2012

TR-2012015: Randomized Matrix Methods for Real and Complex Polynomial Root-Finding

Victor Y. Pan
Guoliang Qian
Ai-Long Zheng

Follow this and additional works at: http://academicworks.cuny.edu/gc_cs_tr

Part of the Computer Sciences Commons

Recommended Citation
http://academicworks.cuny.edu/gc_cs_tr/375

This Technical Report is brought to you by CUNY Academic Works. It has been accepted for inclusion in Computer Science Technical Reports by an authorized administrator of CUNY Academic Works. For more information, please contact AcademicWorks@gc.cuny.edu.
Randomized Matrix Methods for Real and Complex Polynomial Root-finding *

Victor Y. Pan[1,2],[a], Guoliang Qian[2],[b], and Ai-Long Zheng[2],[c]
Supported by NSF Grant CCF-1116736 and PSC CUNY Award 64512–0042

[1] Department of Mathematics and Computer Science
Lehman College of the City University of New York
Bronx, NY 10468 USA
[2] Ph.D. Programs in Mathematics and Computer Science
The Graduate Center of the City University of New York
New York, NY 10036 USA
[a] victor.pan@lehman.cuny.edu
http://comet.lehman.cuny.edu/vpan/
[b] gqian@gc.cuny.edu
[c] azheng-1999@yahoo.com

Abstract

To advance the known approach to univariate polynomial root-finding via computations in Frobenius matrix algebra, we incorporate some effective methods for matrix eigen-solving, randomized matrix algorithms, and subdivision techniques. We also develop iterations directed to the approximation of only real roots. Our analysis and experiments show effectiveness of the resulting numerical real and complex root-finders.

2000 Math. Subject Classification: 65H05, 65F15, 30C15, 26C10, 12Y05

KEYWORDS: Root-finding, Eigen-solving, Dominant eigenspaces, Randomization.

1 Introduction

Polynomial root-finding is the oldest subject of mathematics and computational mathematics, but the list of hundreds if not thousands of the known algorithms grows every year (see [1], [2], [16], [46], [47], [37], [38], [39], and the bibliography therein). Many algorithms are directed to computing a single (e.g., absolutely largest) root (zero) of a polynomial or a subset of all its roots, e.g., all r its real roots. In some applications (e.g., to algebraic geometric optimization) only the r real roots are of interest, and they can be much less numerous than all n roots; nevertheless the best numerical subroutines such as MPSolve approximate all these r real roots about as fast and as slow as all n complex roots.

An important recent direction is root-finding for a polynomial \(p(x) \) via eigen-solving for the associated companion matrix \(C_p \); this allows incorporation of the well developed numerical matrix methods of [7], [27], [63], [69], and the bibliography therein. The QR algorithm, adopted for polynomial root-finding by Matlab, avoids numerical problems, faced by many other companion matrix

*Some results of this paper have been presented at the 14th Annual Conference on Computer Algebra in Scientific Computing (CASC 2012), September 3-6, 2012, Maribor, Slovenia
methods [27, Section 7.4.6], but is not readily amenable to exploiting the rich structure of the companion matrix. Extensive research toward such exploitation in QR- and LR-based root-finders has been initiated by [12], [13] and [8] and still goes on (see [6], [67], and the references therein).

The Rayleigh Quotient iteration has no such problems. Its adjustment to polynomial root-finding in [11] and [58] performs every iteration and every deflation step in linear arithmetic time by exploiting the structures of companion and generalized companion matrices.

Our point of departure is the somewhat similar approach of Cardinal [15], extended in [14] and [52]. It enhances the Power Method and the method of [59], [60], and [29] by reducing every multiplication in the Frobenius algebra generated by the companion matrix \(C_p \) to a small number of FFTs. We obtain substantial progress by incorporating some advanced techniques of randomization, subdivision and matrix eigen-solving, in particular we link approximation of eigenvalues and associated eigenspaces (cf. Theorem 2.2). Furthermore we extend this approach to real root-finding toward the acceleration of the customary techniques by a factor \(n/r \), where the output polynomial has degree \(n \) and \(r \) real roots.

Presenting our algorithms we compare them with Cardinal’s and other relevant methods. For our real numerical root-finding, however, the preceding work seems to be confined to two sections of [58], whose techniques are technically distinct from our present constructions.

Polynomial root-finding is fundamental for symbolic computation, but we mostly rely on fast numerical algorithms with rounding. Consequently, our real root-finders produce both real and nearly real eigenvalues and roots (we specify this class quantitatively), but we can readily select among them the real roots (see Remark 4.3 in Section 4). Our real root-finders are effective as long as both real and nearly real roots together are much less numerous than the nonreal roots.

Overall our analysis and experiments suggest that our approach leads to substantial advance of real and complex polynomial root-finding by means of numerical methods.

Some of our techniques can be of independent interest, e.g., the ones for saving inversions in matrix sign approximation, controlling the norms of the matrices computed in our iterations, computing matrix functions that have dominant eigenspaces associated with real eigenvalues, and the recovery of these eigenspaces by means of randomization techniques.

One can expect to see further advance of our approach, e.g., based on more intricate maps of the complex plane. Another potential resource is the combination with other polynomial root-finders, e.g., the Rayleigh Quotient iteration (cf. Remark 9.1), Newton’s iteration (both can be concurrently applied at distinct initial points), and nonnumerical real polynomial root-finders, namely subdivision and continued fraction methods (see [24], [25], [34], [40], [65], [70], and the bibliography therein). These algorithms can supply auxiliary information for our computations (e.g., the number of real roots and their bounds) or can be used as complementary techniques handling the inputs that are hard for our numerical treatment.

We organize our presentation as follows. The next section is devoted to definitions and preliminary results. In Section 3 we cover randomized matrix computations. In Section 4 we present our Basic Prototype Algorithms. In Section 5 we combine them with repeated squaring to approximate absolutely largest roots as well as the roots closest to a selected complex point. In Section 6 we recall the matrix sign function. In Section 7 we apply it to eigen-solving. We cover its computation, adjust it to real eigen-solving and modify it to save matrix inversions in Sections 8–10. Section 11 covers our numerical tests, which are the contribution of the second and third authors.

2 Definitions and preliminaries

Hereafter “flop” stands for “arithmetic operation”, “is expected” and “is likely” mean “with a probability near 1”, and “small”, “large”, “close”, and “near” are meant in the context. We assume computations in the fields of complex and real numbers \(\mathbb{C} \) and \(\mathbb{R} \), respectively.

For \(\rho' > \rho > 0 \) and a complex \(c \), define the circle \(\mathcal{C}_\rho(c) = \{ \lambda : |\lambda - c| = \rho \} \), the disc \(\mathcal{D}_\rho(c) = \{ \lambda : |\lambda - c| \leq \rho \} \), and the annulus \(\mathcal{A}_{\rho,\rho'}(c) = \{ \lambda : \rho \leq |\lambda - c| \leq \rho' \} \).
Matrix computations: fundamentals [27], [62], [68]. \((B_j)_{j=1}^s = (B_1 | B_2 | \ldots | B_s)\) is the 1 x s block matrix with blocks \(B_1, B_2, \ldots, B_s, \ \text{diag}(B_j)_{j=1}^s = \text{diag}(B_1, B_2, \ldots, B_s)\) is the \(s\) x \(s\) block diagonal matrix with diagonal blocks \(B_1, B_2, \ldots, B_s\).

\[I = I_n = (e_1 | e_2 | \ldots | e_n) \] is the \(n \times n\) identity matrix with columns \(e_1, e_2, \ldots, e_n, \ J = J_n = (e_n | e_{n-1} | \ldots | e_1) \] is the \(n \times n\) reflection matrix, \(J^2 = I. \ \text{O}_{k,l}\) is the \(k \times l\) matrix filled with zeros.

\(M^T\) is the transpose of a matrix \(M\).

\(\mathcal{R}(M)\) is the range of a matrix \(M\), that is the linear space generated by its columns. \(\mathcal{N}(M) = \{ v : \ Mv = 0 \}\) is its null space, \(\text{rank}(M) = \dim(\mathcal{R}(A))\). A matrix of full column rank is a matrix basis of its range.

\(M^+\) is the Moore–Penrose pseudo inverse of \(M [27, \text{Section 5.5.4}].\) An \(n \times m\) matrix \(X = M(I)\) is a left (resp. right) inverse of an \(m \times n\) matrix \(M\) if \(XM = I_n\) (resp. \(YM = I_m\)). \(M^+\) is an \(M(I)\) for a matrix \(M\) of full rank; \(M(I) = M^{-1}\) for a nonsingular matrix \(M\).

We use the matrix norms \(\| \cdot \|_h\) for \(h = 1, 2, \infty\) and write \(\| \cdot \| = \| \cdot \|_2\).

A matrix \(U\) is called unitary, orthogonal and orthonormal if \(U^TU = I\).

Theorem 2.1. [27, Theorem 5.2.2]. A matrix \(M\) of full column rank has unique QR factorization \(M = QR\) where \(Q = Q(M)\) is a unitary matrix and \(R = R(M)\) is a square upper triangular matrix with positive diagonal entries.

Matrix computations: eigenspaces and SVD [27], [63], [68], [69], [7]. \(S\) is an invariant subspace or eigenspace of a square matrix \(M\) if \(MS = \{Mv : v \in S\} \subseteq S\).

