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Abstract 

Value at Risk (VaR) is one of the most popular tools used to estimate the 

exposure to market risks, and it measures the worst expected loss at a given 

confidence level. Monte Carlo simulation is one of the best methods to calculate VaR 

and it is widely used in financial industry. Unfortunately, it is time consuming especially 

when the simulated samples and the number of assets in a portfolio are very large. The 

graphics processing unit (GPU) is a specialized multiprocessor which has highly parallel 

structure supporting more effective than general-purpose CPUs for a range of complex 

algorithms. In this paper, we will investigate the acceleration of Monte Carlo simulation 

by using GPU. Firstly, we will introduce the VaR conception and three basic method to 

estimate VaR. Then we will describe GPU computation and performance using matrix 

multiplication. At last, we will focus on the parallel algorithm of estimation VaR using 

Monte Carlo method, and implementation of VaR calculation using CUDA on GPU. 

Extensive experiments will be performed to show that GPU can achieve a much faster 

speed than Matlab, which demonstrates clear the advantage to use GPU in VaR 

estimation. 
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1. Introduction 

In the financial world nowadays, Value-at-Risk has become one of the most important 

and the most used measures of risk. Investors like to focus on the promise of high returns, but 

they should also ask how much risk they must assume in exchange for these returns. Risk is 

about the odds of losing money, and VaR is based on that common-sense fact. By assuming 

investors care about the odds of a really big loss, VaR answers the question, "What is the most I 

can - with a 95% or 99% level of confidence - expect to lose in dollars over the next month?”, or 

“What is the maximum percentage I can - with 95% or 99% confidence - expect to lose over the 

next day? So we can see that the "VAR question" has three elements: a relatively high level of 

confidence (typically either 95% or 99%), a time period (a day, a month or a year) and an 

estimate of investment loss (expressed either in dollar or percentage terms). Jorion (1997) 

defines Value at Risk as: “the expected maximum loss (or worst loss) over a target horizon 

within a given confidence interval.”[1] 

The first using VaR ideas can date to the late 1970s and early 1980s, the Chicago 

Mercantile Exchange used “Standard Portfolio Analysis” (SPAN) system and the Chicago Board 

Options Exchange (CBOE) used “Theoretical Intermarket Margining System” (TIMS) to do 

margin calculations. [2] JP Morgan’s RiskMetrics system in 1995 increased the profile of Value 

at Risk substantially, and as the importance of Value at Risk has increased, so has the volume 

of academic literature developing, supporting or criticizing this risk measure. [3] 

Theoretical research that relied on the Value-at-Risk as a risk measurement was 

initiated by Jorion (1997)[1], Dowd (1998)[4], and Saunders (1999)[5], who applied the Value-at-

Risk approach based on risk management emerging as the industry standard by choice or by 

regulation. 

The existing VaR related academic literature focuses mainly on measuring VaR from 

different estimation methods to various calculation models. Cabedo and Moya (2003)[20], 

Estimating oil price Value at Risk using the historical simulation, and develop the variance-

covariance method based on ARCH models forecasts. Duffie and Pan (1997)[6], Cardenas 

(1999) [7], Rouvinez (1997) [8], Jamshidian and Zhu (1997) [9] do research to improve Monte 

Carlo method used to estimate VaR.  Embrechts, Kluppelberg, and Mikosch (2003)[11], Lucas 

and Klaassen (1998)[12] focus on the tail behavior of the returns. Bollerslev, Engle, and Nelson 

(1994)[13] discuss the GARCH-type models. Andrey Rogachev(2002) [14] introduce dynamic 
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Value-at-Risk. Dean Fantazzini(2009) [15]use dynamic Copula theory to model VaR, copula 

functions allow to construct flexible multivariate distribution with different margins and different 

dependence structure, without the constraints of the traditional joint normal distribution.  

All these researches mentioned above are based on improvement the algorithm or 

models. In reality, however, computational constraints are one of important factors in explaining 

the simplifications which have been into systems such as SPAN or TIMS. Every time a trade 

takes place, the positions of two economic agents are updated, and two VaR computations are 

required. The most active futures exchanges in the world today experience roughly 1,000,000 

trades in around 20,000 seconds. This requires 100 VaR computations per second, on average. 

Given the unevenness of trading intensity in the day, this easily maps to a peak requirement of 

500 VaR computations per second, or a VaR computation in two milliseconds. [2] So how to 

improve the performance of VaR estimation becomes important practical issue in current 

financial industry. 

With the development of new hardware and improvement of processor speed, parallel 

computing has been broadly used in the finance area. One of the representations is the Graphic 

Processor Unit (GPU). GPUs are originally designed to very efficiently at manipulating computer 

graphics, and their highly parallel structure makes them more effective than general-purpose 

CPUs for a range of complex algorithms. The term of GPU was defined proposed  and 

popularized by NVIDIA in 1999, who marketed the GeForce 256 as "the world's first 'GPU', or 

Graphics Processing Unit, a single-chip processor with integrated transform, lighting, triangle 

setup/clipping, and rendering engines that is capable of processing a minimum of 10 million 

polygons per second."  

Thanks to GPU’s highly parallel structure that makes them more effective than general-

purpose CPUs for a range of complex algorithms. Nowadays, GPU is widely used in financial 

computing, such as VaR estimating, option pricing, etc. Lots of general methods used in finance 

can be greatly accelerate by GPU, such as Finite Differences, Random number generation, 

Monte Carlo test case, dynamic programming, etc. Michael Feldman, an HPCwire editor, said 

that one of the new kids on Wall Street is GPU computing, a technology that is making inroads 

across nearly every type of HPC application. [17]Greg N. Gregoriou described GPU computing 

of VaR in his book that GPU approach is ten or even hundreds of times cheaper than other tow 

supercomputing approaches (mainframs and grid computing).[18] And, Matthew Dixon(2009) 

[19]compares NVIDIA GeForce GTX280 graphics processing unit (GPU) and a quadcore Intel 
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Core2 Q9300 central processing unit (CPU) to simulate VaR based delta-gamma method. GPU 

is hundreds times faster than the CPU. All of these researches show GPU have great potential 

to do complex computation in financial industry with a much faster speed than general CPU and 

a much lower cost than Supercomputers.  

In this paper, we will investigate how to use GPU to calculate VaR based on Monte 

Carlo method.  

The remaning part of this paper is organized as follows: section 2 will describe and 

compare three basic methods to calculate VaR: historical, Monte-Carlo and variance-covariance 

methods and point out the advantage and disadvantage of using these methods. Section 3 will 

introduce GPU and CUDA computing, and then compare the performance using C and Matlab 

in CPU, and CUDA in GPU to do matrix multiplication. Section 4 will describe the parallel 

algorithm to calculate VaR using Monte Carlo simulation.  Section 5 will show the experiments 

and performance results. At last, secection 6 will conclude the whole paper. 
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2. Value at Risk Methodologies 

All the methods used to estimate VaR can be separately in three categories. We simply 

explain these three methods as following:  

2.1 Historical Method 

Historical simulations represent the simplest way of estimating the Value at Risk for 

many portfolios. In this approach, the VaR for a portfolio is estimated by creating a hypothetical 

time series of returns on that portfolio, obtained by running the portfolio through actual historical 

data, putting returns from worst to best, and computing the changes that would have occurred in 

each period. Historical method assumes that history will repeat itself, from a risk perspective. 

