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Figure 4.8.  Principal components analysis of extant bovid hemimandibles using 40-landmark 

protocol. X-Axis: PC1 (45.76%) vs. Y-Axis: PC2 (12.53%).  Both principal component scores 

are statistically significant (Jolliffe cut-off value = 10.05%). B=browse, MF-B=mixed feeding 

preferring browse, MF-G=mixed feeding preferring grass, FG=fresh grass, G=grass. 

 

 

 

 

 

 

 



 

229 

  

 

 

Figure 4.9. Shape changes in the complete mandible wireframe between a) grazers and b) 

browsers on PC1 in superior view using a 40 landmark protocol. Note the difference in the width 

of the muzzle and position of the coronoid process.  

 

 

Figure 4.10. Shape changes in the complete mandible wireframe between a) grazers and b) 

browsers on PC1 in buccal view using a 40 landmark protocol. Note the differences in the length 

of the coronoid process, spacing of the check teeth, depth of the mandibular corpus, and 

curvature of the muzzle.   
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Figure 4.11.  Principal components analysis of bovid mandibular corpus using a reduced 18 

landmark protocol. X-Axis: PC1 (38.6%) vs. Y-Axis: PC2 (12.8%).  Both principal component 

scores are statistically significant (Jolliffe cut-off value = 1.91%). B=browse, MF-B=mixed 

feeding preferring browse, MF-G=mixed feeding preferring grass, FG=fresh grass, G=grass. 

Principal components analysis of extant bovid hemimandibles using 18-landmark protocol. 

Extant bovid samples indicated by convex hulls. Elandsfontein fossil mandibles indicated by 

PCA points. 
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Chapter 5: Conclusions and Future Research Directions 

 

 

Major contributions 

The main objective of this dissertation is to address under-investigated aspects of 

Acheulean hominin behavioral ecology and place hominin subsistence behavior into an 

environmental context. This study presents the first systematic analysis of in situ large mammal 

fossils from Elandsfontein, South Africa. The Elandsfontein fossil assemblage is one of few 

contemporaneous archaeofaunas preserved in primary context with lithic artifacts and has 

figured prominently in discussions of Acheulean hominin carnivory (Klein, 1978, 1982, 2009; 

Klein and Cruz-Uribe, 1991; Milo, 1994; Klein et al., 1999, 2007; Cruz-Uribe et al., 2003).  

Zooarchaeological and paleoenvironmental data presented here increase the known variability in 

Acheulean hominin foraging behavior by providing data on an aeolian context and winter rainfall 

environment (Braun et al, 2013a, b). This study also marks the first use of 3D geometric 

morphometrics to test functional and ecomorphological hypotheses in bovid mandibles and 

metapodials. This new approach to ecomorphological analysis is broadly applicable to many 

paleontological and archeological contexts.  

This study began with several goals. The first was to determine the mechanisms of site 

formation at Elandsfontein and assess the degree to which hominins and carnivores contributed 

to the fossil assemblage. The zooarchaeological data presented in Chapter Two reveal a more 

complex history of faunal accumulation and bone surface modification in the excavated (WCRP) 

fauna than has previously been reported for surface collected materials [(EFTM) (Milo, 1994)]. 

Higher frequencies of hominin-induced bone damage, and cutmarks on large mammal fossils, 
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indicate that hominins had more frequent access to large carcasses than previously recognized. 

This finding has important implications as it suggests that meat was an important component of 

the diet and that hominins were competing with large carnivores, either directly or indirectly, for 

access to animal tissue.  

The second goal was to explore variation in the activity of different bone modifying 

agents across the Elandsfontein paleolandscape. Chapter Two reveals that hominins, carnivores, 

and porcupines all had a significant influence on the fossil assemblage but that the frequency of 

activity by each agent varied between excavation bays. Bay 0209 preserves the highest 

concentrations of hominin damage, suggesting that hominin butchery activity was most common 

in this part of the landscape. This pattern is echoed by the high artifact density in this bay (Braun 

et al., 2013a). Relatively high frequencies of carnivore damage at Bay 0209 suggest that 

carnivores also repeatedly processed carcasses in this area and thus the primary agent of bone 

accumulation at Bay 0209 remains unclear. Carnivore and porcupine damage frequencies are 

highest at Bay 0313. These data, coupled with evidence for rapid burial and a diverse array of 

carnivore taxa, suggests the presence of a carnivore den. Bays 0110 and 0710 consist of low 

frequencies of all damage types and may represent background scatter or natural death sites. This 

variation highlights the problems with conflating data from contexts with varying degrees of 

hominin and carnivore activity, as was done in previous studies of the EFTM surface collections.  