Theorem 2.2. [63, Theorem 4.1.2], [68, Section 6.1], [69, Section 2.1]. Let \(U \in \mathbb{C}^{n \times r}\) be a matrix basis for an eigenspace \(U\) of a matrix \(M \in \mathbb{C}^{n \times n}\). Then the matrix \(L = U(I)MU\) is unique (that is independent of the choice of the left inverse \(U(I)\)) and satisfies \(MU = UL\).

The above pair \(\{L, U\}\) is an eigenpair of a matrix \(M\), \(L\) is its eigenblock and \(\Phi\) is the associated eigenspace of \(L [63].\) If \(L = \Lambda_M\), then \((\lambda, U)\) is also called an eigenpair of a matrix \(M\), in this case \(\det(L - \lambda M) = 0\) and \(\mathcal{N}(M - \lambda I)\) is the eigenspace associated with the eigenvalue \(\lambda\) and made up of its eigenvectors. \(\Lambda(M)\) is the set of all eigenvalues of \(M\), called its spectrum. \(\rho(M) = \max_{\lambda \in \Lambda(M)}|\lambda|\) is the spectral radius of \(M\). Theorem 2.2 implies that \(\Lambda(L) \subseteq \Lambda(M)\). For an eigenpair \((\lambda, U)\) write \(\psi = \min \frac{|\lambda|}{|\mu|}\) over \(\lambda \in \Lambda(L)\) and \(\mu \in \Lambda(M) - \Lambda(L)\); call the eigenspace \(U\) dominant if \(\psi > 1\), dominated if \(\psi < 1\), strongly dominant if \(1/\psi \approx 0\), and strongly dominated if \(\psi \approx 0\).

A scalar \(\lambda\) is nearly real (within \(e > 0\)) if \(|\Im(\lambda)| \leq e|\lambda|\).

An \(n \times n\) matrix \(M\) is called diagonalizable or nondefective if \(S M S^{-1}\) is a diagonal matrix for some matrix \(S\), e.g., if \(M\) has \(n\) distinct eigenvalues. A random real or complex perturbation makes the matrix diagonalizable with probability 1.

In all our algorithms we assume diagonalizable input matrices.

Theorem 2.3. (See [30, Theorem 1.13].) \(\Lambda(F(M)) = F(\Lambda(M))\) for a square matrix \(M\) and a function \(F(x)\) defined on its spectrum. Furthermore \((F(\lambda), U)\) is an eigenpair of \(F(M)\) if \(M\) is diagonalizable and has an eigenpair \((\lambda, U)\).

\(M = S_M \Sigma_M T_M^T\) is an SVD of an \(m \times n\) matrix \(M\) of a rank \(\rho\) provided \(S_M S_M^T = S_M^T S_M = I_m, \ T_M T_M^T = T_M^T T_M = I_n, \ \Sigma_M = \text{diag}(\bar{\Sigma}_M, O_{m-\rho, n-p})\), \(\bar{\Sigma}_M = \text{diag}(\sigma_j(M))_{j=1}^\rho, \ \sigma_j = \sigma_j(M) = \sigma_j(M^T)\) is the \(j\)th largest singular value of a matrix \(M\), and so \(S_M \in \mathbb{C}^{m \times m}, \ T_M \in \mathbb{C}^{n \times n}, \ \Sigma_M \in \mathbb{R}^{m \times n}, \) and \(S_M\) and \(T_M\) are real matrices if \(M\) is a real matrix. The singular values have the minimax property

\[
\sigma_j = \max_{\dim(S) = j} \min_{x \in S, \|x\| = 1} \|Mx\|, \ \ j = 1, \ldots, \rho,
\]

(2.1)

where \(S\) denotes linear spaces [27, Theorem 8.6.1]. Note that \(\sigma_2^2\) is an eigenvalue of \(M^T M, \sigma_1 = \|M\|, \ \sigma_\rho = 1/\|M^T\|,\) and \(\sigma_j = 0\) for \(j > \rho\).

Theorem 2.4. (Cf. [27, Corollary 8.6.3].) If \(A_0\) is a submatrix of a matrix \(A\), then \(\sigma_j(A) \geq \sigma_j(A_0)\) for all \(j\).
Let $\sigma_q > \sigma_{q+1}$. Then $q \leq \rho$ and the matrix $T_{q,M} = T(I_q \mid O_{n-q,q})^T$ generates the right leading singular space $T_{q,M} = R(T_{q,M})$ associated with the q largest singular values of the matrix M.

$\kappa(M) = \frac{\sigma_1(M)}{\sigma_{\rho}(M)} = ||M|| \|M^+\| \geq 1$ is the condition number of a matrix M of a rank ρ. Such a matrix is ill conditioned if $\sigma_1(M) \gg \sigma_{\rho}(M)$; otherwise well conditioned. $\kappa(M) = ||M|| = ||M^+|| = 1$ for unitary matrices M.

A matrix M has numerical rank ρ if the ratio $\frac{\sigma_1}{\sigma_{\rho}}$ is not large but if $\frac{\sigma_1}{\sigma_{\rho+1}} \ll 1$.

Toeplitz matrices [50, Ch. 2]. An $m \times n$ Toeplitz matrix $T = (t_{i-j})_{i,j=1}^{m,n}$ is defined by the $m+n-1$ entries of its first row and column; e.g.,

$$T = (t_{i-j})_{i,j=1}^{m,n} = \begin{pmatrix} t_0 & t_{-1} & \cdots & t_{1-n} \\ t_1 & t_0 & & \vdots \\ \vdots & \ddots & \ddots & t_{-1} \\ t_{n-1} & \cdots & t_1 & t_0 \end{pmatrix}.$$

Polynomials and companion matrices. Write

$$p(x) = \sum_{i=0}^{n} p_i x^i = p_n \prod_{j=1}^{n} (x - \lambda_j),$$ \hspace{1cm} (2.2)

$$p_{rev}(x) = x^n p(1/x) = \sum_{i=0}^{n} p_i x^{n-i} = p_n \prod_{j=1}^{n} (1 - x\lambda_j),$$ \hspace{1cm} (2.3)

$p_{rev}(x)$ is the reverse polynomial of $p(x)$,

$$C_p = \begin{pmatrix} 0 & \cdots & -p_0/p_n \\ 1 & \cdots & -p_1/p_n \\ \vdots & \ddots & \vdots \\ \cdots & 0 & -p_{n-2}/p_n \\ 1 & \cdots & -p_{n-1}/p_n \end{pmatrix}, \text{ for } p = (p_j)_{j=0}^{n-1},$$

and $C_{p_{rev}} = JC_p J$ are the $n \times n$ companion matrices of the polynomials $p(x) = \det(xI_n - C_p)$ and $p_{rev}(x) = \det(xI_n - C_{p_{rev}})$, respectively.

Fact 2.1. (See [15] or [52].) The companion matrix $C_p \in \mathbb{C}^{n \times n}$ of a polynomial $p(x)$ of (2.2) generates an algebra A of matrices having structure of Toeplitz type. One needs $O(n)$ flops for addition in A, $O(n \log n)$ flops for multiplication in A, $O(n \log^2 n)$ flops for inversion in A, and $O(n \log n)$ flops for multiplying a matrix from A by a squareToeplitz matrix.

3 Ranks and condition numbers of random matrices

3.1 Random variables and random matrices

Definition 3.1. $F_\gamma(y) =$ Probability{$\gamma \leq y$} for a real random variable γ is the cumulative distribution function (cdf) of γ evaluated at y. $F_{g(\mu,\sigma)}(y) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{y} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)dx$ for a Gaussian random variable $g(\mu,\sigma)$ with a mean μ and a positive variance σ^2, and so

$$\mu - 4\sigma \leq y \leq \mu + 4\sigma \text{ with a probability near one.}$$ \hspace{1cm} (3.1)

Definition 3.2. $\mathcal{G}_{\mu,\sigma}^{m \times n}$ is the set of $m \times n$ Gaussian random matrices having a mean μ and a positive variance σ^2, that is matrices filled with independent Gaussian random variables, all sharing these mean and variance. For $\mu = 0$ and $\sigma^2 = 1$ they are standard Gaussian random matrices. $T_{\mu,\sigma}^{m \times n}$ is the set $\mathcal{G}_{\mu,\sigma}^{m \times n}$ restricted to Toeplitz matrices.

Remark 3.1. With probability 1 matrices $G \in \mathcal{G}_{\mu,\sigma}^{m \times n}$ and $T \in T_{\mu,\sigma}^{m \times n}$ have full rank (cf. [53]).
3.2 Condition numbers of random general and Toeplitz matrices

Gaussian random matrices tend to be well conditioned [19], [22], [23], [17], and actually even the sum $W + M$ for any $W \in \mathbb{R}^{m \times n}$ and $M \in G_{\mu,\sigma}^{m \times n}$ is expected to be well conditioned unless the ratio $\sigma/||W||$ is large or small [64]. Next we recall a relevant theorem from [64] for $W = O$. The results of standard Gaussian random matrices M are readily bounded, and we only cover the estimates for the norms $||M^+||$.

