Publications and Research

Document Type


Publication Date



For the iterated Prisoner’s Dilemma there exist good strategies which solve the problem when we restrict attention to the long term average payoff. When used by both players, these assure the cooperative payoff for each of them. Neither player can benefit by moving unilaterally to any other strategy, i.e., these provide Nash equilibria. In addition, if a player uses instead an alternative which decreases the opponent’s payoff below the cooperative level, then his own payoff is decreased as well. Thus, if we limit attention to the long term payoff, these strategies effectively stabilize cooperative behavior. The existence of such strategies follows from the so-called Folk Theorem for supergames, and the proof constructs an explicit memory-one example, which has been labeled Grim. Here we describe all the memory-one good strategies for the non-symmetric version of the Prisoner’s Dilemma. This is the natural object of study when the payoffs are in units of the separate players’ utilities. We discuss the special advantages and problems associated with some specific good strategies.


This article was originally published in Games, available at DOI: 10.3390/g6030175.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (CC BY 4.0).



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.