The third goal of this study was to use traditional ecomorphological methods to 

contribute to the growing body of paleoenvironmental data at Elandsfontein. Marine core 

sediments indicate increasing aridification in southern Africa throughout the Pliocene and 

Pleistocene (deMenocal, 2004; Dupont et al., 2013). However, taxonomic composition of the 

Elandsfontein fauna suggests wetter and grassier conditions than today (Butzer, 1973; Klein and 
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Cruz-Uribe, 1991; Klein, 2009) and recent isotopic studies imply that Elandsfontein may have 

been buffered from regional aridification by the presence of ground fed springs (Braun et al., 

2013a, b; Patterson et al. 2016, Lehmann et al., 2016). Ecomorphological results, in Chapter 

Three, suggest a mix of habitats, including a predominantly open landscape with significant 

woody or bushy components. This contrasts strongly with the arid and unpredictable ecological 

conditions expected for the Cape Floral Region and supports the idea that Elandsfontein 

provided Acheulean hominins with a refuge from the resource poor ecosystems around them. 

Permanent fresh water and high large mammal biomass would likely have provided hominins at 

Elandsfontein with similar foraging opportunities to their counterparts in C4 dominated grassland 

habitats in East Africa (Pante, 2010, 2013; Sikes et al., 1999; Dominguez-Rodrigo et al., 2001). 

The final goal was to establish a new protocol for collecting and analyzing bovid 

ecomorphological data using 3D geometric morphometrics, and apply it to fossil mandibles and 

metapodials from Elandsfontein. The methods introduced in Chapter Four provide considerably 

higher classification success rates than almost all traditional caliper models and can be 

performed on more fragmentary specimens. Wireframes proved extremely useful for testing 

functional hypotheses and interpreting variation in three dimensional shapes. Ecomorphological 

results from Elandsfontein once again suggest a mixed habitat with significant grass and 

tree/shrub components. These methods were applied to fossil bovids from Elandsfontein but are 

broadly applicable to any archaeological or paleontological assemblages containing bovid 

fossils. 

 

Synthesis of zooarchaeological and paleoenvironmental data from Elandsfontein 
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The current zooarchaeological study (WCRP) presents a view of Elandsfontein hominin 

foraging behavior that differs from previous studies based on surface collected material (EFTM) 

(Klein and Cruz-Uribe, 1991; Milo, 1994). Milo (1994) found that 1.6% of “wildebeest-sized” 

bones and 1.4% of “eland-sized” bones in the EFTM faunal collection exhibited carnivore tooth 

marks. The frequencies for stone tool marks were only 0.7% and 0.2%, respectively. This was 

interpreted as evidence that hominins played little role in bone accumulation and modification 

and that bone-artifact association was largely the result of natural mortality near a water source. 

In turn, it was predicted that hominins at Elandsfontein rarely fed on large mammals like buffalo 

or rhinoceros, despite their abundance in the EFTM fossil assemblage (Klein, 2009). In contrast, 

the current study indicates varying degrees of hominin and carnivore activity across the 

paleolandscape with higher frequencies (3.6% NISP) of hominin-induced butchery in Bay 0209. 

In addition, cutmarks were identified on limb bones of extinct buffalo (Syncerus antiquus) and 

rhinoceros (Diceros bicornis), indicating that hominins at least occasionally butchered very large 

animals.  

Paleoenvironmental reconstructions at Elandsfontein indicate a predominantly open 

landscape, dominated by C3 grasses and dense patches of trees and/or broad leaved bush (Klein 

and Cruz-Uribe, 1991; Luyt et al., 2000; Kaiser and Franz-Odendaal, 2004; Stynder, 2009; 

Braun et al., 2013a, b; Patterson et al. 2016; Lehmann et al., 2016). Micromammal fossils 

demonstrate enriched levels of C4 relative to large ungulates, suggesting a difference in the local 

Elandsfontein vegetation compared to the surrounding arid Cape Floral Region (Patterson et al., 

2016; , Lehmann et al., 2016).This landscape would have provided hominins with a rare 

resource-rich setting, within a relatively dry and ecologically poor ecosystem, particularly during 

the dry summer months. Hominins capitalized on meat resources and would have been drawn to 
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the diverse array of large herbivores and consistent source of water and vegetation (Drennan, 

1953; Singer and Wymer, 1968; Klein, 1983; Braun et al., 2013a). Fossil and lithic evidence 

indicate that hominin behavior varied in intensity across the landscape (Braun et al., 2013a) and 

preliminary findings suggest that hominins may have concentrated their activities in areas that 

were rich in C4 resources (Patterson et al., 2016).  