Theorem 3.1. Let $l = \min\{m, n\}$, $y \geq 0$, $M \in G_{\mu,\sigma}^{m \times n}$. Then M has full rank with probability 1 and $F_{1/||M^+||}(y) \leq 2.35 \sqrt{1/y}$, that is Probability$\{||M^+|| \geq 2.35 \sqrt{1/y}\} \leq 1/x$.

A Gaussian random Toeplitz matrix $T_n = (t_{i,j})_{i,j=1}^{n} \in T_{\mu,\sigma}^{n \times n}$ is nonsingular with probability 1, and next we recall probabilistic upper bound of [53] on the norm $||T_n^{-1}||$ (cf. empirical data in [55, Table 1], [53]), which are readily extended in [53] to the estimates on the condition number $\kappa(T_n) = ||T_n|| ||T_n^{-1}||$. The estimates meet a research challenge from [64] and show that this number does not tend to grow exponentially in n as $n \to \infty$, in good accordance with our previous and present tests, whereas the opposite behavior has been proved in [10] for some large and important special classes of Toeplitz matrices.

Theorem 3.2. Given a matrix $T_n = (t_{i,j})_{i,j=1}^{n} \in T_{\mu,\sigma}^{n \times n}$, assumed to be nonsingular (cf. Section 3.1), write $p_1 = e_1^T T_n^{-1} e_1$. Then $F_{1/||p_1 T_n^{-1}||}(y) \leq 2n \alpha \beta$ for two random variables α and β such that

$$F_\alpha(y) \leq \sqrt{\frac{2n}{\pi}} \frac{y}{\sigma} \text{ and } F_\beta(y) \leq \sqrt{\frac{2n}{\pi}} \frac{y}{\sigma} \text{ for } y \geq 0. \quad (3.2)$$

Next we observe that $p_1 = |\frac{\det T_n}{\det T_{n+1}}|$ and complement the latter estimate for the norm $||p_1 T_n^{-1}||$ with the following upper bound on the geometric means of the ratios $|\frac{\det T_n}{\det T_{n+1}}|$ for $h = 1, \ldots, n - 1$.

Theorem 3.3. Let $T_h \neq O$ denote $h \times h$ matrices for $h = 1, \ldots, n$ whose entries have absolute values at most t for a fixed scalar or random variable t, e.g. for $t = ||T||$. Furthermore let $T_1 = (t)$. Then the geometric mean $(\prod_{h=1}^{n-1} |\frac{\det T_{h+1}}{\det T_h}|)^{1/(n-1)} = \frac{1}{t} |\det T_n|^{1/(n-1)}$ is at most $n^{\frac{1}{2}(1+\frac{1}{n-1})} t$.

Proof. The theorem follows from Hadamard’s upper bound $|\det M| \leq n^{n/2} t^n$, which holds for any $k \times k$ matrix $M = (m_{i,j})_{i,j=1}^{n}$ with max$^k_{i,j=1} |m_{i,j}| \leq t$.

The theorem says that the geometric mean of the ratios $|\det T_{h+1}/\det T_h|$ for $h = 1, \ldots, n - 1$ is not greater than $n^{0.5 + (1/n)}$ with $\epsilon(n) \to 0$ as $k \to \infty$. Furthermore for $T_h \in T_{\mu,\sigma}^{n \times n}$ we can write $t = ||T||$ and ready bound the cdf of t (cf. (3.1)). By applying Theorem 2.4 we can extend the above results to the case of rectangular Toeplitz matrices.

3.3 Condition numbers of randomized matrix products

We wish to bound the condition number $\kappa(MG) = ||MG|| ||(MG)^+||$ of the matrix products of fixed matrix M and Gaussian random matrix G. Since $||MG|| \leq ||M|| ||G||$, we probabilistically estimate from below the smallest singular value of the product of fixed and random matrices.

Theorem 3.4. [54]. Suppose $M \in G_{\mu,\sigma}^{m \times n}$, $r(M) = \text{rank}(M) \geq r$, $G \in G_{\mu,\sigma}^{r \times m}$. Then the matrix M has full rank r with probability 1 and $F_{1/||(MG)^+||}(y) \leq 2.35y \sqrt{r(M)/(\sigma_{r}(M))}.$

The theorem implies that $\sigma_{\text{rank}(MG)} = 1/(||(MG)^+||) \leq y$ with a probability of at most the order y, and so it is unlikely that multiplication by a square or rectangular Gaussian random matrix can dramatically decrease the smallest positive singular value of a matrix, although $UV = O$ for some pairs of rectangular unitary matrices U and V.

Remark 3.2. The results of the previous subsection bound $\kappa(G)$ for $G \in T^{n \times r}$. Such a bound is necessary but not sufficient for proving the extension of Theorem 3.4 to the case of Toeplitz matrix G. Table 11.1, however, supports such an extension empirically.
4 The Basic Prototype Algorithms for approximating selected eigenvalues

The following Prototype Algorithm employs Theorems 2.2 and 2.3 to approximate a specified set $\hat{\Lambda}$ of the eigenvalues of a matrix (e.g., its absolutely largest eigenvalue or the set of its real eigenvalues).

Proto-Algorithm 4.1. Reduction of the input size in eigen-solving for a subset of the spectrum.

INPUT: a diagonalizable matrix $M \in \mathbb{R}^{n \times n}$ and a property specifying a subset $\hat{\Lambda}$ of its unknown spectrum.

OUTPUT: a pair of matrices $\{\hat{L}, \hat{U}\}$ that closely approximates an eigenpair $\{L, U\}$ of M such that $\Lambda(L) = \hat{\Lambda}$.

Computations:

1. Compute a matrix function $F(M)$ that has strongly dominant eigenspace U, shared with M.
2. Compute and output a matrix \hat{U} of full column rank whose range approximates the eigenspace U.
3. Compute the left inverse $\hat{U}^{(1)}$.
4. Compute and output the matrix $\hat{L} = \hat{U}^{(1)} M \hat{U}$.

At Stage 2 of the Prototype Algorithm one can apply rank revealing QR or LU factorization of the matrix $F(M)$ [26], [31], [48] (see some other relevant techniques in [54] and [56]).

Given an upper bound r_+ on the dimension r of the eigenspace U, we can alternatively employ a randomized multiplier as follows (cf. [54], [56]).

Proto-Algorithm 4.2. Randomized approximation of a dominant eigenspace.

INPUT: a positive integer r_+ and a diagonalizable matrix $F \in \mathbb{R}^{n \times n}$ that has numerical rank $n - r$ and has strongly dominant eigenspace U of dimension $r > 0$ for an unknown $r \leq r_+$.

OUTPUT: an $n \times r$ matrix \hat{U} such that $R(\hat{U}) \approx U$.

Computations:

1. Compute the $n \times r_+$ matrix FG for $G \in G^{n \times r_+}_{0,1}$.
2. Compute its rank revealing QR or LU factorization, which outputs its orthogonal matrix basis \hat{U}.

The following observations support the Proto-Algorithm. Clearly, $\text{rank}(FG) = n - r$ with probability 1. Define the matrix \hat{F} by zeroing the r smallest singular values of F. We have $\hat{F} \approx F$ because $\sigma_{n-r+1}(F)$ is small; therefore $\hat{F}G \approx FG$ and $R(\hat{F}) \approx U$. Deduce from Theorem 3.4 that $R(\hat{F}G) \approx R(\hat{F})$. Finally combine the latter two relationships and obtain that $R(\hat{F}G) \approx U$.

Remark 4.1. If $F = F(C_p)$ and the integer r_+ is not small, we can choose matrix $G \in T^{n \times r_+}$, avoid computing rank revealing QR or LU factorization at Stage 2, and multiply F by G by using $O(n \log n)$ flops (see Fact 2.1). In view of the results of Section 3.2 and Table 11.1 we can expect that this choice of the multiplier G still supports Proto-Algorithm 4.2.

In some cases we naturally arrive at matrices $\hat{F}(M)$ having dominated (rather than dominant) eigenspaces U. If the matrix $\hat{F}(M)$ is nonsingular, then U is a dominant eigenspace of the matrix $(\hat{F}(M))^{-1}$, and we can apply Stages 2–4 of Proto-Algorithm 4.1 to this eigenspace. Alternatively, we can employ the following variation of Proto-Algorithm 4.1.
Proto-Algorithm 4.3. Dual reduction of input size in eigen-solving for a subset of the spectrum.

Input, Output and Stages 3 and 4 of Computations as in Proto-Algorithm 4.1.

Computations:

1. Compute a matrix function \(\tilde{F}(M) \) that has strongly dominated eigenspace approximating \(\mathcal{U} \).

2. Apply the Inverse Orthogonal Iteration [27, page 339] to the matrix \(\tilde{F}(M) \) to output a matrix \(\tilde{U} \) of full column rank whose range approximates the eigenspace \(U \). Output \(\tilde{L} = \tilde{U}^{(1)T}M\tilde{U} \).

Remark 4.2. Seeking a single eigenvalue of \(M \) and having performed Stage 1 of Proto-Algorithm 4.1 (resp. 4.3), we can apply the Power (resp. Inverse Power) Method (cf. [27, Sections 7.3.1 and 7.6.1], [11]) to approximate an eigenvector \(v \) of the matrix \(F(M) \) in its dominant (resp. dominated) eigenspace \(\mathcal{U} \). This eigenvector is shared with \(M \) by virtue of Theorem 2.3, and we can approximate the associated eigenvalue of \(M \) by the Rayleigh quotient \(v^T M v / v^T v \) or a simple quotient \(v^T M e_j / v^T e_j \) for a fixed or random integer \(j \), \(1 \leq j \leq n \), in [11], [57] and [58]. We can employ deflation or use other initial approximations (cf. our Section 8.3 and [33]) to approximate other eigenvalues of \(M \).