Cabedo and Moya provide a simple example of the application of historical simulation to 

measure the Value at Risk in oil prices. [20] Using historical data from 1992 to 1998, they 

obtained the daily prices in Brent Crude Oil and then calculate the VaR.  Another example from 

this website: http://www.investopedia.com/articles/04/092904.asp, explains the historical 

method very clearly, see Figure 1.  

 

Figure 1: Historical method 
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The QQQ started trading in Mar 1999. Historical method will calculate each daily return 

about 1400 points, and put them in a histogram that compares the frequency of return "buckets". 

The returns are ordered from left to right, then we can get that with 95% confidence the worst 

daily loss will not exceed 4%. If we invest $100, we are 95% confident that our worst daily loss 

will not exceed $4. 

Historical method is the simplest and fastest method to calculate VaR, but the underlying 

assumptions, that the near future will be like the recent past and that we can reasonably used 

the data from the past to estimate risks over the near future, give rise to its weaknesses.  

While all three approaches estimating VaR use historical data, historical simulations are 

much more reliant on historical data than the other two as the Value at Risk is computed entirely 

from historical price changes. There is little room to overlay distributional assumptions (as we do 

with the Variance-covariance approach) or to bring in subjective information (as we can with 

Monte Carlo simulations). In Figure 2 (a), it shows an example of GE stock price change in the 

period from 09/30/1992 to 09/30/2010. From 1992 to 2003, stock price increased gently, but in 

the period 2003-2005, 2005-2009 and 2009-2010, stock price changed periodically and 

increased dramatically. And in Figure 2 (b), the Profit-Loss-Rate in the period 1993-1995 and 

2000-2006 changed intensively than period 1996-1998 and 2006-2010. We compute VaR, using 

historical data, where all data points are weighted equally. In other words, the price changes 

from trading days in 1994 or 2001 affect the VaR in exactly the same proportion as price 

changes from trading days in 1997 or 2009. But the trend of changing in volatility is different in 

different historical time period, so, based upon 1993-1996 and 2000-2006 data, we would have 

been exposed to much larger losses than expected over the 1996-1998 and 2006-2010 period. 

We will under estimate or over estimate the VaR. 
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(a) GE stock price change from 09/30/1992 to 09/30/2010 

 

(b) GE profit-loss rate change from 09/30/1992 to 09/30/2010 

Figure 2: Historical method disadvantage analysis 

 

2.2 Variance-Covariance method 

Since Value at Risk measures the probability that the value of an asset or portfolio will 
drop below a specified value in a particular time period, it should be relatively simple to compute 
if we can derive a probability distribution of potential values. So the idea behind the variance-
covariance is similar to the ideas behind the historical method - except that we use the familiar 
curve instead of actual data. The advantage of the normal curve is that we automatically know 



  2. Value at Risk Methodologies  7 

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU) 

where the worst 5% and 1% lie on the curve. They are a function of our desired confidence and 
the standard deviation ( ), see  

Figure 3 (b).  

Use the example from this website: http://www.investopedia.com/articles/04/092904.asp, 
to explain variance-covariance method. The curve above is based on the actual daily standard 
deviation of the QQQ, which is 2.64%. So we can very easily get VaR, which is 4.36% when 
confidence level is 95%, and which is 6.16% when confidence level is 99% ( 

Figure 3 (a) and  

Figure 3 (c)). 

 

(a) 

     

(b)                                                                                (c) 

 

Figure 3: Variance-covariance method 

That is basically what we do in the variance-covariance method, an approach that has 

the benefit of simplicity but is limited by the difficulties associated with deriving probability 

distributions. The most convenient assumption both from a computational standpoint and in 

terms of estimating probabilities is normality and it should come as no surprise that many VaR 

measures are based upon some variant of that assumption. If, for instance, we assume that 

each market risk factor has normally distributed returns, we ensure that that the returns on any 
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portfolio that is exposed to multiple market risk factors will also have a normal distribution. But if 

conditional returns are not normally distributed, the computed VaR will understate the true VaR. 

Moreover, as showed in Figure 4, the mean and covariance across assets change over time, 

that means standard deviations can be changed over time. 

 

Figure 4: Variance-covariance method disadvantage analysis 

 

2.3 Monte Carlo Simulation 

A Monte Carlo simulation refers to any method that randomly generates trials, but by 

itself does not tell us anything about the underlying methodology. As Variance-covariance 

method, Monte Carlo method has first to calculate mean and covariance. Rather than calculate 

VaR using , it simulates route, specify probability distributions using random number. 

Use the example from this website: http://www.investopedia.com/articles/04/092904.asp, 

the result shows in Figure 5. Run 100 hypothetical trials of monthly returns for the QQQ. Among 

them, two outcomes were between -15% and -20%; and three were between -20% and 25%. 

That means the worst five outcomes (that is, the worst 5%) were less than -15%. The Monte 

Carlo simulation therefore leads to the following VAR-type conclusion: with 95% confidence, we 

do not expect to lose more than 15% during any given month (Figure 5). 
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Figure 5: Monte Carlo method 

The strengths of Monte Carlo simulations can be seen when compared to the other two 

approaches for computing Value at Risk. Monte Carlo is by far the most flexible, since it allows 

considering arbitrarily complex models and/or portfolio instruments. Unlike the variance-

covariance approach, we do not have to make unrealistic assumptions about normality in 

returns. In contrast to the historical simulation approach, we begin with historical data but are 

free to bring in both subjective judgments and other information to improve forecasted 

probability distributions. All of these changes make Monte Carlo a better method to calculate 

VaR in reality. However, Monte Carlo method is extremely computationally intensive because it 

is based on the iteration of a particular, generally simple, procedure. [18]When the number of 

portfolio assets or the samples of simulation is large, Monte Carlo method is very slow. This 

limitation triggers us to investigate more fast way to do Monte Carlo calculation. Next, we will 

introduce GPU computing, which is a good way to conduct Monte Carlo calculation to estimate 

the VaR. 
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3. Graphics Processing Unit (GPU) Computing 

3.1 GPU and CUDA 

Driven by the insatiable market demand for real-time, high-definition 3D graphics, the 

programmable Graphic Processor Unit or GPU has evolved into a highly parallel, multithreaded, 

manycore processor with tremendous computational horsepower and very high memory 

bandwidth. The reason behind the discrepancy in floating-point capability between the CPU and 

the GPU is that the GPU is specialized for compute-intensive, highly parallel computation – 

exactly what graphics rendering is about – and therefore designed such that more transistors 

are devoted to data processing rather than data caching and flow control. The GPU has evolved 

over the years to have teraflops of floating point performance. NVIDIA revolutionized the GPU 

and accelerated computing world in 2006-2007 by introducing its new massively parallel 

architecture called “CUDA”.  

CUDA is a general purpose parallel computing architecture – with a new parallel 

programming model and instruction set architecture – that leverages the parallel compute 

engine in NVIDIA GPUs to solve many complex computational problems in a more efficient way 

than on a CPU. The CUDA architecture consists of 100s of processor cores that operate 

together to crunch through the data set in the application. CUDA comes with a software 

environment that allows developers to use C as a high-level programming language. Other 

languages or application programming interfaces are supported, such as CUDA FORTRAN, 

OpenCL, and Direct Compute. [16] 

CUDA programming model is showed in the following Figure 6. CUDA is a serial 

program with parallel kernels using C code. When a program is running, general C code 

executes in the host CPU, and parallel kernel C code executes in many device threads (GPU 

threads) across multiple processing elements. One kernel is executed at a time on the device, 

and it has many threads execute parallel.  
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Figure 6: CUDA Program Model 

 

The structure of a kernel is showed in Figure 7. A kernel also called a grid in the device 

that includes several blocks, and each block includes several threads. So, the number of total 

threads is equal to the number of threads per block times the number of blocks.  Thread blocks 

are required to execute independently: It must be possible to execute them in any order, in 

parallel. This independence requirement allows thread blocks to be scheduled in any order 

across any number of cores, enabling programmers to write scalable code. So each thread 

executes the same code but processes different data based on its threadID. 