 

Hominin carnivory and contemporaneous archaeofaunal assemblages across the Old World 

There is also a lack of consensus on many key issues regarding Acheulean hominin 

carnivory including the importance and frequency of meat consumption, strategies of carcass 

acquisition and processing (i.e. early vs. late access), and the ability to compete with carnivores 

for access to animal resources. The development of the Acheulean coincides with important 

biological changes including the appearance of hominins with larger brain size, larger body size, 

and a shift toward obligate bipedalism and endurance running (Shipman and Walker, 1989; Ruff 

and Walker, 1993; Aiello & Wheeler, 1995; Bramble and Lieberman, 2004; Stout et al., 2008). 

The metabolic cost of these biological changes would have required an increase in nutritional 

intake and a common assumption is that Acheulean hominins consumed more animal tissue than 

their Oldowan producing predecessors (Aiello and Wheeler, 1995; Milton, 1987; Ruff and 

Walker, 1993; Shipman and Walker, 1989). Contrary to this assumption, some have argued that 

there is little evidence for Acheulean hominin carnivory in the fossil record and that hominins, 

across the Old World, had infrequent access to animal resources (Klein, 1978, 1982, 2009; Klein 

and Cruz-Uribe, 1991; Milo, 1994; Klein et al., 1999, 2007; Cruz-Uribe et al., 2003). However, 

this argument is based primarily on a lack of evidence for hominin butchery and a growing 

number of fossil assemblages suggest that hominins not only butchered large mammals but were 
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often the primary agents of carcass accumulation and modification. Below is a discussion of the 

most well described archaeofaunas that are roughly contemporaneous to Elandsfontein. These 

include Duinefontein (Horizon 2) in South Africa, sites at Olduvai Gorge (Beds II, III, and IV) 

and Peninj (ST site complex) in Tanzania, and Gesher Benot Ya’aqov in Israel (V-5, V-6) (Table 

1).  

Duinefontein, also located on the Western Cape of South Africa, preserves an open air 

lithic and fossil assemblage that is slightly younger (500-250 ka) than Elandsfontein (Feathers, 

2002; Cruz-Uribe, 2003). Horizon 2 contains over two thousand Acheulean artifacts including 

handaxes, cores, retouched and unretouched flakes, and debris. The faunal composition suggests 

an environment dominated by grass and broad leaved bush with a nearby pond or marsh (Klein et 

al., 1999). The fossil sample is composed predominantly of skulls, vertebrae, ribs, and other 

axial elements, often in near anatomical order, suggesting that limbs were selectively removed 

from death sites. There are numerous hyena coprolites and carnivore tooth marks are abundant 

(45% NISP), indicating that carnivores were largely responsible for carcass disarticulation (Cruz-

Uribe et al., 2003). Cruz-Uribe et al. (2003) interpret the relative rarity of tool-marked bones 

(1% NISP) as evidence that hominins acquired few of the large mammals available to them 

(Table 1). The authors point out that it is difficult to determine whether Duinefontein represents 

an Acheulean rule or exception but refer to the low frequencies of hominin damage from the 

EFTM, Torralba, and Ambrona assemblages as probable evidence that Acheulean hominins 

rarely acquired large mammal carcasses (see discussion on Torralba and Ambrona below).  