Remark 4.3. In numerical implementation of the Proto-Algorithm one should compute a dominant (resp. dominated) eigenspace \(\mathcal{U}_+ \) of the matrix \(F(M) \) (resp. \(\tilde{F}(M) \)) such that \(\mathcal{U}_+ \supseteq \mathcal{U} \) and has a dimension \(r_+ \geq r \). The output matrix \(L_+ \) has size \(r_+ \times r_+ \) and can share with \(M \) some extraneous eigenvalues. E.g., in numerical real eigen-solving the eigenspace \(\mathcal{U}_+ \) is associated with all real and nearly real eigenvalues of \(M \); having computed all eigenvalues of \(L_+ \), we can readily select from them the real ones.

In the next sections we describe some algorithms for computing matrix functions \(F(M) \) and \(\tilde{F}(M) \) at Stages 1 of Proto-Algorithms 4.1 and 4.3.

5 Repeated squaring

Theorem 2.3 for \(F(M) = M^k \) implies that for a diagonalizable matrix \(M \) and sufficiently large integers \(k \), the matrices \(M^k \) have dominant eigenspace \(\mathcal{U} \) associated with the set of the absolutely largest eigenvalues of \(M \). For a fixed or random real or complex shift \(s \) we can write \(M_0 = M - sI \) and compute \(M_0^{2^h} \) in \(h \) squarings,

\[
M_{h+1} = a_h M_h^2, \quad a_h \approx 1/||M_h||^2 \text{ for } h = 0, 1, \ldots
\]

(5.1)

Suppose \(M \) is a real diagonalizable matrix with simple eigenvalues and \(h \) is a reasonably large integer. Then with probability 1 the dominant eigenspace \(\mathcal{U} \) of \(M_h \) has dimension 1 for random nonreal shifts \(s \) and dimension 1 or 2 for a random real \(s \). If the matrix \(M \) has the single absolutely largest eigenvalue of multiplicity \(m \) or has the cluster of \(m \) simple absolutely largest eigenvalues, then the associated eigenspace of dimension \(m \) is dominant for the matrix \(M_h \) and a reasonably large integer \(h \). In these cases the dimension of the dominant eigenspace of the matrix \(M_h \) is equal to the numerical rank of this matrix.

For \(M = C_p \) we can follow [15] and apply the FFT-based algorithms that support Fact 2.1 to perform every squaring and every multiplication in \(O(n \log n) \) flops. The bottleneck is the recovery of the roots of \(p(x) \) at the end of the squaring process where \(|\lambda_j| \approx |\lambda_k| \) for \(j \neq k \). [52] relieves some difficulties by employing approximations to the roots of \(p'(x) \), \(p''(x) \), etc., but the techniques of [52] are still too close to the symbolic recovery methods of [15]. In contrast Proto-Algorithms 4.1 and 4.3 reduce the computations of the \(r \) eigenvalues of a selected subset of the spectrum \(\Lambda(M) \) to eigen-solving for the \(r \times r \) matrix \(L \), which is simple for a small integer \(r \).
Now replace M_0 in (5.1) by $M_0 = (M - \sigma I)^{-1}$ for a fixed complex σ. Then the dominant eigenspace of M_0 for large h is associated with the set of the eigenvalues of M that are the nearest to σ, e.g., the absolutely smallest eigenvalues where $\sigma = 0$. For $M = C_p$ we can alternatively write $M_0 = C_{\text{prev}(x-\sigma)}$ in (5.1).

6 Matrix sign function and dominant eigenspaces

Definition 6.1. For two real numbers $x \neq 0$ and y, the function $\text{sign}(x + y\sqrt{-1})$ is equal to 1 if $x > 0$ and is equal to -1 if $x < 0$.

Definition 6.2. (See [30].) Let $A = ZJZ^{-1}$ be a Jordan canonical decomposition of an $n \times n$ matrix A where $J = \text{diag}(J_-, J_+)$, J_- is a $p \times p$ matrix and all its p diagonal entries have negative real parts, whereas J_+ is a $q \times q$ matrix and all its q diagonal entries have positive real parts. Then $\text{sign}(A) = Z \text{diag}(-I_p, I_q)Z^{-1}$. Equivalently $\text{sign}(A) = A(A^2)^{-1/2}$ or $\text{sign}(A) = \frac{1}{2} A \int_0^\infty (t^2 I_n + A^2)^{-1} dt$.

Definition 6.3. Assume the matrices $A = ZJZ^{-1}$, J_- and J_+ above, except that $n = p + q + r$ and $J = \text{diag}(J_-, J_0, J_+)$ for a $r \times r$ matrix J_0 whose all r diagonal entries have real parts 0. Then fix some $r \times r$ real diagonal matrix D_r, e.g., $D_r = D_{r,r}$, and define a generalized matrix sign function $\text{sign}(A)$ by writing $\text{sign}(A) = Z \text{diag}(-I_p, D_r\sqrt{-1}, I_q)Z^{-1}$.

We have the following simple results.

Theorem 6.1. Assume the generalized matrix sign function $\text{sign}(A)$ defined for an $n \times n$ matrix $A = ZJZ^{-1}$. Then for some real $r \times r$ diagonal matrix D_r we have

$$I_n - \text{sign}(A) = Z^{-1} \text{diag}(2I_p, I_r - D_r\sqrt{-1}, O_{q,q})Z,$$

$$I_n + \text{sign}(A) = Z^{-1} \text{diag}(O_{p,p}, I_r + D_r\sqrt{-1}, 2I_q)Z,$$

$$I_n - \text{sign}(A)^2 = Z^{-1} \text{diag}(O_{p,p}, I_r + D_r^2, O_{q,q})Z.$$

Corollary 6.1. Under the assumptions of Theorem 6.1 the matrix $I_n - \text{sign}(A)^2$ has dominant eigenspace of dimension r associated with the eigenvalues of the matrix A that lie on the imaginary axis $\mathcal{I}A = \{ \lambda : \Re(\lambda) = 0 \}$, whereas the matrices $I_n - \text{sign}(A)$ (resp. $I_n + \text{sign}(A)$) have dominant eigenspaces associated with the eigenvalues of A that either lie on the left (resp. right) of the axis $\mathcal{I}A$ or lie on this axis and have nonzero images in $I_n - \text{sign}(A)$ (resp. $I_n + \text{sign}(A)$).

7 Eigen-solving via matrix sign computation

Having the matrices A and $F(A) = I_n - \text{sign}(A)^2$ available, we can apply Proto-Algorithm 4.1 to approximate the eigenvalues of A that lie on the axis $\mathcal{I}A$. In the next sections we devise real eigensolvers for a real $n \times n$ matrix M, based on applying these techniques to the matrix $A = M\sqrt{-1}$. Likewise, having the matrices A and $F(A) = I_n - \text{sign}(A)$ (resp. $F(A) = I_n + \text{sign}(A)$) available, we can apply Proto-Algorithm 4.1 to approximate all eigenvalues of A that lie either on the axis $\mathcal{I}A$ or on the left (resp. right) from it.

The computed square matrices L have dimensions p_+ and q_+, respectively, where $p \leq p_+ \leq p + r$ and $q \leq q_+ \leq q + r$. If $M = C_p$ and if the integer p_+ or q_+ is large, we split out a high degree factor of the polynomial $p(x)$. This can lead to dramatic growth of the coefficients, e.g., in the case where we split the polynomial $x^n + 1$ into the product of two high degree factors, such that all roots of one of them have positive real parts. The subdivision techniques (cf. [49]) based on the following simple fact, however, lead us to a universal remedy, unlike the limited remedies in [15].

Fact 7.1. Suppose \mathcal{U} and \mathcal{V} are two eigenspaces of A and $\Lambda(\mathcal{U})$ and $\Lambda(\mathcal{V})$ are the sets of the associated eigenvalues. Then $\Lambda(\mathcal{U}) \cap \Lambda(\mathcal{V})$ is the set of the eigenvalues of A associated with the eigenspace $\mathcal{U} \cap \mathcal{V}$.

8
By computing the matrix sign function of the matrices \(\alpha A - \sigma I\) for various selected pairs of complex scalars \(\alpha\) and \(\sigma\), we can define the eigenspace of \(A\) associated with the eigenvalues lying in a selected region on the complex plane bounded by straight lines, e.g., in any fixed rectangle with four pairs \((\alpha, \sigma)\) where \(\alpha\) equals 1 and \(\sqrt{-1}\) and \(\sigma = k2^l\) for proper integers \(k\) and \(l\). By including matrix inversions into this game, we define the eigenvalue regions bounded by straight lines, their segments, circles and their arcs.