CUDA threads may access data from multiple memory spaces during their execution as 

illustrated by Figure 8. Each thread has private local memory. Each thread block has shared 

memory visible to all threads of the block and with the same lifetime as the block. All threads 

have access to the same global memory. The speed of a thread access these three different 

memories are increasing.  
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Figure 7: Kernel Structure 

 

Figure 8: Memory Hierarchy 
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3.2 Matlab 

MATLAB is a high-level language and interactive environment that enables you to 

perform computationally intensive tasks faster than with traditional programming languages 

such as C, C++, and FORTRAN. MATLAB allows for easy numerical calculation and 

visualization of the results without the need for advanced and time consuming programming. 

The disadvantage is that it can be slow, especially when bad programming practices are applied. 

 

3.3 Performance Comparison of Matrix Multiplication using C and Matlab in 

CPU, and CUDA in GPU 

In order to show the advantage of CUDA in GPU, we use matrix multiplication to test the 

performance of C programming and Matlab programming in CPU and C programming in CUDA 

in GPU. We set up a simple test scenario, two matrixes multiplication, with each of matrix is 

a n n dimension matrix. The result shows in the following Figure 9. We can find it clearly shows 

that the trend of time consumption using C program is exponentially increased with the matrix 

size increasing.  On the other hand, the speed of CUDA program is thousands of times faster 

than C program when matrix size is large. For example, C program in CPU takes 9 minutes 

when the matrix size is 2048 2048 , while CUDA in GPU takes 0.3 seconds. Matrix 

multiplication is the best example to show the advantage using of CUDA than using C program 

in CPU. The result also shows the property of GPU. The number of thread blocks in a grid is 

typically dictated by the size of the data being processed rather than by the number of 

processor in the system. When we use GPU sufficiently, which means the parallel threads used 

are almost maximum threads the device allowed, the performance of GPU is better. And 

reading and writing data with global memory is much more time consuming in GPU than reading 

and writing data in CPU. That’s why CUDA programming is slower then C programming in CPU 

when matrix size is small. When matrix size is16 16 , the running time of C programming in 

CPU is almost 0, but the running time of CUDA GPU is 1.7 milliseconds. 
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Figure 9: Performance of Matrix Multiplication 

At the same time, we can also find that, Matlab is also very fast to do simple matrix 

computing. The Matlab programming using original format (double) is a little slower than CUDA. 

But as we known, CUDA just support float point computation. When we use single value to do 

matrix multiplication, Matlab is faster than CUDA (see Figure 9). So this example also shows 

that Matlab is very efficient in the simple numerical calculation. 
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4. Monte Carlo Simulation to Estimate Value at Risk  

In this section, we will describe the detail of VaR estimation using Monte Carlo and how 

to implement it in CUDA. The algorithm of Monte Carlo Simulation to estimate VaR is showed in 

the following Table 1. The input is portfolio data, which includes historical data and the close 

price of the previous day tV on each asset in the portfolio. Based on the historical data, we can 

get profit-loss rate, which is used for further simulation. The second step is to calculate profit-

loss rate in 1t  time using the multivariate normal distribution, and where 1t  profit-loss rate 

has ms samples. Based on tV  and 1t  profit-loss rate, we will then calculate 1t  portfolio 

price 1tV  . Finally, we will sort 1tV  and output the VaR of the confidence level. 

Table 1: Algorithm for VaR estimation using Monte Carlo 

Algorithm of VaR estimation using Monte Carlo 

Input: Portfolio Nw  
Output: VaR of portfolio w . 

Procedure: 

1. Let tV be the value of the portfolio at the close of the previous day; let ,
t
m nr be the historical 

profit-loss rate. 

2. Simulate samplesM  draws 1
,

t
ms nr  , from the multivariate normal distribution of returns on the 

underlying. 

3. At each draw 1
,

t
ms nr  , apply theoretical valuation formulas to obtain 1tV  , the value of the 

portfolio w  if prices changed by , 1ms tr  . 

4. Sort the samplesM values for 1tV  , and read of the percentile value, which is the desired VaR. 

 

 In the following part, we will present the detail implementation to use parallel computing 

to do Mente Carlo VaR estimation. We assume there are n stocks; every stock has m business 

day historical data; set the stock vector 1 2,, , nX X X , each vector is m dimension. 
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4.1 Calculate Profit-Loss-Rate  

According to the algorithm listed above, the first step is to get the historical data 

for n stocks, the opening and the close stock price of a business day. And then calculate the 

profit-loss rate ( plRate ). 

                                                      ( ) /plRate close open open                                              (4.1) 

 The parallel calculation is implemented as following Figure 10, there are 

total m n threads in parallel, the block i  and the thread j  

calculates , , , ,( ) /     1, , ; 1, ,i j i j i j i jplRate close open open i n j m     . 

 

Figure 10: Profit-Loss-Rate parallel algorithm 

 

4.2 Multivariate Normal Distribution 

After obtaining the profit-loss rate for m business day, the next is to assume nX stocks fit to 

multivariate normal distribution, and generate ms samples 1
,

t
ms nr  . 

The multivariate normal distribution is a generalization of the one-dimensional (univariate) 

normal distribution to higher dimensions. A random vector is said to be multivariate normally 

distributed if every linear combination of its components has a univariate normal distribution. 

If we have a p random vector X that is distributed according to a multivariate normal 

distribution with population mean vector  and population variance-covariance matrix , then 

this random vector, X , will have the joint density function as shown in the expression below: 
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/2 1/2 1
2

1 1
( ) ( ) | | exp{ ( ) ' ( )}

2 2
px X X  


                                             (4.2) 

 And the distribution is ~ ( , )X N    . 

A widely used method for drawing a vector X  from the n -dimensional multivariate normal 

distribution with mean vector   and covariance matrix   (required to be symmetric and 

positive-definite) works as follows: 

   (1) Find any matrix A  such that TAA   . Often this is a Cholesky decomposition, but a 

square root of   would also suffice; here we use Singular Value Decomposition instead. 

   (2) Let 1( , )nZ Z Z   be a vector whose components are n independent standard normal 

variates (which can be generated by using the Box-Muller transform). 

   (3) Let *mvd u A Z  . This has the desired distribution due to the affine transformation 

property. 

According to this theory, generate a multivariate normal distribution matrix, which has 

ms rows, can be achieved in the following steps. 

 

4.2.1 Mean ( ) 

The mean is the arithmetic average of a set of values. 

According to Eq. (4.3), the easiest way is to set n threads. But it wastes lots of resource, 

which not sufficiently use all the blocks and threads. So I set n blocks, and every block 

has / 32 1m  threads, each threads calculate , 1, 31,i j i j i jpl pl pl    . (Figure 11) 

1

1 m

i ij
j

X
m




       1, 2,i n                                                     (4.3) 
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Figure 11: Mean parallel algorithm 

 

4.2.2 Covariance( ) 

Covariance is a measure of how much two variables change together as defined in 

Eq.(4.4).  