The most thoroughly examined of these faunal assemblages are from Olduvai Gorge, 

Tanzania (Beds II-IV). Zooarchaeological analyses have been conducted at several Bed II sites 

including HWKE (> 1.6 Ma.), MNK (1.4Ma.), and BK (1.2 Ma.) (Curtis & Hay, 1972; Walter et 
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al., 1991; Egeland & Domı ́nguez-Rodrigo, 2008) Evidence for hominin activity is preserved in a 

variety of ecological settings, from lake margins to fluvial contexts (Hay, 1976) and the lithic 

assemblage is described as a combination of Oldowan, Developed Oldowan, and Acheulean 

technology (Leakey, 1971).  The HWKE fauna contains few signs of hominin butchery (<1% 

NISP) but carnivore tooth marks are presents on 21.9% of specimens in levels 1-2 and 24.5% in 

levels 3-5 (Table 1). Tooth mark patterns most closely resemble those described by carnivore-

only (CO) actualistic experiments (Blumenschine, 1988, 1995; Capaldo, 1998, Marean et al., 

2000) and imply that bones were accumulated and modified primarily by carnivores (Monahan, 

1996; Egeland & Domı ́nguez-Rodrigo, 2008).  

Monohan (1996) interpreted both the MNK and BK assemblages as representing primary 

access by hominins.  At MNK, 5% of specimens were recorded as having either cutmark or 

percussion damage and 8.7% preserve carnivore tooth marks. At BK, hominin and carnivore 

damages were reported on 8.8% and 8.2% of specimens, respectively (Table 1). For both 

assemblages, tooth marks are considerably more abundant on epiphyseal bone portions than on 

midshafts. This pattern most closely resembles actualistic experiments in which carnivores had 

late access to defleshed carcasses (Blumenschine, 1988, 1995; Capaldo, 1998, Marean et al., 

2000).  Egeland & Domı ́nguez-Rodrigo (2008) later reexamined the MNK and BK faunal 

collections and recorded considerably higher frequencies of carnivore damage (30.6% NISP) at 

MNK with evidence for hominin butchery on less than 1% of fossils (Table 1). They dispute the 

idea of early hominin access at MNK but uphold the contention that BK represents an 

accumulation primarily formed by hominin activity. The majority of cutmarks at site BK occur 

on meaty proximal limb elements in areas that Dominguez-Rodrigo and Barba (2007) refer to as 

“Hot Zones”. These are areas on limb bones that were found to be consistently defleshed by 
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felids during feeding experiments and predominantly occur on limb shafts. This suggests that 

hominins at BK had early access to carcasses and removed large packets of muscle tissue. 

Evidence also suggests that hominins at BK preferentially exploited large mammals (size 3 and 

4) and occasionally butchered Syncerus (Pelorovis) oldowayensis (Dominguez et al., 2009).  

Carbon isotopic data indicate a shift toward more arid conditions during deposition of the 

Bed III and IV fauna, with C4 grasses comprising about 80% of the vegetation biomass (Cerling 

and Hay, 1986). The faunal composition indicates a grass dominated ecosystem with scrub and 

brush (Gentry and Gentry, 1978; Hay, 1976). At site JK 2 in Bed III (1.2-0.8 Ma), stone tool 

cutmarks and percussion marks occur on 14.9% of identified specimens and carnivore 

toothmarks occur on 31.8% (Table 1). Patterns of cutmark and tooth mark distribution suggest 

that hominins and carnivores both had early access to carcasses at JK 2 on different occasions 

(Pante, 2010, 2013). In contrast damage patters at site WK in Bed IV (0.8 and 0.6 Ma) suggest 

that hominins were the primary consumers of both flesh and marrow (Pante, 2010).  Hominin 

damage occurs on 16.9% of fossils and carnivore damage appears on 20.8%. (Table 1)  

Peninj, Tanzania represents a buried paleolandscape with several small scatters of fossils 

and Oldowan or Mode 1 artifacts (Leakey, 1971). Most of the archaeological materials are 

concentrated in the ST site complex with ST4 (1.5 Ma) containing the largest and best preserved 

archaeofauna of the ST sites (Domínguez‐Rodrigo et al., 2002, 2009). Hominin damage occurs 

on 37.3% NISP while carnivore damage occurs on only 8.4% (Table 1). Damage frequencies 

indicate that hominins had primary access to fully fleshed carcasses, and that carnivore activity 

was restricted to post-depositional ravaging (Domínguez‐Rodrigo et al., 2002).  