8 Computation of the matrix sign

8.1 Some known algorithms and their convergence

[30, equations (6.17)–(6.20)] define effective iterative algorithms for the square root function \(B^{1/2}\); one can readily extend them to \(\text{sign}(A) = A(A^{2})^{-1/2}\). [30, Chapter 5] presents a number of effective algorithms devised directly for the matrix sign function. Among them we recall Newton’s iteration

\[N_0 = A, \quad N_{i+1} = (N_i + N_i^{-1})/2, \quad i = 0, 1, \ldots, \quad (8.1) \]

based on the M"obius transform \(x \rightarrow (x + 1/x)/2\), and the \([2/0]\) Padé iteration

\[N_0 = A, \quad N_{i+1} = (15I_n - 10N_i^2 + 3N_i^4)N_i/8, \quad i = 0, 1, \ldots \quad (8.2) \]

Theorem 2.3 implies the following simple corollary.

Corollary 8.1. Assume iterations (8.1) and (8.2) where neither of the matrices \(N_i\) is singular. Let \(\lambda = \lambda^{(0)}\) denote an eigenvalue of the matrix \(N_0\) and define

\[\lambda^{(i+1)} = (\lambda^{(i)} + (\lambda^{(i)})^{-1})/2, \quad i = 0, 1, \ldots, \quad (8.3) \]

\[\lambda^{(i+1)} = \lambda^{(i)}(15 - 10(\lambda^{(i)})^2 + 3(\lambda^{(i)})^4)/8, \quad i = 0, 1, \ldots \quad (8.4) \]

Then \(\lambda^{(i)} \in \Lambda(N_i)\) for \(i = 1, 2, \ldots\) provided the pairs \(\{N_i, \lambda^{(i)}\}\) are defined by the pairs of equations (8.1), (8.3) or (8.2), (8.4), respectively.

Corollary 8.2. In iterations (8.3) and (8.4) the images \(\lambda^{(i)}\) of an eigenvalue \(\lambda\) of the matrix \(N_0\) for all \(i\) lie on the imaginary axis \(\mathbb{I}A\) if so does \(\lambda\).

By virtue of the following theorems, the sequences \(\{\lambda^{(0)}, \lambda^{(1)}, \ldots\}\) defined by equations (8.3) and (8.4) converge to \(\pm 1\) exponentially fast right from the start. The convergence is quadratic for sequence (8.3) where \(\Re(\lambda) \neq 0\) and cubic for sequence (8.4) where \(|\lambda - \text{sign}(\lambda)| \leq 1/2\).

Theorem 8.1. (See [30], [14, page 500].) Write \(\lambda = \lambda^{(0)}\), \(\delta = \text{sign}(\lambda)\) and \(\gamma = |\lambda^{(i)} - \delta|\). Assume (8.3) and \(\Re(\lambda) \neq 0\). Then \(|\lambda^{(i)} - \delta| \leq \frac{2^{2^i}}{1 - 2^i} \) for \(i = 0, 1, \ldots\).

Theorem 8.2. Write \(\delta_i = \text{sign}(\lambda^{(i)})\) and \(\gamma_i = |\lambda^{(i)} - \delta_i|\) for \(i = 0, 1, \ldots\). Assume (8.4) and \(\gamma_0 \leq 1/2\). Then \(\gamma_i \leq \frac{32}{125}(\frac{113}{128})^{3^i} \) for \(i = 1, 2, \ldots\).

Proof. We clarify the proof of [14, Proposition 4.1]. First verify that \(\gamma_{i+1} = \gamma_i^3|3(\lambda^{(i)})^2 + 9\lambda^{(i)} + 8|/8\) and therefore \(\gamma_{i+1} \leq \frac{113}{128}\gamma_i^3\) for \(i = 0, 1, \ldots\). Now the claimed bounds follow by induction on \(i\) because \(\gamma_0 \leq 1/2\). \(\square\)

8.2 Variants for real eigen-solving

As we mentioned we can reduce real eigen-solving for a real matrix \(M\) to matrix sign computation for \(A = M\sqrt{-1}\), but next we substitute \(N_0 = M\) in lieu of \(N_0 = A\) into matrix sign iterations (8.1) and (8.2) and equivalently rewrite them to avoid involving nonreal values,

\[N_0 = M, \quad N_{i+1} = 0.5(N_i - N_i^{-1}) \text{ for } i = 0, 1, \ldots, \quad (8.5) \]
The matrices N_i and the images $\lambda^{(i)}$ of every real eigenvalue λ of M are real for all i, whereas the results of Theorems 8.1 and 8.2 are immediately extended. The images of every nonreal λ converge to $\text{sign}(3(\lambda)/\sqrt{-1})$ quadratically under (8.5) if $\Re(\lambda) \neq 0$ and cubically under (8.6) if $\lambda \in D_{1/2}(\text{sign}(3(\lambda))/\sqrt{-1})$.

Under the maps $M \rightarrow I_n + N_i^2$ for N_i in the above iterations, the images $1 + (\lambda^{(i)})^2$ of nonreal eigenvalues λ of M in the respective basins of convergence converge to 0, whereas for real λ the images are real and are at least 1 for all i. Thus for sufficiently large integers i we yield strong domination of the eigenspace of N_i associated with the images of real eigenvalues of M.

8.3 Newton’s iteration with shifts for real matrix sign function

Iteration (8.5) fails where for some i the matrix N_i is singular or nearly singular, that is has eigenvalue 0 or near 0, but then we can approximate this eigenvalue by applying the Rayleigh Quotient Iteration [27, Section 8.2.3], [11] or the Inverse Orthogonal Iteration [27, page 339].

If we seek other real eigenvalues as well, we can deflate the matrix M and apply Proto-Algorithm 4.1 to the resulting matrix of a smaller size. Alternatively we can apply it to the matrix $N_i + \rho_i I_n$ for a shift ρ_i randomly generated in the range $-r \leq \rho_i \leq r$ for a positive r. We choose r reasonably small and then can expect that we will both avoid degeneracy and, by virtue of Theorems 6.1 and 8.2, have the images of all nonreal eigenvalues of M still rapidly converging to a small neighborhood of the points $\pm \sqrt{-1}$, thus ensuring their isolation from the images of real eigenvalues.

8.4 Controlling the norms in the [2/0] Padé iterations

We have no singularity problem with iteration (8.6), but have numerical problems where the norms $||N_i||$ grow large. If the nonreal eigenvalues of the matrix N_0 lie in the two discs $D_{1/2}(\pm \sqrt{-1})$, then their images also stay there by virtue of extension of Theorem 8.2, and then the norms $||N_i||$ can be large only where some real eigenvalues of the matrices N_i are absolutely large.

Now suppose the nonreal eigenvalues of M have been mapped into the two discs $D_{y_i}(\pm \sqrt{-1})$ for $0 < y_i < 0.1$. (One or two steps (8.6) move every $\mu \in D_{1/2}(\pm \sqrt{-1})$ into the discs $D_{y_i}(\pm \sqrt{-1})$, cf. Theorem 8.2.) Then the transformation $N_i \rightarrow N_i(N_i^2 + 2I_n)^{-1}$ confronts excessive norm growth by mapping all real eigenvalues of N_i into the range $[-\frac{1}{4}\sqrt{2}, \frac{1}{4}\sqrt{2}]$ and mapping all nonreal eigenvalues of N_i into the discs $D_{w_i}(\pm \sqrt{-1})$ for $w_i \leq \frac{1+y_i}{1-2y_i-y_i^2}$. E.g., $w_i < 0.4$ for $y_i = 0.1$, whereas $w_i < 0.17$ for $y_i = 0.5$, and then single step (8.6) would more than compensate for such a minor dilation of the discs $D_{y_i}(\pm \sqrt{-1})$ (see Theorem 8.2).

9 Modifications with fewer matrix inversions

We should apply iteration (8.6) rather than (8.5) to exploit its cubic convergence and to avoid matrix inversions as soon as the images of the targeted eigenvalues λ of M have been moved into the discs $D_{1/2}(\pm \sqrt{-1})$. Our goal is to achieve this in fewer steps (8.5) based on nonreal computations and repeated squaring (5.1) for appropriate matrices M_0.

9.1 Mapping the real line onto unit circle and repeated squaring

Next we incorporate repeated squaring of a matrix between its back and forth transforms defined by the maps of the complex plane $\mu \rightarrow \lambda$ and $\lambda \rightarrow \mu$ below.

Fact 9.1. Write $\lambda = u + v\sqrt{-1}$, $\mu = (a\lambda + \sqrt{-1})(a\lambda - \sqrt{-1})^{-1}$, $\beta_k = \frac{\sqrt{-1}(\mu^k + 1)}{a(\mu^k - 1)}$ (9.1)
for a positive integer \(k \) and a real \(a \neq 0 \) (one can simply choose \(a = 1 \), but other choices can be more effective). Then

(a) \(\lambda = \sqrt{\frac{-1}{a(n+1)}} \),

(b) \(\mu = \frac{n(\lambda)}{d(\lambda)} \) for \(n(\lambda) = u^2 + v^2 - a^2 = 2au \sqrt{-1} \) and \(d(\lambda) = u^2 + (v - a)^2 \), and consequently

(c) \(|\mu|^2 = \frac{u^2 + (v + a)^2}{u^2 + (v - a)^2} = 1 + \frac{4uv}{u^2 + (v - a)^2} \),

(d) \(|\mu| = 1 \) if and only if \(\lambda \) is real.

