Condition Estimation by Means of Power Method

Victor Y. Pan
Department of Mathematics and Computer Science
Lehman College and Graduate Center of the City University of New York
Bronx, NY 10468 USA
victor.pan@lehman.cuny.edu
http://comet.lehman.cuny.edu/vpan/

Abstract

We employ the Power Method (that is essentially a sequence of matrix-by-vector multiplications) to estimate the condition number of a matrix.

2000 Math. Subject Classification: 15A12, 65F35
Keywords: Condition estimation, Power Method

Assume a real symmetric nonnegative definite $n \times n$ matrix S and apply the Power Iteration

$$v_k = S v = S v_{k-1}, \quad k = 1, 2, \ldots$$

for a random vector $v = v_0$ to approximate the largest eigenvalue $\lambda = \lambda(S)$ of the matrix S by the Rayleigh quotients $q_i = v_k^T S v_k / v_k^T v_k$. The paper [2] has proposed this technique and proved that $q_k \leq \lambda \theta q_k$ with a probability at least $1 - 0.8\theta^{-k/2} n^{1/2}$ for any scalar $\theta > 1$. This estimate defines a stopping criterion for the iteration, and heuristically one can also stop where $q_i / q_{i-1} \approx 1$ or $||S v_i - q_i v_i|| / ||v_i|| \leq t$ for a fixed tolerance t. Instead of the Rayleigh quotients one can use the simple quotients $s_i = e_i^T S v_k / e_i^T v_k$ for the ith coordinate vectors e_i and fixed or random integers $i = i(k), 1 \leq i \leq n$ (cf. [1], [3], [4]). Now assume an $m \times n$ matrix A for $m \geq n$, let $\sigma_j(A)$ denote its jth largest singular value, and seek a crude estimates for $\sigma_1(A)$ and $\sigma_n(A)$, e.g., to decide whether the matrix is well conditioned. Apply the power iteration (1) to the matrix $S = A^T A$ to computed a close upper bound σ_2^2 on $\lambda(S) = ||A||^2 = \sigma_1^2(A)$. Then apply the power iteration (1) to the matrix $B = \sigma_2^2 I - A^T A$ to compute an approximation λ_+ to its largest eigenvalue and then obtain $\sigma_2^2 - \lambda_+ \approx \sigma_2^2(A)$. For $m \leq n$ apply the same techniques to the matrix AA^T.

Acknowledgements: This research has been supported by NSF Grant CCF–1116736 and PSC CUNY Awards 4512–0042 and 65792–0043.

References

