








Appendix 1—figure 1. Robustness of learning. (A) Error trace showing how average motor

error evolves with repetitions of the motor program for rate-based plasticity paired with a

matching tutor, when the student–output mapping has a push-pull architecture. The inset

shows the final motor output (thick red line) compared to the target output (dotted black

line). The output on the first rendition and at two other stages of learning are also shown. (B)

The error trace and final motor output shown for timing-based plasticity matched by a tutor

with a long integration timescale. (C) Effects of mismatch between student and tutor on

reproduction accuracy when using a push-pull architecture for the student–output mapping.

The heatmap shows the final reproduction error of the motor output after 1000 learning

cycles when a student with plasticity parameters a and b is paired with a tutor with memory

timescale ttutor. Here t1 ¼ 80ms and t2 ¼ 40ms. (D) Error evolution curves as a function of

the mismatch between student and tutor. Each plot shows how the error in the motor

program changes during 1000 learning cycles for the same conditions as those shown in the

heatmap. The region shaded in light pink shows simulations where the mismatch between

student and tutor leads to a deteriorating instead of improving performance during learning.

(E) Convergence in the rate-based model with a linear-nonlinear controller that uses a

sigmoidal nonlinearity. (F) Convergence in the spiking model when inhibition is constant

instead of activity-dependent (Vinh ¼ constant).
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Different inhibition models
In the spiking model, we used an activity-dependent inhibitory signal that was proportional to

the average student activity. Using a constant inhibition instead, Vinh ¼ constant, does not

significantly change the results: see Appendix 1—figure 1F for an example.

Effect of changing plasticity kernels
In the main text, we used exponential kernels with t1 ¼ 80ms and t2 ¼ 40ms for the smoothing

of the conductor signal that enters the synaptic plasticity rule, Equation (10). We can

generalize this in two ways: we can use different timescales t1, t2, or we can use a different

functional form for the kernels. (Note that in the main text we showed the effects of varying

the parameters a and b in the plasticity rule, while the timescales t1 and t2 were kept fixed.)

The values for the timescales t1;2 were chosen to roughly match the shape of the plasticity

curve measured in slices of zebra finch RA (Mehaffey and Doupe, 2015) (see Figure 1C and

D). The main predictions of our model, that learning is most effective when the tutor signal

is matched to the student plasticity rule, and that large mismatches between tutor and

student lead to impaired learning, hold well when the student timescales change: see

Appendix 1—figure 2A for the case when t1 ¼ 20ms and t2 ¼ 10ms. In the main text we

saw that the negative effects of tutor–student mismatch diminish for timescales that are

shorter than ~ t1;2. In Appendix 1—figure 2A, the range of timescales where a precise

matching is not essential becomes very small because the student timescales are short.

Appendix 1—figure 2. Effect of changing conductor smoothing kernels in the plasticity rule. (A)

Matrix showing learning accuracy when using different timescales for the student plasticity

rule. Each entry in the heatmap shows the average rendition error after 1000 learning steps

when pairing a tutor with timescale ttutor with a non-matched student. Here the kernels are

exponential, with timescales t1 ¼ 20ms, t2 ¼ 10ms. (B) Evolution of motor error with learning

using kernels ~ e�t=t and ~ te�t=t, instead of the two exponentials used in the main text. The

tutor signal is as before, Equation (3). The inset shows the final output for the trained

model, for one of the two output channels. Learning is as effective and fast as before.

DOI: 10.7554/eLife.20944.017

Another generalization of our plasticity rule can be obtained by changing the functional form

of the kernels used to smooth the conductor input. As an example, suppose K2 is kept

exponential, while K1 is replaced by
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0 else:
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An example of learning using an STDP rule based on kernels �K1 and K2 where �
t1 ¼ t2 is

shown in Appendix 1—figure 2B. The matching tutor has the same form as before,

Equation (3) with timescale ttutor ¼ t

�
tutor given by Equation (4), but with t1 ¼ 2�t1 ¼ 2t2. We

can see that learning is as effective as in the case of purely exponential kernels.

More general conductor patterns
In the main text, we have focused on a conductor whose activity matches that observed in area

HVC of songbirds (Hahnloser et al., 2002): each neuron fires a single burst during the

motor program. Our model, however, is not restricted to this case. We generated

alternative conductor patterns by using arbitrarily-placed bursts of activity, as in

Appendix 1—figure 3A. The model converges to a good rendition of the target program,

Appendix 1—figure 3B. Learning is harder in this case because many conductor neurons

can be active at the same time, and the weight updates affect not only the output of the

system at the current position in the motor program, but also at all the other positions

where the conductor neurons fire. This is in contrast to the HVC-like conductor, where each

neuron fires at a single point in the motor program, and thus the effect of weight updates is

better localized. More generally, simulations show that the sparser the conductor firing, the

faster the convergence (data not shown). The accuracy of the final rendition of the motor

program (Appendix 1—figure 3B, inset) is also not as good as before.

Appendix 1—figure 3. Learning with arbitrary conductor activity. (A). Typical activity of

conductor neurons. 20 of the 100 neurons included in the simulation are shown. The activity

pattern is chosen so that about 10% of the neurons are active at any given time. The pattern

is chosen randomly but is fixed during learning. Each conductor burst lasts 30ms. (B)

Convergence curve and final rendition of the motor program (in inset). Learning included

two output channels but the final output is shown for only one of them.