Furthermore

(e) \(\beta_k = \frac{n_k(\lambda)}{d_k(\lambda)} \) for \(n_k(\lambda) = \sum_{g=0}^{[k/2]} (-1)^g \binom{k}{2g} (a\lambda)^{k-2g} \) and

\[d_k(\lambda) = a \sum_{g=0}^{[k/2]} (-1)^g \binom{k}{2g+1} (a\lambda)^{k-2g-1}. \]

Fact 9.1 implies that the transform \(\lambda \to \mu \) maps the real line onto the unit circle \(C_1 = \{ \mu : |\mu| = 1 \} \), whereas the transform \(\lambda \to \beta_k \) maps the real line into itself. Clearly, powering of \(\mu \) keeps the unit circle \(C_1 \) in place, whereas the values \(|\mu|^k \) converge to 0 for \(|\mu| < 1 \) and to \(+\infty \) for \(|\mu| > 1 \) as \(k \to \infty \); thus for large \(k \) the transform \(\lambda \to \beta_k \) isolates the images of the sets of real and nonreal values \(\lambda \) from one another.

Corollary 9.1. Suppose that an \(n \times n \) matrix \(M \) has exactly \(s \) eigenpairs \(\{\lambda_j, U_j\} \), \(j = 1, \ldots, s \), and does not have eigenvalues \(\pm \sqrt{-1}/a \). By extending the equations of Fact 9.1, write

\[P = (aM + I_n \sqrt{-1})(aM - I_n \sqrt{-1})^{-1}, \tag{9.2} \]

\[M_k = \frac{\sqrt{-1}}{a} (P^k + 1)(P^k - 1)^{-1}, \tag{9.3} \]

\[\mu_j = (a\lambda_j + \sqrt{-1})(a\lambda_j - \sqrt{-1})^{-1}, \]

\[\beta_j = \frac{n_j(\lambda_j)}{d(\lambda_j)}, \quad n_j(\lambda_j) = \sum_{g=0}^{[k/2]} (-1)^g \binom{k}{2g} (a\lambda_j)^{k-2g}, \]

\[d(\lambda_j) = a \sum_{g=0}^{[k/2]} (-1)^g \binom{k}{2g+1} (a\lambda_j)^{k-2g-1}, \]

\(j = 1, \ldots, s. \) (In particular \(M_1 = M \), whereas \(2M_2 = M - (aM)^{-1} \).) Then \(M_k = n_k(M)(d_k(M))^{-1} \) where

\[n_k(M) = \sum_{g=0}^{[k/2]} (-1)^g \binom{k}{2g} (aM)^{k-2g}, \]

\[d_k(M) = a \sum_{g=0}^{[k/2]} (-1)^g \binom{k}{2g+1} (aM)^{k-2g-1}, \]

and the matrices \(M_k \) have the eigenpairs \(\{\beta_{j,k}, U_j\} \), \(j = 1, \ldots, s \) where \(\beta_{j,k} \) are real if \(\lambda_j \) is real, \(\beta_{j,k} \to 1/\beta_{j,k} \to \infty \) as \(k \to \infty \) unless \(\lambda_j \) is real.
The corollary implies that for sufficiently large integers \(k \) we can set \(F(M) = M_k \) in Proto-Algorithm 4.1.

We can apply repeated squaring to compute high powers \(P^k \). In numerical implementation we should avoid involving large norms \(||P^k||_q \). We can readily estimate them based on the Power Method [3], [18]. Also note that \((\rho(P))^k = \rho(P^k) \leq ||P^k||_q \leq ||P||_q^k \) for the spectral radii \(\rho(P) \) and \(\rho(P^k) \), \(q = 1, 2, \infty \) and all \(k \) (cf. [63, Theorems 1.2.7 and 1.2.9]).

Below is a prototype algorithm that implements this approach by using only two matrix inversions; this is much less than in iteration (8.5). The algorithm works for a large class of inputs \(M \) although it fails for harder inputs \(M \), which have many real and nearly real eigenvalues, and also other nonreal eigenvalues. The heuristic choice

\[
v = 0, \ w = 1, \ t \approx -\Re(\text{trace}(M)), \ a = \frac{t}{n}, \ \text{and} \ \tilde{M} = M + tI_n \quad (9.4)
\]

tends to push the values \(|\mu|\) away from 1 on the average input although can strongly push such a value toward 1 for the worst case input.

Proto-Algorithm 9.1. Mapping the real line onto the unit circle and repeated squaring (cf. Remark 9.1).

Input: a real \(n \times n \) matrix \(M \), whose real and nearly real eigenvalues are associated with an unknown eigenspace \(U_+ \) having an unknown dimension \(r_+ \ll n \).

Output: FAILURE or a matrix \(\hat{U} \) such that \(\mathcal{R}(\hat{U}) \approx U_+ \).

Initialization: Fix sufficiently large tolerances \(\tau \) and \(h_+ \), fix real \(a, t, v, \) and \(w \) and matrix \(\tilde{M} \) of (9.4).

Computation:

1. Compute the matrices \(P = (a\tilde{M} + I_n\sqrt{-1})(a\tilde{M} - I_n\sqrt{-1})^{-1} \) (cf. Corollary 9.1) and \(P^{2^g} \) for \(g = 1, 2, \ldots, h+1 \) until \(||P^{2^{h+1}}||_q > \tau \) for a fixed \(q \) (e.g., for \(q = 1 \) or \(q = \infty \)) or until \(h \geq h_+ \).
2. Compute matrix \(M_k \) of Corollary 9.1 for \(k = 2^{h+} \).
3. Apply Proto-Algorithm 4.2 to the matrix \(F = M_k \) and the integer \(r = n \) to output an \(n \times r \) matrix basis for the strongly dominant eigenspace \(\hat{U} \) of \(F \).
4. Output FAILURE if Proto-Algorithm 4.2 fails, which would mean that the matrix \(F = M_k \) has no strongly dominant eigenspace of dimension \(r_+ < n \).

One can modify Stage 4 to compute an integer \(h_+ \) iteratively, according to a fixed policy: one can begin with a small \(h_+ \), then increase it and reapply the algorithm if the computations fail (see Stage 4 and see further variations in Sections 9.2 and 10).

Remark 9.1. (a) One can extend Stage 2 by setting \(N_0 = M_k \) and applying iteration (8.6). In this case cubic convergence would be exploited and we could proceed with smaller values of \(h_+ \).

(b) In another variant one computes the matrix \(P^s \) for a sufficiently large integer \(s \) to ensure isolation of the images of real and nearly real eigenvalues of \(M \) from the images of its other eigenvalues and then applies the Rayleigh Quotient Iteration to this matrix at sufficiently many points of the unit circle \(C_1(0) \).

9.2 Further variations of matrix sign iterations

Let us comment on some promising variations of the matrix sign iteration.

1. We first examine how the map \(M \rightarrow P \) for the matrices \(M \) and \(P \) of Corollary 9.1 transforms the basin of convergence of iteration (8.6), given by the discs \(D_{1/2}(\pm \sqrt{-1}) \). We observe that their complement is mapped into the annulus \(A_{1/5,5}(0) = \{ x : 1/5 \leq |x| \leq 5 \} \). Conversely, suppose
by applying the scaled Möbius transform $M \rightarrow P^k$ the images of all nonreal eigenvalues of M lie outside this annulus, then iteration (8.6) cubically converges when it is applied to the matrix M_k of Corollary 9.1. We can estimate the integer k supporting the cubic convergence if we know the absolute values of all eigenvalues of the matrix P, that is, their distances from the origin. By virtue of part (d) of Fact 9.1, the distance is 1 if and only if an eigenvalue of P is the image of a real eigenvalue of M. For a large class of matrices M we can readily estimate the absolute values of the eigenvalues of the matrix P by using Gerschgorin discs [27, page 320], [63, page 39].

2. Next we recall some relevant techniques used for polynomial root-finding. Suppose that we are given the coefficients of the characteristic polynomial $c_P(x) = \text{det}(xI_n - P)$. Then we can approximate all these values with relative errors of at most 1% by using $O(n \log n)$ flops (see the effective techniques of [4], [9], [49], [51], [61]). Furthermore we can apply our algorithms to the companion matrix P to compute its eigenvalues μ lying on the unit circle C_1, and then recover the real eigenvalues $\lambda = \sqrt{-1} \mu / (a_{\mu - 1})$ of M (see part (a) of Fact 9.1).

3. In the case where $M = C_p$ is the companion matrix of a polynomial $p(x)$, the monic characteristic polynomial $c_P(x)$ equals $\gamma(x - 1)^n p\left(\frac{\sqrt{-1} \lambda}{a_0} \alpha \sqrt{-1}\right) = \gamma(x - 1)^n p(1 - \frac{\sqrt{-1} \lambda}{a_0} \alpha)$ for a scalar γ. We can compute its coefficients by performing two shifts of the variables and the reversion of the polynomial coefficients (see [50, Chapter 2] on these polynomial operations).