1

1
cov( , ) ( )( )     , 1, 2,

n

i j i i j j
i

X X X u X u i j n
n 

                                    (4.4) 

Using the same idea as mean to do parallel computing of covariance, there 

are n n blocks, and every block has / 32 1m  threads, each threads calculate 

, , 1, 1, 31, 31,( )( ) ( )( ) ( )( )t i i t j j t i i t j j t i i t j jpl pl pl pl pl pl                 . (Figure 12) 

 

Figure 12: Covariance parallel algorithm 
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4.2.3 Singular Value Decomposition (Two-sided Jacobi Scheme[21]) 

In order to get a matrix A , where TAA   , the easiest way is Cholesky decomposition, 

but, unfortunately, the numbers can become negative because of round-off errors, in which case 

the square-root algorithm cannot continue. So in this situation, using singular value 

decomposition is a good choice. 

We consider the standard eigenvalue problem 

Bx x                                                                             (4.5) 

where B is a real *n n -dense symmetric matrix, which is covariance in this project. 

One of the best known methods for determining all the eigenpairs of Eq. (4.6) was developed by 

the 19th century mathematician, Jacobi. We recall that Jacobi’s sequential method reduces the 

matrix B to the diagonal form by an infinite sequence of plane rotations 

1 ,      1,2,T
k k k kB V B V k                                                          (4.6) 

1 0

cos 0 0 sin

0 1 0 0

0 0 1 0

sin 0 0 cos

0 1

V

 

 

 
 
 
 
 
 
 

  
 
 
 
 
 
 
  





    






                                         (4.7) 

 

where 1B B , and ( , , )k
k k ijV V i j  is a rotation of the ( , )i j plane  where cosk k k

ii jj k ijv v c   
 

and sink k k
ij ji k ijv v s     . The angle 

k
ij is determined so that

1 1 0k k
ij jib b   , 

or
2

tan 2
k
ijk

ij k k
ii jj

b

b b
 


, where

1

4
k
ij  . 
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For numerical stability, we determine the plane rotation by 
2

1

1
k

k

c
t




and k k ks c t ，

where cot 2 k
k ija   and

2

sign

1
k

k

k k

a
t

a a


 
. Each 1kB  remains symmetric and differs from kB only 

in rows and columns i and j , where the modified elements are given by 

1k k k
ii ii k ijb b t b    

1k k k
jj jj k ijb b t b    

1     ,k k k
ir k ir k jrb c b s b r i j     

1     ,k k k
jr k ir k jrb s b c b r i j      

1 1 0k k
ij jib b    

So, matrix B can be decomposed into
1/2 1/2( )( )T TB V V V V    , where  diagonal 

matrix, 1n kV V V B    , 1n kV V V V E   , and E is unit matrix. We can 

get
1/2A V and

TAA   .  

Multiplicative congruential Jacobi rotation is matrix multiplication. So we can do parallel 

computing as matrix multiplication. 

 

4.2.4 Uniform Distribution (u ) 

Multiplicative congruential algorithm is the basis for many of the random number 

generators in use today. It involves three integer parameters, a , c , and m , and an initial value, 

0x , called the seed. A sequence of integers is defined by 

 1 *  mod  mk kx a x c                                                              (4.8) 

Some of the linear or multiplicative generators which have been suggested are the 

following Table 2: 
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Table 2: Some Suggested Linear and Multiplicative Random Number Generators [22] 

m a c  

231 - 1 75 = 16807 0 Lewis, Goodman, Miller (1969)IBM 

231 - 1 6303600016 0 Fishman (Simscript II) 

231 - 1 742938285 0 Fishman and Moore 

231 65539 0 RANDU 

232 69069 1 Super-Duper (Marsaglia) 

232 3934873077 0 Fishman and Moore 

232 3141592653 1 DERIVE 

232 663608941 0 Ahrens (C-RAND ) 

232 134775813 1 Turbo-Pascal, Version 7 (period= 232) 

235 513 0 APPLE 

1012 - 11 427419669081 0 MAPLE 

259 1313 0 NAG 

261 - 1 220 – 219 0 Wu (1997) 

 

In the 1960s, the Scientific Subroutine Package (SSP) on IBM mainframe computers 

included a random number generator named RANDU. It has parameters a = 65539, c = 0, and 

m = 231. After test all the method list in the table, RANDU is one of the best methods to generate 

uniform random number. So in this project, I use RANDU to generate pseudo random number. 

The parallel computing algorithm shows in Figure 13 . There are /1000 1ms  blocks and every 

block has n threads, and each thread generate random number separately. 

 

Figure 13: Uniform Distribution parallel algorithm 
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4.2.5 Box-Muller 

A Box–Muller transform (by George Edward Pelham Box and Mervin Edgar Muller 

1958[23]) is a method of generating pairs of independent standard normally distributed (zero 

expectation, unit variance) random numbers, given a source of uniformly distributed random 

numbers. 

Suppose 1U and 2U are independent random variables that are uniformly distributed in 

the interval (0, 1]. Let 

0 1 2*cos 2 ln cos(2 )Z R U U                                                                           (4.9) 

and 

1 1 2*sin 2 ln sin(2 )Z R U U                                                                             (2.8) 

Then 0Z  and 1Z  are independent random variables with a normal distribution of standard 

deviation 1. The parallel computing algorithm shows in Figure 14. There are ms blocks and 

every block has / 2n threads. We don’t use n threads in this algorithm, because reading data 

from memory is time consuming. 

 

Figure 14: Box–Muller parallel algorithm 
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4.2.6 Matrix Multiplication( *mvd u A Z  ) 

 

Figure 15: Matrixes Multiplication parallel algorithm 

As illustrated in Figure 15, Csub is equal to the product of two rectangular matrices: the 

sub-matrix of A of dimension (wA, block_size) that has the same line indices as Csub, and the 

sub-matrix of B of dimension (block_size, wA) that has the same column indices as Csub. In 

order to fit into the device’s resources, these two rectangular matrices are divided into as many 

square matrices of dimension block_size as necessary and Csub is computed as the sum of the 

products of these square matrices. [16] 

In this project, mvd u Z A   , Z is ms n , A is n n ,  is 1 n .  

Thread Number = BLOCK_SIZE * BLOCK_SIZE and Block Number = ms / Block_SIZE 

The value of mvd is
1

,
t

ms nr 

, we mentioned in the algorithm. 

 

4.3 Calculate Portfolio Value  

,
1

(1 )       1, , ;    1, ,
n

i i j j j
j

portofolio mvd lastprice shares i ms j n


                  

portofolio is ms n , mvd is ms n , lastprice is1 n , shares is 1 n . 
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Because this is a matrix multiply two vectors, the fastest and easiest way to do parallel is 

to set ms threads, each of which calculate ,
1

(1 )
n

i i j j j
j

portofolio mvd lastprice shares


    (see 

Figure 16). 

 

Figure 16: Calculate portfolio parallel algorithm 

 

4.4 Merge sort 

In computer science, merge sort is a sorting algorithm for rearranging lists into a 

specified order. It can be seen as a good example of the divide and conquer algorithmic 

paradigm.  

Conceptually, merge sort works as follows steps, and a simple example is showed in 

Figure 17: 

 Divide the unsorted list into two sublists of about half the size. 

 Sort each of the two sublists. 

 Merge the two sorted sublists back into one sorted list. 

