Publications and Research

Document Type

Article

Publication Date

1-2014

Abstract

This paper continues the work of this series with two results. The first is an exponential equivalence theorem which states that every generalized least-squares regression line can be generated by an equivalent exponential regression. It follows that every generalized least-squares line has an effective normalized exponential parameter between 0 and 1 which classifies the line on the spectrum between ordinary least-squares and the extremal line for a given set of data. The second result is the presentation of fundamental formulas for the generalized least-squares slope and y-intercept.

 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.