4. We can replace repeated squaring of the matrix P with k steps of the Dandelin’s root-squaring iteration, also attributed to Lobachevsky and Gräfe (see [28]),

\[p_{i+1}(x) = (-1)^n p_i(\sqrt{x})p_i(\sqrt{-x}), \quad i = 0, 1, \ldots, k - 1 \quad (9.5) \]

for $p_0(x) = c_P(x)$. We have $p_i(x) = \prod^i_{j=1} (x - \lambda^2_j)$, so that the ith iteration step squares the roots of the polynomial $p_{i-1}(x)$ for every i. Every root-squaring step (9.5) essentially amounts to polynomial multiplication and can be performed in $O(n \log n)$ flops; one can improve numerical stability by increasing this count to order n^2 [42]. Having computed the polynomial $p_k(x)$, for a sufficiently large integer k, we have its roots on the unit circle sufficiently well isolated from its other roots. The application of the algorithm in the next section to C_{p_k}, the companion matrix of this polynomial, yields its roots lying on C_1 (they are the eigenvalues of C_{p_k}). From these roots we can recover the roots μ of the circle $c_P(x) = p_0(x)$ by means of the descending techniques of [44] (applied also in [45], [46], [51], and [58, Stage 8 of Algorithm 9.1]), and then we can recover the real roots λ of $p(x)$ from the values μ by applying the expression in part (a) of Fact 9.1.

Remark 9.2. Having isolated the roots of $p_k(x)$ on the circle C_1 from its other roots, we can apply the algorithms of [36], [44], [45], [51], [61] to split out the factor $f(x)$ of this polynomial sharing with $p_k(x)$ precisely all the roots on the circle C_1. Then these roots can be readily approximated based on the Laguerre or modified Laguerre algorithms. Numerical problems can be caused by potentially dramatic growth of the coefficients of $p_k(x)$ in the transition to the factor $f(x)$ unless its degree is small.

10 Repeated squaring and the Möbius transform

Our next iteration begins in the same way as Proto-Algorithm 9.1, but we interrupt repeated squaring by applying the scaled Möbius transform $x \rightarrow x + 1/x$, instead of the map $P \rightarrow M_k$ of (9.3). The scaled Möbius transform moves the images of all real eigenvalues of the matrix M from the unit circle C_1 into the real line interval $[-2, 2]$; furthermore under this transform of the matrix N_i the images of all its eigenvalues lying outside the annulus $A_{1/3,3}(0) = \{x : 1/3 \leq |x| \leq 3\}$ are moved into the exterior of the disc $D_{8/3}(0)$. Recall that the basin of convergence of iteration (8.6) preceded by the map $x \rightarrow \frac{(x + 1/x)}{a + (1/x)^2}$ was the exterior of the slightly larger annulus $A_{1/3,3}(0) = \{x : 5/2 \leq |x| \leq 5\}$; furthermore the Möbius transform numerically stabilizes the computations for a large class of inputs.

Next we comment on combining the maps of Fact 9.1, repeated squaring, and the Möbius transform; we observe some pitfalls and propose remedies.
Fact 10.1. (Cf. Fact 9.1 for $a = 1$.) Write

$$\mu = (\lambda + \sqrt{-1})(\lambda - \sqrt{-1})^{-1}. \quad (10.1)$$

Then

(a) $\lambda = \sqrt{-1}(\mu - 1)/\mu + 1$,
(b) $|\mu| = 1$ if and only if λ is real and
(c) $\mu_k = \mu^k + \mu^{-k} = \sum_{g=0}^{k} (-1)^g \left(\frac{2k}{2g}\right) \lambda^{2g-k}(\lambda^2 + 1)^{-k}$ for $k = 1, 2, \ldots$. (In particular $\mu_1 = \frac{\lambda^2 - 1}{\lambda + 1}$, whereas $\mu_2 = \frac{\lambda^4 - 6\lambda^2 + 1}{(\lambda + 1)^2}$.)

Fact 10.2. Assume μ of (10.1) and a nonnegative integer k. Then $|\mu| = 1$ and $-2 \leq \mu_k = \mu^k + \mu^{-k} \leq 2$ if λ is real, whereas $|\mu^k + \mu^{-k}| \to \infty$ as $k \to \infty$ otherwise.

Corollary 10.1. Let an $n \times n$ matrix M have exactly s eigenpairs $\{\lambda_j, U_j\}$, $j = 1, \ldots, s$, and not have eigenvalues $\pm \sqrt{-1}$. By extending (9.2) for $a = 1$ and (10.1), write

$$P = (M + I_n\sqrt{-1})(M - I_n\sqrt{-1})^{-1} = (M - I_n\sqrt{-1})^{-1}(M + I_n\sqrt{-1}),$$

$$T_k = P^k + P^{-k} = \sum_{g=0}^{k} (-1)^g \left(\frac{2k}{2g}\right) M^{k-2g}(M^2 + 1)^{-k}, \quad (10.2)$$

$$\mu_j = (\lambda_j + \sqrt{-1})(\lambda_j - \sqrt{-1})^{-1},$$

$$\mu_{j,k} = \mu_j^k + \mu_j^{-k} = \sum_{g=0}^{k} (-1)^g \left(\frac{2k}{2g}\right) \lambda_j^{2g-k}(\lambda_j^2 + 1)^{-k}$$

for $k = 1, 2, \ldots$. (In particular $T_1 = 2(I_n - M^2)/(I_n + M^2)^{-1} = 2I_n - 4(I_n + M^2)^{-1}$, whereas $T_2 = (M^4 - 6M^2 + I_n)(M^2 + I_n)^{-2} = (M^2 + I_n)^{-2}(M^4 - 6M^2 + I_n)$. Then $M = \sqrt{-1}(P - I_n)(P + I_n)^{-1} = \sqrt{-1}(P + I_n)^{-1}(P - I_n)$, $\lambda_j = \sqrt{-1}(\mu_j - 1)/(\mu_j + 1)$ for $j = 1, \ldots, s$, and the matrices T_k have the eigenpairs $\{\mu_{j,k}, U_j\}$, $j = 1, \ldots, s$ where $-2 \leq \mu_{j,k} \leq 2$ if λ_j is real, $|\mu_{j,k}| \to \infty$ as $h \to \infty$ unless λ_j is real.

Instead of the map $P^k \to M_k$ and equation (9.3) of Corollary 9.1 we employ the map $P^k \to T_k$ and equation (10.2). This complicates the isolation of the images of real eigenvalues of the matrix M from the images of its nonreal eigenvalues provided that we rely on the respective map of the eigenvalues $\lambda = \lambda(P^k) \to \lambda(T_k) = \lambda + 1/\lambda$. Indeed the unit circle $\{\lambda = \lambda(P^k) : |\lambda| = 1\}$ is still mapped onto the line segment $[-2, 2]$, but also the imaginary line $\{\lambda = \lambda(P^k) : \Re(\lambda) = 0\}$ is mapped into the real line.

The problem disappears, however, where $\max\{|\lambda|, 1/|\lambda|\} > 3$, because in this domain the value $|\lambda + 1/\lambda|$ exceeds $8/3$, whereas this value is small near the points $\lambda = \pm \sqrt{-1}$. Therefore we can safely apply the map $P^k \to T_k$ provided that the images of nonreal eigenvalues of M in the map $M \to P^k$ do not lie in the annulus $A_{1/3, 3}(0) = \{x : 1/3 \leq |x| \leq 3\}$.

This map does not generally increase the minimum ratio of the absolute values of the images of real and nonreal eigenvalues of M, but it brings the images of all nonreal eigenvalues of M into the exterior of the disc $D_{8/3}$, while sending the images of all real eigenvalues of M into the real line interval $[-2, 2]$. If at this stage we can afford a reasonably large number of squarings of the resulting matrix (resp. its inverse), then the eigenspace associated with real eigenvalues of M becomes dominated (resp. dominant), and we can approximate them by applying Proto-Algorithm 4.3 (resp. 4.1).

11 Numerical tests

We performed a series of numerical tests in the Graduate Center of the City University of New York using a Dell server with a dual core 1.86 GHz Xeon processor and 2G memory running Windows.
Server 2003 R2. The test Fortran code was compiled with the GNU gfortran compiler within the Cygwin environment. We generated random numbers with the `random_number` intrinsic Fortran function assuming the uniform probability distribution over the range \(\{ x : 0 \leq x < 1 \} \). To shift to the range \(\{ y : b \leq y \leq a + b \} \) for fixed real \(a \) and \(b \), we applied the linear transform \(x \to y = ax + b \).

Conditioning of the products with random Toeplitz matrices.

Table 11.1 displays the average residual norms \(\| \Delta T - T_{q,A} \| \) where \(A \) is an \(n \times n \) matrix having numerical rank \(q \), \(Y = (AT)^+ T_{q,A} \). \(T_{q,A} \) is the leading singular space of \(A \), and \(T \) is a random \(n \times q \) Toeplitz matrix. We performed 100 tests for each pair \(\{ n, q \} \) for \(n = 64, 128, 256 \) and \(q = 8, 32 \).

We have first generated the Q factors \(S \) and \(T \) of \(n \times n \) random matrices as well as the diagonal matrices \(\Sigma = \text{diag}(\sigma_j)_{j=1}^q \) such that \(\sigma_j = 1/j \), \(j = 1, \ldots, q \), \(\sigma_j = 10^{-10} \), \(j = q + 1, \ldots, n \), \(\| A \| = 1 \), \(\kappa(A) = \| A^{−1} \| = 10^{10} \). Then we computed the input matrices \(A = \Sigma \Sigma^T \). The average residuals norms \(\| A \| \) had the same order in our tests with random \(n \times n \) general multipliers \(M \), replacing the Toeplitz multipliers \(T \).