 

Figure 17: Merge Sort algorithm example 
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If the number of sorting elements is power of 2, merge sort is the fastest algorithm in all 

sorting algorithms. The time complexity of parallel computing is 

( 2(1 2 lg( )) (lg( ) )O n O n    ). For example, when 8n  , the parallel loop steps are 6, while 

odd-even needs parallel loop step are 8 (Figure 18). And when 64n  , the parallel loop steps 

for merge sort are 21. 

So in this project, we use merger sort to do sorting parallel computing. 

 

       

(a) Merge Sort                                                                 (b) Odd-Even Sort 

Figure 18: Parallel algorithm with 8n   
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5. Experiments 

This project is to test the performance of Monte Carlo simulation using GPU and CPU. 

We don’t use very complex finance model; and we assume that all the assets in the portfolio are 

stocks, no future, option, and any other derivatives. And this model is used to estimate the 

Value at Risk in a day. 

The computer we used to do simulation has the following properties. CPU processor is 

Intel Xeon, E5410 @2.33GHz (2 processors), installed memory (RAM0 is 8.00 GB (3.25 GB 

usable), system type is 32-bit operating system. GPU is NVIDIA Quadro FX 3700, and its main 

performance shows in Table 3. NVIDIA Quadro FX 3700 has 128 parallel processor cores, so it 

can run 128 blocks in parallel. And the maximum number of threads per block is 512, so the 

maximum number of threads in a grid is 65536. 

Table 3 :NVIDIA Quadro FX 3700 Performance 

Mobile Platform 

Generation 

CUDA Parallel 

Processor 

Cores 

Memory 

Size 

Memory 

Type 

Memory 

Interface 

Memory 

Bandwidth 

Centrino 2 128 1 GB GDDR3 256-bit 51.2 GB 

 

We use CUDA and Matlab to build the Monte Carlo Model separately. The reason why 

we not use C program is that: first, we can very easily get current and historical stock price with 

Matlab package function. Using following codes in Matlab, we can get the last day close price of 

a stock, and the history open price and close price in a time period. The following Matlab codes 

use ‘fetch’ to get ‘GE’ stock information from Yahoo Finance. Open and Close historical data of 

‘GE’ are from 06/01/2008 to 06/30/2010. 

y = yahoo; 

last = fetch(y, 'GE','Last'); 

open = fetch(y, 'GE', 'Open', '06/01/2008', '06/30/2010'); 

close = fetch(y, 'GE', 'close', '06/01/2008', '06/30/2010'); 

 

Second reason is that we assumed the simplest condition, so Matlab program is very 

easy, and if we can get the result that CUDA is faster than Matlab in this case, it much faster 
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than C program absolutely, according to the conclusion we get from the matrix multiplication 

example.  

Since loading data using Matlab is very slow when the data is very large, so we saved all 

the data in EXCEL, and the program read from EXCEL when computing. 

We conduct two different sets of experiment to do Monte Carlo Simulation. In the first 

experiment, we use 16n  stocks, and in the second experiment, we use 192n  stocks. All the 

history data of assets are from 06/01/2008 to 06/30/2010. The open matrix is the open price of 

the assets in the business day from 06/01/2008 to 06/30/2010, which is 525 n matrix; and the 

close matrix is the open price of the assets in the business day from 06/01/2008 to 06/30/2010, 

which is also525 n matrix. The lastprice matrix is the previous business day price of the assets, 

assuming current day is 10/30/2010, lastprice is also 1 n matrix. The shares matrix is the 

shares of every asset, which is also1 n matrix. And we assume the confidence level is 95%. So 

the output is the maximum loss in the 95% confidence level on current day 10/30/2010. 

Result and Discussion 

First we discuss the result of Monte Carlo Simulation and Historical Method. Figure 19 (a) 

is the frequency of Monte Carlo simulated profit-loss rate of the portfolio. In the 99% confidence 

level in a day, the loss rate is 4.5%, and in the 95% confidence level, the loss rate is between 

3.0% and 3.5%. Figure 19 (b) is the frequency of historical method profit-loss rate of the 

portfolio. In the 99% confidence level in a day, the loss rate is 7%, and in the 95% confidence 

level, the loss rate is 3.0%.  
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(a) 

 

(b) 

Figure 19: Frequency Distribution of Monte Carlo Simulation and Historical Method 

Then we discuss about the running time of Monte Carlo Simulation in GPU using CUDA 

programming and in CPU using Matlab. Figure 20 (a) is the running time when assets number is 

16, Figure 20 (b) is the running time when assets number is 192. We can find that when assets 

number is 16, CUDA is two times faster than Matlab, and when assets number is 192, CUDA is 

five times faster then Matlab. This result shows GPU is much faster than CPU. According to the 

experiment about matrix multiplication, we know that Matlab is very fast in simple matrix 

computing. Because we assume very simple condition to do Monte Carlo Simulation, Matlab 

just needs ten lines of programming to make this model, while in CUDA, we need hundreds of 

lines. We don’t do the C programming, because CUDA will be thousands of times faster than C 
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absolutely. There are lots of matrix operations in the programming, and the largest matrix size 

is 65536 192 . In this case, C programming will be very slowly. 

 

(a) 

  

(b) 

Figure 20: Running Time of Monte Carlo Simulation 
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6. Conclusion 

In this paper, we have implemented the Monte Carlo Simulation based VaR estimation 

using CUDA.  This paper describes the detailed computing algorithm by leveraging the parallel 

computation capability of CUDA. We run two different experiments to compare CUDA results 

and Matlab based results, with one portfolio having 16 assets and the other having 192 assets. 

The results show that using CUDA in GPU can greatly improve the performance of Monte Carlo 

Simulation.   

In the future, we will consider to achieve the real-time VaR estimation, and to build more 

complicated financial model to support most of VaR cases.  
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8. Appendix 

(1) Value at Risk . m 

function [current VaRmc VaRnor] = Stock192_VaR(p) 

nvmex -f nvmexopts.bat Value_at_Risk_Stock192.cu -IC:\cuda\include -LC:\cuda\lib -lcufft -lcudart; 

 

so = xlsread('C:\Users\CUDA_admin\Desktop\ww\VaR\VaR program\stockprice','SO','A2:CR526'); 

sc = xlsread('C:\Users\CUDA_admin\Desktop\ww\VaR\VaR program\stockprice','SC','A3:CR527'); 

last = xlsread('C:\Users\CUDA_admin\Desktop\ww\VaR\VaR program\stockprice','SC','A530:CR530'); 

so = single([so so]); 

sc = single([sc sc]); 

last = single([last last]); 

share = [10; 20; 30; 10; 15; 5; 25; 60; 25; 20; 18; 7; 9; 13; 34; 26]; 

share = [share; share; share; share; share; share; share; share; share; share; share; share]; 

share = single(share); 

current = sum(last .* share'); 

  

% CUDA-GPU 

tic; 

VaRmc= Value_at_Risk_Stock192(so, sc, last, share, single(p)); 

toc; 

  

% Matlab-CPU 

tic; 

level = floor(65536*(1-p)); 

plRate = (sc - so) ./ so; 

mu = mean(plRate,1); 

sigma = cov(plRate); 

mvd = single(mvnrnd(mu, sigma, 65536)); 

for i = 1 : 192 

    stockPrice(:, i) = last(i) * (1 + mvd(:, i) ); 

end 

portfolioPrice = stockPrice * share; 

s= sort(portfolioPrice); 