Finally, the Gesher Benot Ya’aqov (GBY) locality in Israel preserves evidence of 

repeated systematic butchery of Fallow deer (Dama dama) and similarly sized ungulates by 780 
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ka (Goren-Inbar et al., 1992, 2000; Rabinovich et al., 2008; Rabinovich & Biton, 2011). The 

lithic assemblage consists of Acheulean artifacts including handaxes, cleavers, flake tools, and 

small cores (Goren-Inbar et al., 1994) and paleoenvironmental analyses indicate that both 

grassland and woodland habitats were present (Rabinovich et al., 2008; van Zeist and Bottema, 

2009). Hominin damage is recorded on 5.4% percent of specimens in layer V-5 and 11.7% in 

layer V-6 (Rabinovich et al., 2012).  The frequency and distribution of hominin damage on 

Dama fossils suggest that hominins repeatedly followed a sequence of butchery involving 

skinning, disarticulation, defleshing, and marrow extraction (Rabinovich et al., 2008). Carnivore 

fossils are rare and carnivore bone modification occurs on only 1.4% of specimens in layer V-5 

and 2.4% in layer V-6 (Table 1). Patterns of tooth mark distribution suggest that carnivores were 

scavenging carcasses that were already fully processed by hominins (Rabinovich et al., 2008). 

The presence of a percussed cranium of Palaeoloxodon antiquus (extinct straight tusked 

elephant) is intriguing and may indicate that hominins transported the cranium to consume the 

brain tissue (Goren-Inbar et al., 1994).  

There are several additional contemporaneous faunal assemblages that are not as well 

described but warrant mention in this discussion. These include Ambrona, Torralba and Gran 

Dolina in Spain, Swartkrans in South Africa, and Olorgesailie in Kenya. The Ambrona (>350 ka) 

and Torralba (240-200 ka) assemblages contain little indication for hominin butchery and have 

been cited as evidence that Acheulean hominins did not regularly butcher large mammals 

(Shipman & Rose, 1983; Pérez-González et al., 1999; Cruz-Uribe et al., 2003; Falguères et al., 

2006). However, it is possible that much of the bone surface damage at these localities has been 

obliterated by sedimentary abrasion. Cutmarks and tooth marks occur on less than 1% of bones 

in both samples while sedimentary abrasion is present on close to 100% of the fossils (Shipman 
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& Rose, 1983). An alternative possibility is that these localities represent background scatter or 

natural death sites and do not provide a great deal of information about hominin foraging 

activities.  

Gran Dolina is one of several important Paleolithic cave sites located in the Sierra de 

Atapuerca region of central Spain. The TD 6 level has yielded hominin fossils, identified as 

Homo antecessor, in association with lithic and faunal remains, dating to > 780 ka (Bermúdez de 

Castro et al., 1997; Carbonell et al., 1995, 1999; Carlos Díez et al., 1999). The lithic assemblage 

has been described as Mode I (Oldowan) with usewear traces of butchery and woodworking 

(Carbonell et al., 1999). Paleoenvironmental reconstructions indicate the presence of a temperate 

European forest near the site (Rodriguez, 1997). Cutmarks have been identified on many of the 

bones, including bones assigned to H. antecessor, and cutmark frequencies are consistent with 

hominins having had early access to carcasses (22.5% NISP). Toothmarks occur on 19% of bone 

fragments but rarely occur on midshafts, suggesting secondary access by carnivores (Carlos Díez 

et al., 1999; Fernández‐ Jalvo et al., 1999). Recent analysis of theTD6-2 fauna revealed similar 

patterns of bone surface damage, suggesting that hominins had early access to fleshed carcasses 

and that carnivore ravaging was restricted to scavenging of hominin refuse (Saladie et al., 2014). 

Skeletal element representation suggests that many carcasses, including Homo, were complete 

when they were transported into the cave (Carlos Díez et al., 1999).  

Hominins are also suggested to be the primary agents of bone modification at Swartkrans 

Member 3 in South Africa (Brain, 1993; Pickering et al., 2004a; 2004b).  The 1 million year old 

faunal sample is dominated by large grazing taxa indicating a grass dominated vegetation. There 

are also several less well represented browsing and water dependant taxa indicating extensive 

woodland in the vicinity and a permanent source of fresh water (Brain, 1993; Watson, 1993). 
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Cutmarks occur on 6.1% of limb bones with the majority occurring on meaty proximal elements 

suggesting that hominins had early access to rather complete carcasses. Hominins are also 

thought to have broken the majority of long bones for marrow extraction (Pickering et al., 

2004a).  Carnivore tooth marks are present on many of the fossils but rarely occur on long bone 

midshafts, suggesting that carnivores were secondary consumers (Pickering et al., 2004a; 

2004b).   