Table 11.1: Residual norms \(\| A \| \) with random \(n \times q \) Toeplitz multipliers \(T \).

<table>
<thead>
<tr>
<th>(q)</th>
<th>(n)</th>
<th>min</th>
<th>max</th>
<th>mean</th>
<th>std</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>64</td>
<td>(2.22 \times 10^{-09})</td>
<td>(7.89 \times 10^{-06})</td>
<td>(1.43 \times 10^{-07})</td>
<td>(9.17 \times 10^{-11})</td>
</tr>
<tr>
<td>8</td>
<td>128</td>
<td>(3.79 \times 10^{-09})</td>
<td>(4.39 \times 10^{-05})</td>
<td>(4.87 \times 10^{-07})</td>
<td>(4.39 \times 10^{-06})</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>(5.33 \times 10^{-09})</td>
<td>(3.06 \times 10^{-06})</td>
<td>(6.65 \times 10^{-08})</td>
<td>(3.12 \times 10^{-07})</td>
</tr>
<tr>
<td>32</td>
<td>64</td>
<td>(6.22 \times 10^{-09})</td>
<td>(5.00 \times 10^{-07})</td>
<td>(4.06 \times 10^{-08})</td>
<td>(6.04 \times 10^{-08})</td>
</tr>
<tr>
<td>32</td>
<td>128</td>
<td>(2.73 \times 10^{-09})</td>
<td>(4.88 \times 10^{-06})</td>
<td>(2.57 \times 10^{-07})</td>
<td>(8.16 \times 10^{-07})</td>
</tr>
<tr>
<td>32</td>
<td>256</td>
<td>(1.78 \times 10^{-08})</td>
<td>(1.25 \times 10^{-06})</td>
<td>(1.18 \times 10^{-07})</td>
<td>(2.03 \times 10^{-07})</td>
</tr>
</tbody>
</table>

Algorithms and tests

We tested our algorithms for the approximation of the eigenvalues of \(n \times n \) companion matrix \(C_p \) and of the shifted matrix \(C_p - s I_n \) defined by polynomials \(p(x) \) with random real coefficients for \(n = 64, 128, 256 \) and by random real \(s \). For each class of matrices, each input size and each iterative algorithm we generated 100 input instances and run 100 tests. Our tables show the minimum, maximum, and average (mean) numbers of iteration loops in these runs (until convergence) as well as the standard deviations in the columns marked by “\(\text{min} \)”, “\(\text{max} \)”, “\(\text{mean} \)”, and “\(\text{std} \)”, respectively.

We applied repeated squaring of Section 5 to the matrix \(C_p - s I \); we used shifts \(s \) because polynomials \(p(x) \) with random real coefficients tend to have all roots near the circle \(C_1(0) \) and because for such inputs repeated squaring of \(C_p \) advances eigen-solving very slowly.

We applied real Newton’s iteration (8.5) to approximate the matrix sign function for the matrix \(C_p \) using no shifts; then we applied Proto-Algorithm 4.1 to approximate real eigenvalues.

In both groups of tests above we output roots with at least four correct decimals. In our next group of tests we output roots with at least three correct decimals. In these tests we applied real Padé iteration (8.6) without stabilization to the matrices produced by five Newton’s steps (8.5).

Table 11.2 displays the results of testing repeated squaring of Section 5. The first three lines show the dimension of the output subspace and the matrix \(L \). The next three lines show the number of squarings performed until convergence.

Table 11.3 displays the number of Newton’s steps (8.5) performed until convergence.

Table 11.5 covers the tests where we first performed five Newton’s steps (8.5) followed by sufficiently many Padé steps (8.6) required for convergence. The first three lines of the table show the number of the Padé steps. The next three lines display the percent of the real roots of the polynomials \(p(x) \) which the algorithm computed with at least three correct decimals (compared to
the overall number of the real eigenvalues of L). The next three lines show the increased percent of computed roots when we refined the crude approximations by means of Rayleigh Quotient iteration. The iteration rapidly converged from all these initial approximations but in many cases to the same roots from distinct initial points.

Table 12.5 shows the overall numbers of Padé steps and of the percents of real computed roots where we applied our algorithms to both polynomials $p(x)$ and $p_{rev}(x)$.

<table>
<thead>
<tr>
<th>n</th>
<th>dimension/sqarings</th>
<th>min</th>
<th>max</th>
<th>mean</th>
<th>std</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>dimension</td>
<td>1</td>
<td>10</td>
<td>5.31</td>
<td>2.79</td>
</tr>
<tr>
<td>128</td>
<td>dimension</td>
<td>1</td>
<td>10</td>
<td>3.69</td>
<td>2.51</td>
</tr>
<tr>
<td>256</td>
<td>dimension</td>
<td>1</td>
<td>10</td>
<td>4.25</td>
<td>2.67</td>
</tr>
<tr>
<td>64</td>
<td>sqarings</td>
<td>6</td>
<td>10</td>
<td>7.33</td>
<td>0.83</td>
</tr>
<tr>
<td>128</td>
<td>sqarings</td>
<td>5</td>
<td>10</td>
<td>7.37</td>
<td>1.16</td>
</tr>
<tr>
<td>256</td>
<td>sqarings</td>
<td>5</td>
<td>11</td>
<td>7.13</td>
<td>1.17</td>
</tr>
</tbody>
</table>

Table 11.3: Newton’s iteration (8.5).

<table>
<thead>
<tr>
<th>n</th>
<th>min</th>
<th>max</th>
<th>mean</th>
<th>std</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>7</td>
<td>11</td>
<td>8.25</td>
<td>0.89</td>
</tr>
<tr>
<td>128</td>
<td>8</td>
<td>11</td>
<td>9.30</td>
<td>0.98</td>
</tr>
<tr>
<td>256</td>
<td>9</td>
<td>13</td>
<td>10.22</td>
<td>0.88</td>
</tr>
</tbody>
</table>

Table 11.4: 5 N-steps (8.5) + P-steps (8.6)

<table>
<thead>
<tr>
<th>n</th>
<th>P-steps or %</th>
<th>min</th>
<th>max</th>
<th>mean</th>
<th>std</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>P-steps</td>
<td>1</td>
<td>4</td>
<td>2.17</td>
<td>0.67</td>
</tr>
<tr>
<td>128</td>
<td>P-steps</td>
<td>1</td>
<td>4</td>
<td>2.05</td>
<td>0.63</td>
</tr>
<tr>
<td>256</td>
<td>P-steps</td>
<td>1</td>
<td>3</td>
<td>1.99</td>
<td>0.58</td>
</tr>
<tr>
<td>64</td>
<td>% w/o RQ steps</td>
<td>0</td>
<td>100</td>
<td>64</td>
<td>28</td>
</tr>
<tr>
<td>128</td>
<td>% w/o RQ steps</td>
<td>0</td>
<td>100</td>
<td>39</td>
<td>24</td>
</tr>
<tr>
<td>256</td>
<td>% w/o RQ steps</td>
<td>0</td>
<td>100</td>
<td>35</td>
<td>20</td>
</tr>
<tr>
<td>64</td>
<td>% w/RQ steps</td>
<td>0</td>
<td>100</td>
<td>89</td>
<td>19</td>
</tr>
<tr>
<td>128</td>
<td>% w/RQ steps</td>
<td>0</td>
<td>100</td>
<td>74</td>
<td>26</td>
</tr>
<tr>
<td>256</td>
<td>% w/RQ steps</td>
<td>0</td>
<td>100</td>
<td>75</td>
<td>24</td>
</tr>
</tbody>
</table>

Acknowledgements: Our research has been supported by NSF Grant CCF–1116736 and PSC CUNY Awards 64512–0042 and 65792–0043.

References

<table>
<thead>
<tr>
<th>n</th>
<th>P-steps or %</th>
<th>min</th>
<th>max</th>
<th>mean</th>
<th>std</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>P-steps</td>
<td>2</td>
<td>8</td>
<td>4.26</td>
<td>1.19</td>
</tr>
<tr>
<td>128</td>
<td>P-steps</td>
<td>2</td>
<td>10</td>
<td>4.20</td>
<td>1.23</td>
</tr>
<tr>
<td>256</td>
<td>P-steps</td>
<td>2</td>
<td>6</td>
<td>4.24</td>
<td>1.22</td>
</tr>
<tr>
<td>64</td>
<td>% w/o RQ steps</td>
<td>0</td>
<td>100</td>
<td>67</td>
<td>26</td>
</tr>
<tr>
<td>128</td>
<td>% w/o RQ steps</td>
<td>0</td>
<td>100</td>
<td>43</td>
<td>24</td>
</tr>
<tr>
<td>256</td>
<td>% w/o RQ steps</td>
<td>0</td>
<td>100</td>
<td>33</td>
<td>23</td>
</tr>
<tr>
<td>64</td>
<td>% w/RQ steps</td>
<td>0</td>
<td>100</td>
<td>87</td>
<td>21.3</td>
</tr>
<tr>
<td>128</td>
<td>% w/RQ steps</td>
<td>0</td>
<td>100</td>
<td>87</td>
<td>20.5</td>
</tr>
<tr>
<td>256</td>
<td>% w/RQ steps</td>
<td>0</td>
<td>100</td>
<td>88</td>
<td>21.5</td>
</tr>
</tbody>
</table>

