Spring 2019

CSCI 381/780 Data Analytics

Kumar Ramansenthil
CUNY Queens College, Kumar.Ramansenthil@qc.cuny.edu

NYC Tech-in-Residence Corps
rdomanski@sbs.nyc.gov

How does access to this work benefit you? Let us know!
Follow this and additional works at: https://academicworks.cuny.edu/qc_oers
Part of the Computer Sciences Commons

Recommended Citation
https://academicworks.cuny.edu/qc_oers/2

This Syllabus is brought to you for free and open access by the Queens College at CUNY Academic Works. It has been accepted for inclusion in Open Educational Resources by an authorized administrator of CUNY Academic Works. For more information, please contact AcademicWorks@cuny.edu.
LEARNING OBJECTIVES:

At the end of this course, students will be able to:
1. Use technical skills in SQL databases to pull data from various sources and perform analysis
2. Use analytical thinking and tools such as Spreadsheets, Python and Tableau.
3. Draw insights about the data and make recommendations
4. Visually present analysis and data driven recommendations using advanced visualization

DESCRIPTION:

Every industry currently uses data driven analytical solution to make business decisions such as whether to launch a product, who to market it to etc. Data Analytics is omnipresent from the moment an idea is conceived and till the product is launched. This course is designed to prepare students for analytical careers through a combination of relevant fundamental knowledge and technical training in industry standard tools and hands on experience in data driven analytics on real-life data. Student will explore different type of data like transactional and behavioral data, data cleaning, predictive modeling, introduction to API and sentiment analysis. The course covers state of the art tools such as Tableau, Python and Hive which have become essential for careers in Data Analytics.

The prerequisite for this course are CSCI 313, Math 241. Students are expected to complete various assignments using Python, SQL and Tableau

TEXTBOOK:

Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking, 1st Edition, by Foster Provost, Tom Fawcett
ISBN-10: 1449361323

METHOD OF ASSESSMENT:

- 2 midterms and Final exams ---60%
- Homework ---10%
- 2 Projects ---20%
- Class Participation ---10%
QUizzes:

During the semester, students may be given quizzes from the topics covered during the previous lectures. This is done to encourage students to cultivate the habit of preparing for the classes weekly, and hence be ready to learn new concepts the following weeks. This also helps them to prepare for the examination. Generally, a quiz will be given at the beginning of a class and students who are absent or late for the class will not be allowed to take that quiz at a later time. **Quizzes will be counted toward class participation grades**

RESPONSIBILITIES:

Students are expected to attend the class lectures and take the exams at the scheduled times. Assigned readings, exercises and projects must be completed on time.

ACADEMIC INTEGRITY

Cheating on exams or copying projects will not be tolerated. Please review the College's policies on Plagiarism and Cheating. Moreover, if you copy projects or assignments, you will not be able to answer questions on the exams.
PROPOSED SCHEDULE OF LECTURES:

<table>
<thead>
<tr>
<th>Week</th>
<th>TOPICS</th>
<th>Required Reading</th>
<th>Assessment</th>
</tr>
</thead>
</table>
| 1 | Introduction to the course
Introduction to Analytical Thinking
Activity: Hands on dealing with data with Python and SQL | Chapter 1 and 2 | Written Homework
(Short answer type question)
Lab (Python, SQL) |
| 2 | **Introduction to Predictive Modeling**
Supervised Segmentation
Visualizing Segmentation | Chapter 3 | Written Homework
(Short answer type question) |
| 3 | **Fitting Model to Data**
Activity: Pre-Project Assignment | Chapter 4 | Project 1 (Excel and Python) |
| 4 | Data overfitting and its avoidance
Activity: Project 1 Presentation | Chapter 5 | Homework
(Short Conceptual Question),
Project, Presentation |
| | **MID TERM** | | |
| 5 | **Model Performance Analytics**
Activity: Project 1 Final Presentation | Chapter 7 | Homework
(Short Conceptual Question),
Project, Presentation |
| 6 | **Visualizing Model Performance**
Activity: Pre-Project Assignment | Chapter 8 | Homework
(Short Conceptual Question) |
| 7 | **Prediction via evidence combination**
Representing and Mining text
Introduction to API
Activity: Project 2 Presentation | Chapter 9,10 | Homework
(Short Conceptual Question) |
| | **MID TERM** | | |
| 8 | **Similarity, Distance, Nearest, Neighbor, Clustering**
Case Study: TBD
Activity: Project 2 Final Presentation | Chapter 5 | HW Report |
| 10 | **Other Data Science and Technique Visualization**
Activity: Tableau Introduction and Setup | Chapter 12 | Lab: Tableau. Presentation |
| 11 | **Big Data: Towards Analytical Engineering**
Introduction to Hive
Activity: Hands on Hive coding | Chapter 11 | Lab |
| 12 | **Data Science and Business Strategy Conclusion** | Chapter 13 | Final Project Presentation |