VaRnor = s(level); 

toc; 
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 (2) Value_at_Risk_Stock192.cu 

#include "mex.h" 

#include "math.h" 

#include "cuda.h" 

#include "cuda_runtime.h" 

  

#define PI 3.14159265358979f 

#define BLOCK_SIZE 16 

#define MAX 32768 

  

  

/****************************Profit and Loss Rate*******************************/ 

__global__ void profitLossKernel(float *open, float *close, float *plRate, int mrows, int ncols) 

{ 

    int xIndex = blockDim.x * blockIdx.x + threadIdx.x; 

    int yIndex = blockDim.y * blockIdx.y + threadIdx.y; 

  

    if( xIndex < mrows && yIndex < ncols  ) 

        plRate[yIndex * mrows + xIndex] = (close[yIndex * mrows + xIndex] - open[yIndex * mrows + 

xIndex])/open[yIndex * mrows + xIndex];  

} 

  

/****************************mu*******************************/ 

__global__ void meanParallelKernel(float *plRate, float *mu, int mrows, int k) 

{ 

    int yIndex = blockIdx.x; 

    int xIndex = threadIdx.x * k; 

    int i = 0; 

     

    extern __shared__ float shared[]; 

    shared[threadIdx.x] = 0; 

    for(i = 0; i < k; i++) 

    { 

        if((xIndex + i) < mrows) // && yIndex < ncols 

            shared[threadIdx.x] += plRate[yIndex * mrows + (xIndex + i)]; 

    } 
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    __syncthreads(); 

    mu[yIndex] = 0; 

    for(i = 0; i < 32; i++) 

        mu[yIndex] += shared[i]; 

    mu[yIndex] = mu[yIndex] / mrows; 

} 

  

  

/****************************sigma*******************************/ 

__global__ void covParallelKernel(float *plRate, float *mu, float *sigma, int mrows, int ncols, int k) 

{ 

    int xIndex = threadIdx.x * k; 

    int i; 

  

    extern __shared__ float shared[]; 

    shared[threadIdx.x] = 0; 

    for(i = 0; i < k; i++) 

    { 

        if((xIndex + i) < mrows) // && yIndex < ncols 

        { 

            int x1 = blockIdx.x * mrows + (xIndex + i); 

            int x2 = blockIdx.y * mrows + (xIndex + i); 

            shared[threadIdx.x] += (plRate[x1] - mu[blockIdx.x]) * (plRate[x2] - mu[blockIdx.y]); 

        } 

    } 

     

    __syncthreads(); 

    sigma[blockIdx.y * ncols + blockIdx.x] = 0; 

    for(i = 0; i < 32; i++) 

        sigma[blockIdx.y * ncols + blockIdx.x] += shared[i]; 

    sigma[blockIdx.y * ncols + blockIdx.x] = sigma[blockIdx.y * ncols + blockIdx.x] / mrows;  

} 

  

/***************************SVD**********************************/ 

__global__ void SingluarValueDecompositionKernel(float *B, float *F, int n) 

{ 

    int j = threadIdx.y; 
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    __shared__ float A[192][4];//p=0/1;q=2/3 

    __shared__ float E[192][2];//p=0;q=1 

    int p,q,l; 

    for(l = 0; l < 3; l ++) 

    { 

        for(p = 0; p < n; p++) 

        { 

            for(q = p + 1; q < n; q++) 

            {  

                    if(p == 0 && q == 1 && l == 0) 

                    { 

                        F[j * n + j] = 1; 

                    } 

                    __syncthreads(); 

  

                    if(abs(B[q*n+p]) >0.00001) 

                     { 

                        if(threadIdx.x == 0) 

                        { 

                            A[j][0] = B[j * n + p]; 

                            A[j][1] = B[p * n + j]; 

                            E[j][0] = F[p * n + j]; 

                        } 

                        else if(threadIdx.x == 1) 

                        { 

                            A[j][2] = B[j * n + q]; 

                            A[j][3] = B[q * n + j]; 

                            E[j][1] = F[q * n + j]; 

                        } 

                    __syncthreads(); 

 

                                float w, t, cos, sin; 

                                w = (B[p*n+p] - B[q*n+q]) / (2 * B[q*n+p]); 

                                t = (w / abs(w)) / ((abs(w) + sqrt(1 + w * w))); 

                                cos = 1 / sqrt(1 + t * t); 

                                sin = t / sqrt(1 + t * t); 
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                            if(threadIdx.x == 0)  // i=p 

                            { 

                                if(j == p) 

                                { 

                                    B[p*n+p] = A[p][0] * cos * cos + A[q][2] * sin * sin + A[q][0] * 2 * sin * cos; 

                                    F[p*n+p] = E[p][0] * cos + E[p][1] * sin; 

                                } 

                                else if(j == q) 

                                { 

                                    B[q*n+p] = 0.5 * (A[q][2]  - A[p][0]) * 2 * sin * cos + A[q][0] * (2 * cos * cos - 1); 

                                    F[q*n+p] =  -E[p][0] * sin + E[p][1] * cos; 

                                } 

                                else if(j != p && j != q) 

                                { 

                                    B[j*n+p] = A[j][0] * cos + A[j][2] * sin; 

                                    B[p*n+j] = A[j][1] * cos + A[j][3] * sin;//else if( j == p && i != p && i  != q) 

                                    F[p*n+j] = E[j][0] * cos + E[j][1] * sin; 

                                } 

                            } 

                            else if(threadIdx.x == 1) // i=q 

                            { 

                                if(j == q) 

                                { 

                                    B[q*n+q] = A[p][0] * sin * sin + A[q][2] * cos * cos - A[q][0] * 2 * sin * cos; 

                                    F[q*n+q] = -E[q][0] * sin + E[q][1] * cos; 

                                } 

                                else if(j == p) 

                                { 

                                    B[p*n+q] = 0.5 * (A[q][2]  - A[p][0]) * 2 * sin * cos + A[q][0] * (2 * cos * cos - 1); 

                                    F[p*n+q] =  E[q][0] * cos + E[q][1] * sin; 

                                } 

                                else if(j != p && j != q) 

                                { 

                                    B[j*n+q] = - A[j][0] * sin + A[j][2] * cos; 

                                    B[q*n+j] = - A[j][1] * sin + A[j][3] * cos;//else if( j == q && i != p && i != q) 

                                    F[q*n+j] = - E[j][0] * sin + E[j][1] * cos; 

                                } 
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                            } 

                     }// end-if(abs(A[q*n+p]) >0.000001) 

                     __syncthreads(); 

            } 

        } 

    } 

    __syncthreads(); 

} 

  

__global__ void GetSVD(float *SVD, float *F, float *B, int n) 

{ 

    int j = threadIdx.x; 

    for(int k = 0; k < 2; k++) 

    { 

        int i = gridDim.x * k + blockIdx.x; 

        float x = sqrt(B[j*n+j]); 

        if(x < 0.000001) 

            x = x * 100000; 

        else if(x < 0.00001) 

            x = x * 10000; 

        else if(x < 0.0001) 

            x = x * 1000; 

        else if(x < 0.001) 

            x = x * 100; 

        else if(x < 0.01) 

            x = x * 10; 

        SVD[j * n + i] = F[j * n + i] * x; //F[j * n + i];// 

    } 

} 

  

  

/****************************Uniform Distribution*******************************/ 

