Publications and Research

Document Type


Publication Date

May 1968


The lowering of external sodium raised both the constant quantity threshold, Qo, and the rheobase, Io, in both real space-clamped squid axons and the theoretical axon as computed on the basis of the standard Hodgkin-Huxley equations. In both real and theoretical axons the minimum intensity for excitability for short pulses, which occurs at about 15°C, was still present when low sodium replaced seawater. Low sodium did not affect the temperature dependence of the strength-duration relationship in the range, 5° to 25°C. The excitability of tetrodotoxin-treated real axons was found to be more temperature-dependent than that of normal real axons. Also the data on dosage-response to TTX of real axons fit the dose-response relationship of a hypothetical system in which one TTX ion binds reversibly to its receptor to produce a fraction of the inhibitory effect, the curve being identical to a simple adsorption isotherm. The Hodgkin-Huxley equations describe the broad outline of events occurring during excitation quite well.


This work was originally published in The Jouranl of General Physiology.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.