Publications and Research
Document Type
Article
Publication Date
3-28-2018
Abstract
The placental epigenome regulates processes that affect placental and fetal development, and could be mediating some of the reported effects of maternal choline supplementation (MCS) on placental vascular development and nutrient delivery. As an extension of work previously conducted in pregnant mice, the current study sought to explore the effects of MCS on various epigenetic markers in the placenta. RNA and DNA were extracted from placentas collected on embryonic day 15.5 from pregnant mice fed a 1X or 4X choline diet, and were subjected to genome-wide sequencing procedures or mass-spectrometry-based assays to examine placental imprinted gene expression, DNA methylation patterns, and microRNA (miRNA) abundance. MCS yielded a higher (fold change = 1.63-2.25) expression of four imprinted genes (Ampd3, Tfpi2, Gatm and Aqp1) in the female placentas and a lower (fold change = 0.46–0.62) expression of three imprinted genes (Dcn, Qpct and Tnfrsf23) in the male placentas (false discovery rate (FDR) < 0.05 for both sexes). Methylation in the promoter regions of these genes and global placental DNA methylation were also affected (p < 0.05). Additionally, a lower (fold change = 0.3; Punadjusted = 2.05 x 10; FDR = 0.13) abundance of miR-2137 and a higher (fold change = 1.25–3.92; p < 0.05) expression of its target genes were detected in the 4X choline placentas. These data demonstrate that the placental epigenome is responsive to maternal choline intake during murine pregnancy and likely mediates some of the previously described choline-induced effects on placental and fetal outcomes.
Comments
This article was originally published in Nutrients, available at DOI:10.3390/nu10040417.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) license.