−15 4.6× 10−15

Table 9.7: residual norms of approximate nmbs in the case of general matrices Mk

multiplier size iterations min max mean std
circulant 32 0 6.4× 10−13 8.0 × 10−9 2.1 × 10−10 9.9× 10−10

circulant 32 1 4.5× 10−17 1.8× 10−15 2.3 × 10−16 2.6× 10−16

circulant 64 0 9.4× 10−13 5.3 × 10−9 2.0 × 10−10 7.5× 10−10

circulant 64 1 2.4× 10−17 4.1× 10−15 3.9 × 10−16 5.9× 10−16

circulant 128 0 1.1× 10−12 2.3 × 10−9 1.2 × 10−10 3.0× 10−10

circulant 128 1 3.6× 10−17 3.8× 10−15 3.7 × 10−16 6.1× 10−16

circulant 256 0 2.2× 10−12 5.3 × 10−8 9.8 × 10−10 6.1× 10−9

circulant 256 1 4.4× 10−17 6.2× 10−15 4.8 × 10−16 8.6× 10−16

circulant 1024 0 1.0× 10−11 1.1 × 10−9 3.3 × 10−10 5.4× 10−10

circulant 1024 1 1.9× 10−16 6.3× 10−16 3.5 × 10−16 2.0× 10−16

Householder 32 0 1.8× 10−16 3.3× 10−11 6.4 × 10−13 3.4× 10−12

Householder 32 1 5.7× 10−21 1.8× 10−17 6.1 × 10−19 2.3× 10−18

Householder 64 0 1.7× 10−16 2.9× 10−11 6.3 × 10−13 3.2× 10−12

Householder 64 1 5.6× 10−21 5.7× 10−17 1.5 × 10−18 6.7× 10−18

Householder 128 0 2.4× 10−16 9.9× 10−11 1.5 × 10−12 1.0× 10−11

Householder 128 1 3.5× 10−21 6.9× 10−17 2.3 × 10−18 7.6× 10−18

Householder 256 0 5.2× 10−16 5.8× 10−11 1.1 × 10−12 5.9× 10−12

Householder 256 1 3.0× 10−21 9.4× 10−17 4.0 × 10−18 1.1× 10−17

Householder 1024 0 6.3× 10−14 1.2× 10−12 5.6 × 10−13 4.5× 10−13

Householder 1024 1 1.9× 10−18 4.1× 10−17 1.9 × 10−17 1.8× 10−17
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