__global__ void UniformKernel1(float *ND, float *ud, int n, int m, float M) 

{ 

    int j = threadIdx.x; 

    int lambda, mu; 

    lambda = 65539; 
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    mu = 0; 

    int g = blockDim.x; 

    for ( int i = 0; i < 1000; i++) 

    { 

        if( blockIdx.x * 1000 + i < m) 

        { 

            if(i == 0) 

            { 

                ND[j * m + (blockIdx.x * 1000 + i)] = ud[j + blockIdx.x * n]; 

  

            } 

            else 

            { 

                int x = floor((lambda * ND[j * m + (blockIdx.x * 1000 + i) - 1] + mu) / M); 

                ND[j * m + (blockIdx.x * 1000 + i)] = lambda * ND[j * m + (blockIdx.x * 1000 + i) - 1] + mu - x * M; 

                if(ND[j * m + (blockIdx.x * 1000 + i)] == 0) 

                    ND[j * m + (blockIdx.x * 1000 + i)] = 11111111; 

            } 

        } 

    }  

} 

  

__global__ void UniformKernel2(float *ND, int n, int m, float M) 

{ 

    int a = m / gridDim.x +1; 

    for(int i = 0; i < a; i++) 

    { 

        int xIndex = i * gridDim.x + blockIdx.x; 

        int yIndex = threadIdx.x; 

         

        if(xIndex < m && yIndex < n) 

        { 

            ND[yIndex * m + xIndex] /= M; 

        } 

    } 

 } 
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/****************************Normal Distribution*******************************/ 

__global__ void BoxMullerKernel(float *ND, int n, int m) 

{ 

    int a = m / gridDim.x +1; 

    for(int i = 0; i < a; i++) 

    { 

        int xIndex = i * gridDim.x + blockIdx.x; 

        int yIndex = threadIdx.x; 

         

        if(xIndex < m && (yIndex + n/2) < n) 

        { 

            float r = sqrt(-2.0f * logf(ND[yIndex * m + xIndex])); 

            float phi = 2 * PI * ND[(yIndex + n/2) * m + xIndex]; 

            ND[yIndex * m + xIndex] = r * __cosf(phi); 

            ND[(yIndex + n/2) * m + xIndex] = r * __sinf(phi); 

        } 

    } 

} 

  

  

/****************************Matrix Multiplication  C=A*B + mu *******************************/ 

__global__ void Muld(float* A, float* B, float *mu, int hA, int wA, float* C) 

{ 

    int bx = blockIdx.x; 

    int by = blockIdx.y; 

    int tx = threadIdx.x; 

    int ty = threadIdx.y; 

     

    for (int i = 0; i < hA / (BLOCK_SIZE * gridDim.x); i++) 

    { 

        int rx = i * gridDim.x * BLOCK_SIZE; 

        int xIndex = rx + blockIdx.x * blockDim.x + threadIdx.x; 

        int yIndex = blockIdx.y * blockDim.y + threadIdx.y; 

        if(xIndex < hA && yIndex < wA) 

        { 

            int aBegin = rx + BLOCK_SIZE * bx; 

            int aEnd = hA * (gridDim.y - 1) * BLOCK_SIZE + aBegin; 



  8. Appendix  41 

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU) 

            int aStep = hA * BLOCK_SIZE; 

            int bBegin = wA * BLOCK_SIZE * by; 

            int bStep = BLOCK_SIZE; 

            float Csub = 0; 

  

            for (int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep)  

            { 

                __shared__ float As[BLOCK_SIZE][BLOCK_SIZE]; 

                __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE]; 

                As[tx][ty] = A[a + hA * ty + tx]; 

                Bs[tx][ty] = B[b + wA * ty + tx]; 

                __syncthreads(); 

                for (int k = 0; k < BLOCK_SIZE; ++k) 

                    Csub += As[tx][k] * Bs[k][ty]; 

                __syncthreads(); 

            } 

            C[yIndex * hA + xIndex] = Csub + mu[yIndex]; 

        } 

        __syncthreads(); 

    } 

} 

  

/****************************Portfolio Price*******************************/ 

__global__ void portfolioPriceKernel(float *lastPrice, float *MVD, float * share, float *portfolioPrice, int 

mrows, int ncols, int k) 

{ 

       int rx = blockDim.x * blockIdx.x + threadIdx.x; 

       int xIndex; 

        

       for(int i = 0; i < k; i++) 

        { 

            xIndex = rx + i * gridDim.x * 16 * 16; 

            if( xIndex < mrows ) 

            { 

                float temp = 0; 

                for(int j = 0; j < ncols; j++) 

                { 
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                     temp +=  lastPrice[j] * (1 + MVD[j * mrows + xIndex])  * share[j]; 

                } 

                portfolioPrice[xIndex] = temp; 

           } 

       } 

} 

  

/****************************Merge Sort*******************************/ 

__global__ void mergeSortKernel(float *array, int i, int j) 

{ 

    int xIndex = blockIdx.x * blockDim.x + threadIdx.x; 

    int multiple = (int) pow(2.0, i); 

    int d = (int) pow(2.0, j-1); 

    int step = multiple / 2 / d; 

    int x1; 

    float temp; 

     

    if(step == 1) 

    { 

        x1 =  2 * xIndex; 

    } 

    else 

    { 

        if(xIndex < step) 

            x1 = xIndex; 

        else if(xIndex >= step && xIndex % step == 0) 

            x1 = xIndex * 2; 

        else 

            x1 = xIndex * 2 - xIndex % step; 

    } 

     

    if((x1 / multiple) % 2 == 0) //x1/multiple is even, min up and max down 

    { 

        if(array[x1] > array[x1 + step]) 

        { 

            temp = array[x1]; 

            array[x1] = array[x1 + step]; 
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            array[x1 + step] = temp; 

        } 

    } 

    else  //x1/multiple is odd, min down and max up 

    { 

        if(array[x1] < array[x1 + step]) 

        { 

            temp = array[x1]; 

            array[x1] = array[x1 + step]; 

            array[x1 + step] = temp; 

        } 

    } 

} 

  

  

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) 

{ 

     float *open, *close, *lastPrice, *share, *level; //five inputs 

      

     if (nrhs != 5) 

         mexErrMsgTxt("Five input required!"); 

     if (nlhs > 3) 

          mexErrMsgTxt("Too many output arguments!"); 

     if ( !mxIsSingle(prhs[0]) || !mxIsSingle(prhs[1]) || !mxIsSingle(prhs[2]) || !mxIsSingle(prhs[3]) 

|| !mxIsSingle(prhs[4])) 

          mexErrMsgTxt("Input arry must be single precision!"); 

     int mrows = mxGetM(prhs[0]); 

     int ncols = mxGetN(prhs[0]); 

      

     

     /*************************PART I - Caculate plRate, mu, and sigma*******************************/ 

     float *mu, *sigma, *plRate; 