The Acheulean locality of Olorgesailie, Kenya contains a large faunal and lithic 

assemblage dated between 990 and 780 ka (Potts, 1989; Potts et al., 1999). Olorgesailie 

represents a paleolake basin that supported a local biomass of about 75–100% C4 plants (Sikes et 

al., 1999). Site DE/89B preserves fossils of at least fifty seven giant gelada (Theropithecus 

oswaldi) with over 4,000 associated artifacts (Isaac, 1977; Shipman et al., 1981). Bone breakage 

patterns have led some researchers to infer that hominins were systematically hunting and 

butchering gelada (Shipman et al., 1981) though this interpretation has since been criticized 

(Binford and Todd, 1982). Excavations have also unearthed an elephant butchery site (Elephas 

recki) with more than 2,300 associated stone artifacts. Additional fossils have since been 

excavated at Olorgesailie (Potts et al., 1999), but the results of detailed taphonomic and 

zooarchaeological analyses have not yet been published.  

The earliest unequivocal archaeological evidence for hominin carnivory precedes the 

Acheulean and coincides with the appearance of the Oldowan stone tool technology at 

approximately 2.6 Ma (Semaw et al., 1997; de Heinzelin et al., 1999; Dominguez-Rodrigo et al., 

2005; Semaw, 2006). Despite the long history of research, there is still no consensus on the mode 

of Oldowan hominin carcass acquisition and arguments mainly focus on the debate of hunting 

vs. scavenging (Binford, 1981; Brain, 1981; Bunn, 1981, 1982, 1986, 2001; Bunn and Kroll, 
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1986; Shipman, 1986; Blumenschine, 1986, 1987, 1995; Potts, 1988; Binford et al., 1988; 

Selvaggio, 1998; Blumenschine and Cavallo, 1992; Bunn and Ezzo, 1993; Lupo, 1994; Oliver, 

1994; Capaldo, 1997; Dominguez-Rodrigo, 1997, 2002; Dominguez-Rodrigo et al., 2002; 

Dominguez-Rodrigo and Pickering, 2003; Plummer, 2004; Blumenschine and Pobiner, 2007). 

The majority of studies have focused on the well preserved faunal assemblage from FLK 

Level 22 (FLK Zinj) from Bed I, Olduvai Gorge, Tanzania. This site dates to ~1.84 Ma and 

contains approximately 60, 000 faunal specimens (NISP) and over 2,500 Oldowan artifacts 

(Leakey 1971; Bunn and Kroll 1986; Potts 1988; Domínguez-Rodrigo et al. 2007). Phytolith and 

paleosol carbonate analyses suggest a wooded paleoenvironment situated on a lake margin (Potts 

1988; Cerling and Hay 1986; Sikes 1994; Ashley et al. 2010). Initial faunal studies relied heavily 

on skeletal part profiles and low frequencies of meat bearing limb bones were interpreted as 

evidence of a carnivore kill site that was subsequently scavenged by hominins (Binford 1981). 

However, these early studies were later criticized because they focused primarily on limb 

epiphyses to the exclusion of shaft specimens. Subsequent studies by Bunn and Kroll (1986), 

which included long bone shafts, found that the assemblage at FLK Zinj was actually dominated 

by meaty limb elements (humerus, radio-ulna, femur, and tibia). This was interpreted as early 

access and systematic butchery of large mammal carcasses by Oldowan hominins. Early hominin 

access at FLK Zinj is further supported by studies using the Shannon evenness index (Faith et al., 

2009). This statistic measures the evenness of high survival skeletal elements in an assemblage 

in relation to their proportion in a complete carcass (Faith and Gordon 2007). Results revealed a 

high evenness for bovid limb bones, suggesting transport of relatively complete carcasses to the 

site (Faith et al., 2009). Furthermore, studies of bovid mortality profiles indicate a prime 
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dominated faunal assemblage suggesting that hominins at FLK Zinj may have been ambush 

predators (Bunn and Pickering, 2010).  

