Publications and Research

Document Type


Publication Date



We implemented Machine Learning (ML) techniques to advance the study of sperm whale (Physeter macrocephalus) bioacoustics. This entailed employing Convolutional Neural Networks (CNNs) to construct an echolocation click detector designed to classify spectrograms generated from sperm whale acoustic data according to the presence or absence of a click. The click detector achieved 99.5% accuracy in classifying 650 spectrograms. The successful application of CNNs to clicks reveals the potential of future studies to train CNN-based architectures to extract finer-scale details from cetacean spectrograms. Long short-term memory and gated recurrent unit recurrent neural networks were trained to perform classification tasks, including (1) “coda type classification” where we obtained 97.5% accuracy in categorizing 23 coda types from a Dominica dataset containing 8,719 codas and 93.6% accuracy in categorizing 43 coda types from an Eastern Tropical Pacific (ETP) dataset with 16,995 codas; (2) “vocal clan classification” where we obtained 95.3% accuracy for two clan classes from Dominica and 93.1% for four ETP clan types; and (3) “individual whale identification” where we obtained 99.4% accuracy using two Dominica sperm whales. These results demonstrate the feasibility of applying ML to sperm whale bioacoustics and establish the validity of constructing neural networks to learn meaningful representations of whale vocalizations.


This article was originally published in Scientific Reports, available at

This article is licensed under a Creative Commons Attribution 4.0 International License.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.