      

    if( cudaMalloc((void**) &open, sizeof(float) * ncols * mrows) != cudaSuccess ) 

        mexErrMsgTxt("Memory allocating open failure on GPU!"); 

    if( cudaMalloc((void**) &close, sizeof(float) * ncols * mrows) != cudaSuccess ) 

        mexErrMsgTxt("Memory allocating close failure on GPU!"); 
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    if( cudaMalloc((void**) &lastPrice, sizeof(float) * ncols * 1) != cudaSuccess ) 

        mexErrMsgTxt("Memory allocating lastPrice failure on GPU!"); 

    if( cudaMalloc((void**) &share, sizeof(float) * ncols * 1) != cudaSuccess ) 

        mexErrMsgTxt("Memory allocating share failure on GPU!"); 

    cudaMemcpy(open, (float*)mxGetData(prhs[0]), sizeof(float) * ncols * mrows, 

cudaMemcpyHostToDevice); 

    cudaMemcpy(close, (float*)mxGetData(prhs[1]), sizeof(float) * ncols * mrows, 

cudaMemcpyHostToDevice); 

    cudaMemcpy(lastPrice, (float*)mxGetData(prhs[2]), sizeof(float) * ncols, cudaMemcpyHostToDevice); 

    cudaMemcpy(share, (float*)mxGetData(prhs[3]), sizeof(float) * ncols, cudaMemcpyHostToDevice); 

         

    //plRate 

    if( cudaMalloc((void**) &plRate, sizeof(float) * ncols * mrows) != cudaSuccess ) 

        mexErrMsgTxt("Memory allocating plRate failure on GPU!"); 

    int blocky = ncols/BLOCK_SIZE + 1; 

    int blockx = mrows/BLOCK_SIZE + 1; 

    dim3 dimBlock1(BLOCK_SIZE, BLOCK_SIZE); 

    dim3 dimGrid1(blockx, blocky); 

    profitLossKernel <<<dimGrid1, dimBlock1>>> (open, close, plRate, mrows, ncols); 

   //Caculate mu and sigma 

    if( cudaMalloc((void**) &mu, sizeof(float) * ncols * 1) != cudaSuccess ) 

        mexErrMsgTxt("Memory allocating mu failure on GPU!"); 

    if( cudaMalloc((void**) &sigma, sizeof(float) * ncols * ncols) != cudaSuccess ) 

        mexErrMsgTxt("Memory allocating sigma failure on GPU!"); 

  

    int threadNum = 32; 

    int blockNum = ncols; 

    int k; 

    if(mrows % 32 == 0)     

        k = mrows / 32; 

    else 

        k = mrows / 32 + 1; 

    //mu 

    dim3 dimBlock2(threadNum);  

    dim3 dimGrid2(blockNum); 

    meanParallelKernel <<<dimGrid2, dimBlock2, threadNum * sizeof(float)>>> (plRate, mu, mrows, k); 

    //sigma 
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    dim3 dimBlock3(threadNum);  

    dim3 dimGrid3(ncols, ncols); 

    covParallelKernel <<<dimGrid3, dimBlock3, threadNum * sizeof(float)>>> (plRate, mu, sigma, mrows, 

ncols, k); 

     

    cudaFree(open); 

    cudaFree(close); 

    cudaFree(plRate); 

     

    /******************************PART II: Multivariate Normal Distribution********************************/ 

    //SVD 

    float *F, *SVD;//B- sigma 

    if( cudaMalloc((void**) &F, sizeof(float) * ncols * ncols) != cudaSuccess ) 

        mexErrMsgTxt("Memory allocating F failure on GPU!"); 

    if( cudaMalloc((void**) &SVD, sizeof(float) * ncols * ncols) != cudaSuccess ) 

        mexErrMsgTxt("Memory allocating SVD failure on GPU!"); 

     

    dim3 dimBlock4(2,192); 

    SingluarValueDecompositionKernel <<<1, dimBlock4>>> (sigma, F, ncols); 

    GetSVD<<<192/2, 192>>>(SVD, F, sigma, ncols); 

    cudaThreadSynchronize(); 

    cudaFree(sigma); 

    cudaFree(F); 

     

    //Normal distribution 

    int m = 65536;      //samples     

    int g = m/1000 + 1; 

    float *ND, *MVD, *ud, *ini; 

  

    if( cudaMalloc((void**) &ND, sizeof(float) * ncols * m) != cudaSuccess ) 

        mexErrMsgTxt("Memory allocating ND failure on GPU!"); 

    if( cudaMalloc((void**) &MVD, sizeof(float) * ncols * m) != cudaSuccess ) 

        mexErrMsgTxt("Memory allocating MVD failure on GPU!"); 

    if( cudaMalloc((void**) &ud, sizeof(float) * ncols * g) != cudaSuccess ) 

        mexErrMsgTxt("Memory allocating ud failure on GPU!"); 

     

    srand(clock());  
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    float M = pow(2.0,31); 

    ini = (float *)malloc(sizeof(float) * ncols * g); 

    for(int i = 0; i < ncols * g; i++) 

    { 

        ini[i]=floor(float(111111111 + rand())); 

    } 

    cudaMemcpy(ud, ini, sizeof(float) * ncols * g, cudaMemcpyHostToDevice); 

  

    UniformKernel1 <<<g, ncols>>> (ND, ud, ncols, m, M); 

    cudaThreadSynchronize(); 

    dim3 dimGrid5(m / ncols + 1); 

    UniformKernel2 <<<dimGrid5, ncols>>> (ND, ncols, m, M); 

    cudaThreadSynchronize(); 

    dim3 dimGrid6(2 * m / ncols + 1);     

    BoxMullerKernel<<<dimGrid6, ncols/2>>>(ND, ncols, m); 

    cudaThreadSynchronize(); 

     

    dim3 dimBlock7(BLOCK_SIZE, BLOCK_SIZE); 

    blockx = m / BLOCK_SIZE; 

    blocky = ncols / BLOCK_SIZE; 

    int maxBlockx = MAX / (BLOCK_SIZE * BLOCK_SIZE * blocky); 

    if(blockx > maxBlockx) 

        blockx =  maxBlockx; 

    dim3 dimGrid7(blockx, blocky); 

    Muld<<<dimGrid7, dimBlock7>>>(ND, SVD, mu, m, ncols, MVD); 

     

     

    free(ini); 

    cudaFree(ud); 

    cudaFree(SVD); 

    cudaFree(mu); 

    cudaFree(ND); 

     

     

     /******************************PART III: Stock Price, all var, sort********************************/ 

     float *portfolioPrice; 

     if( cudaMalloc((void**) &portfolioPrice, sizeof(float) * m) != cudaSuccess ) 
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        mexErrMsgTxt("Memory allocating portfolioPrice failure on GPU!"); 

     dim3 dimBlock8(BLOCK_SIZE * BLOCK_SIZE);  

    int blockx8 = MAX / (BLOCK_SIZE * BLOCK_SIZE); 

    k = m/MAX; 

    dim3 dimGrid8(blockx8); 

    portfolioPriceKernel <<<dimGrid8, dimBlock8>>> (lastPrice, MVD, share, portfolioPrice, m, ncols, k); 

 

      

    int x = log(65536.0) / log(2.0); 

    for(int i = 1; i <= x; i++) 

    { 

        for(int j = 1; j <= i; j++) 

        { 

                mergeSortKernel <<<128, 256>>> (portfolioPrice, i, j); 

        } 

    } 

  

    cudaThreadSynchronize(); 

      

     level = (float*)mxGetData(prhs[4]); 

     float *var; 

     float b = *level; 

     int a =floor((1-b)*m); 

     var = &portfolioPrice[a]; 

     plhs[0] = mxCreateNumericMatrix(1, 1, mxSINGLE_CLASS, mxREAL);//output VaR 

     cudaMemcpy((float*)mxGetData(plhs[0]),  var, sizeof(float), cudaMemcpyDeviceToHost); 

  

     

     cudaFree(MVD); 

     cudaFree(lastPrice); 

     cudaFree(share); 

     cudaFree(portfolioPrice); 

} 
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