While studies of skeletal part abundance are informative, they can be complicated by 

differential preservation of skeletal elements. Researchers typically rely on data from actualistic 

experiments to determine the timing of hominin and carnivore access to carcasses in 

archaeological assemblages (Binford et al., 1988; Blumenschine, 1988, 1995; Marean and 

Spencer, 1991; Marean et al., 1992; Selvaggio, 1994, 1998; Capaldo, 1997, 1998; Dominguez-

Rodrigo, 1997, 1999, 2001, 2002; Bunn, 2001; Lupo and O’Connell, 2002; Parkinson,  2013; 

Parkinson et al., 2014, 2015; Organista et al., 2016). Based on carnivore tooth mark frequencies, 

Blumenschine (1995) and Selvaggio (1998) suggested a three-stage model of carcass processing 

with felids (or other flesh specialists) having primary access to carcasses, followed by hominin 

bone marrow processing, and final consumption of remaining bone tissue by bone crunching 

hyaenids. In contrast, some have  argued that tooth mark frequencies reported by Blumenschine 

are an overestimation (Domínguez-Rodrigo 1997; Domínguez-Rodrigo and Pickering 2003; 

Domínguez-Rodrigo and Barba 2006; Domínguez-Rodrigo et al. 2007) and that lower carnivore 

tooth mark frequencies are suggestive of early access by hominins. Overall, combined evidence 

of cutmarks and tooth mark distribution have primarily been interpreted as early access by 

hominins with possible hunting of smaller mammals (Domínguez-Rodrigo 1999; Domínguez-

Rodrigo and Barba 2006; Domínguez-Rodrigo et al. 2007; Parkinson, 2013).  

The idea of early access to carcasses by Oldowan hominins is further supported by 

taphonomic and zooarchaeological studies at Kanjera and Koobi Fora in Kenya and El-Kherba 

(Ain Hanech) in northeastern Algeria. Taxonomic representation and isotopic analyses indicate 

that the approximately 2 Ma site of Kanjera South, Kenya was deposited in a relatively open (C4 
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grass-dominated) context in a lake margin setting (Plummer et al., 1999; Ferraro 2007; Plummer 

et al. 2009 a, b; Ferraro et al. 2013; Parkinson, 2014).  Frequencies and distribution of stone tool 

cutmarks and carnivore tooth marks most closely resemble experimental models in which 

humans were the primary agents of carcass processing  (Ferraro, 2007; Ferraro et al., 2013, 

Parkinson, 2014). Similarly, cut, percussion, and tooth mark frequencies and locations on 

archaeofaunas from the approximately 1.5 Ma sites of FwJj14A, FwJj14B, and GaJi14 at Koobi 

Fora , Kenya suggest early access by hominins to well-fleshed carcasses. These sites are all 

located in similar paleoenvironmental contexts, near shallow water with swampy, seasonally 

flooded areas, and some evidence for more wooded or gallery forest settings. (Pobiner et al., 

2008). Finally, excavations from El-Kherba dated to 1.78 Ma, yielded an Oldowan industry 

associated with a savanna-like fauna. Bone surface modification data suggest that early hominins 

were fully processing large mammal carcasses including evisceration, disarticulating, removal of 

muscle tissue, and breaking bones of large mammals to extract marrow (Sahnouni et al., 2013).  

 The heavily fragmented nature of the Elandsfontein fossils and poor surface 

preservation, limits the ability to make statistical comparisons with published experimental data.  

Despite the fact that damage frequencies are likely deflated by these factors, hominin damage 

frequencies in Bay 0209 fall within the range reported for BK, Olduvai Gorge and approach 

damage frequencies reported for other contemporaneous Early Stone Age localities where 

hominins are thought to be the primary agents of carcass accumulation [Table 1 (Bunn & Kroll, 

1986, Blumenschine, 1995, Monahan, 1996; Domıńguez-Rodrigo & Barba, 2006; Egeland & 

Domı ́nguez-Rodrigo, 2008; Pobiner et al., 2008; Rabinovich et al., 2012; Ferraro et al., 2013)]. 

Additionally, the majority of stone tool cutmarks at Elandsfontein, including cutmarks on 

megafauna, occur on limb shafts. Dominguez-Rodrigo & Barba (2007) have demonstrated that 
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when flesh specializing carnivores have first access to meaty limb elements, limb shaft are 

typically devoid of adhering tissue and leave little for hominins to scavenge. Since hominins 

rarely leave cutmarks on shafts when scavenging from carnivores, this pattern suggests that 

hominins at Elandsfontein had early access to large packets of muscle tissue on at least some 

occasions (Bunn and Kroll, 1986; Dominguez-Rodrigo, 1997, 1999a, b, 2002; Bunn, 2001; 

Dominguez-Rodrigo and Pickering, 2003; Pickering et al., 2004b). However, it is important to 

keep in mind that attrition and epiphyseal deletion may have erased evidence for cutmarking on 

these less dense bone portions.  