DOI: 10.7554/eLife.20944.018

Edge effects
In our derivation of the matching tutor rule, we assumed that the system has enough time to

integrate all the synaptic weight changes from Equation (10). However, some of these

changes occur tens or hundreds of milliseconds after the inputs that generated them, due to

the timescales used in the plasticity kernel. Since our simulations are only run for a finite

amount of time, there will in general be edge effects, where periods of the motor program

towards the end of the simulations will have difficulty converging. To offset such numerical
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issues, we ran the simulations for a few hundred milliseconds longer than the duration of the

motor program, and ignored the data from this extra period. Our simulations typically run

for 600ms, and the time reserved for relaxation after the end of the program was set to

1200ms. The long relaxation time was chosen to allow for cases where the tutor was chosen

to have a very long memory timescale.

Parameter optimization for reproducing juvenile and
adult spiking statistics
We set the parameters in our simulations to reproduce spiking statistics from recordings in

zebra finch RA as closely as possible. Appendix 1—figure 4 shows how the distribution of

summary statistics obtained from 50 runs of the simulation compares to the distributions

calculated from recordings in birds at various developmental stages. Each plot shows a

standard box and whisker plot superimposed over a kernel-density estimate of the

distribution of a given summary statistic, either over simulation runs or over recordings from

birds at various stages of song learning. We ran two sets of simulations, one for a bird with

juvenile-like connectivity between HVC and RA, and one with adult-like connectivity (see

Materials and methods). In these simulations there was no learning to match the timecourse

of songs—the goal was simply to identify parameters that lead to birdsong-like firing

statistics.

Appendix 1—figure 4. Violin plots showing how the spiking statistics from our simulation com-

pared to the statistics obtained from neural recordings. Each violin shows a kernel-density

estimate of the distribution that a particular summary statistic had in either several runs of a

simulation, or in several recordings from behaving birds. The circle and the box within each

violin show the median and the interquartile range.

DOI: 10.7554/eLife.20944.019

The qualitative match between our simulations and recordings is good, but the simulations

are less variable than the measurements. This may be due to sources of variability that we

have ignored—for example, all our simulated neurons had exactly the same membrane time

constants, refractory periods, and threshold potentials, which is not the case for real

neurons. Another reason might be that in our simulations, all the runs were performed for

the same network, while the measurements are from different cells in different birds.
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Effect of spiking stochasticity on learning
As pointed out in the main text, learning is affected in the spiking simulations when the tutor

error integration timescale ttutor becomes very long. More specifically, two distinct effects

occur. First, the fluctuations in the motor output increase, leading to a poorer match to the

shape of the target motor program. And second, the whole output gets shifted up, towards

higher muscle activation values. Both of these effects can be traced back to the stochasticity

of the tutor signal.

In the spiking simulations, tutor neurons are assumed to fire Poisson spikes following a time-

dependent firing rate that obeys Equation (5). By the nature of the Poisson process, the

tutor output in this case will contain fluctuations around the mean, gðtÞ~ �gðtÞ þ �ðtÞ. Recall

that the scale of gðtÞ is set by the threshold � and thus, since this is a Poisson process, so is

the scale of the variability �ðtÞ.

As long as the tutor error integration timescale is not very long, gðtÞ roughly corresponds to

a smoothed version of the motor error �ðtÞ (cf. Equation 5). However, as ttutor grows past

the duration T of the motor program, the exponential term in Equation (5) becomes

essentially constant, leading to a tutor signal �gðtÞ whose departures from the center value �

decrease in proportion to the timescale ttutor. As far as the student is concerned, the

relevant signal is gðtÞ � � (Equation 1), and thus, when ttutor > T, the signal-to-noise ratio in

the tutor guiding signal starts to decrease as 1=ttutor. This ultimately leads to a very noisy

rendition of the target program. One way to improve this would be to increase the gain

factor z that controls the relation between the motor error and the tutor signal (see

Equation 5). This improves the ability of the system to converge onto its target in the late

stages of learning. In the early stages of learning, however, this could lead to saturation

problems. One way to fix this would be to use a variable gain factor z that ensures the whole

range of tutor firing rates is used without generating too much saturation. This would be an

interesting avenue for future research.

Reducing the fluctuations in the tutor signal also decreases the fluctuations in the

conductor–student synaptic weights, which leads to fewer weights being clamped at 0

because of the positivity constraint. This reduces the shift between the learned motor

program and the target. As mentioned in the main text, another approach to reducing or

eliminating this shift is to allow for negative weights or (more realistically) to use a push-pull

mechanism, in which the activity of some student neurons acts to increase muscle output,

while the activity of other student neurons acts as an inhibition on muscle output.
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Appendix 2

Plasticity parameter values
In the heatmaps that appear in many of the figures in the main text and in the supplementary

information, we kept the timescales t1 and t2 constant while varying a and b to modify the

student plasticity rule. Since the overall scale of a and b is inconsequential as it can be

absorbed into the learning rate (as explained in the section "Learning in a rate-based

model"), we imposed the further constraint a� b ¼ 1. This implies that we effectively

focused on a one-parameter family of student plasticity rule, as identified by the value of a

(and the corresponding value for b ¼ a� 1). In the figures, we expressed this instead in

terms of the timescale of the optimally-matching tutor, t�tutor, as defined in Equation (4).

Below we give the explicit values of a and b that we used for each row in the heatmaps.

These can be calculated by solving for a in Equation (4), using b ¼ a� 1, and assuming that

t1 ¼ 80ms and t2 ¼ 40ms.

t

�
tutor (ms) a b

10 �0:75 �1:75

20 �0:5 �1:5

40 0:0 �1:0

80 1:0 0:0

160 3:0 2:0

320 7:0 6:0

640 15:0 14:0

1280 31:0 30:0

2560 63:0 62:0

5120 127:0 126:0

10240 255:0 254:0

20480 511:0 510:0
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