The totality of evidence, including the current study, suggests that Oldowan and 

Acheulean hominins had primary access to large carcasses on various occasions and demonstrate 

repeated systematic butchery in some localities (Shipman et al., 1981; Monahan, 1996; Carlos 

Díez et al., 1999; Fernández‐ Jalvo et al., 1999; Potts et al., 1999; Pickering et al., 2004a,b; 

Egeland & Domı ́nguez-Rodrigo, 2008; Domı ́nguez-Rodrigo et al., 2009; Pante, 2010, 2013; 

Rabinovich et al., 2012). Evidence of repeated early access and complete processing of medium 

to large size carcasses, suggests that meat was an important component of the Acheulean diet and 

that hominins had a moderately high rank relative to contemporary carnivores. Hominins likely 

gained early access to meaty carcasses through hunting or aggressive scavenging and may have 

had the ability to exclude carnivores from various points on the landscape (Bunn et al., 1980; 

Potts, 1989, 1994; Monahan, 1996; Potts et al., 1999; Dominguez-Rodrigo, 2002; Dominguez-

Rodrigo et al., 2002; Saladie et al., 2014). Given the wide geographic and temporal distribution 

of the Acheulean lithic industry, we should expect to see discrepancies in the frequency and 

modes of carcass acquisition. Thus, more information is needed to assess variability in 

Acheulean hominin carnivory across time and space. 
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Suggestions for future research 

 More work is needed to further evaluate the ecological constraints on Acheulean hominin 

foraging behavior. A necessary next step is to locate and excavate large primary-context 

assemblages from the full temporal and geographic span of the Acheulean industry. Although 

Acheulean hominins appear to have had early access to large mammal carcasses on various 

occasions, continued development of well studied Acheulean faunal assemblages will be critical 

for determining the scope of this behavior. Comparisons with experimentally derived feeding 

models would help elucidate the timing of access by various bone modifying agents 

(Blumenschine, 1988, 1995; Dominguez-Rodrigo, 1997, 2002; Selvaggio 1998; Capaldo, 1998; 

Marean et al., 2000; Dominguez-Rodrigo & Barba, 2006; Pickering & Egeland, 2006) and 

ungulate mortality (age) profiles would assist in determining whether fossil assemblages were 

attritional or catastrophic (Klein, 1982a,b; Stiner, 1990; Steele, 2003; 2004; 2005; Bunn & 

Pickering, 2010a,b).  

An important question that remains unanswered is whether Oldowan and Acheulean 

hominins incorporated meat into their diet year round or whether it was consumed seasonally as 

a fallback food. This can be explored through stable isotopic analysis of enamel from developing 

teeth (Bocherens et al., 1996; Balasse and Tresset, 2002; Balasse et al., 2002) and/or cementum 

increment analysis (Lieberman, 1994; O’Brien, 1994; Pike-Tay et al., 2008; Pike-Tay & 

Cosgrove, 2002; Wall-Scheffler & Foley, 2008). Traditional techniques for cementum analysis 

have been demonstrated to work on fossils as old as those from Pleistocene deposits at Koobi 

Fora, Kenya (O’Brien, 1994).  
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There are a number ways in which the ecomorphological models presented here can be 

expanded upon. One future direction is to test functional hypotheses for other 

ecomorphologically informative skeletal elements including the femur, radius, humerus, 

phalanges, astragalus, and calcaneus. These models could also be expanded to include a broader 

array of ungulate taxa including equids and cervids, making them more broadly applicable. As 

with any study, increased sample sizes would allow for more robust results, especially for taxa 

that are underrepresented such as Tragelaphines. Given the large number of Early Stone Age 

archaeological assemblages containing Syncerus and other large bovid taxa, it would be useful to 

expand the extant samples to include larger species like Syncerus caffer and Taurotragus oryx. 

Finally, plans are underway to investigate phylogenetic influence on bovid ecomorphological 

models using PGLS and divergence-convergence analysis (Louys et al., 2013). 
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