City University of New York (CUNY)
CUNY Academic Works

Dissertations and Theses City College of New York

2010

Acceleration of Monte Carlo Value at Risk Estimation Using
Graphics Processing Unit (GPU)

Wei Wu
CUNY City College

How does access to this work benefit you? Let us know!

More information about this work at: https://academicworks.cuny.edu/cc_etds_theses/10
Discover additional works at: https://academicworks.cuny.edu

This work is made publicly available by the City University of New York (CUNY).
Contact: AcademicWorks@cuny.edu

https://academicworks.cuny.edu/
https://academicworks.cuny.edu/cc_etds_theses
https://academicworks.cuny.edu/cc
http://ols.cuny.edu/academicworks/?ref=https://academicworks.cuny.edu/cc_etds_theses/10
https://academicworks.cuny.edu/cc_etds_theses/10
https://academicworks.cuny.edu/?
mailto:AcademicWorks@cuny.edu

Acceleration of Monte Carlo Value at Risk Estimation Using
Graphics Processing Unit (GPU)

THESIS
Submitted in partial fulfillment of the requirement for the degree
Master of Engineering (Computer Science)
At
The City College
of the

City University of New York
by

Wei Wu
December 2010

Approved:

Professor Izidor Gertner, Thesis Advisor

Professor Douglas Troeger, Chairman

Department of Computer Science

Abstract

Value at Risk (VaR) is one of the most popular tools used to estimate the
exposure to market risks, and it measures the worst expected loss at a given
confidence level. Monte Carlo simulation is one of the best methods to calculate VaR
and it is widely used in financial industry. Unfortunately, it is time consuming especially
when the simulated samples and the number of assets in a portfolio are very large. The
graphics processing unit (GPU) is a specialized multiprocessor which has highly parallel
structure supporting more effective than general-purpose CPUs for a range of complex
algorithms. In this paper, we will investigate the acceleration of Monte Carlo simulation
by using GPU. Firstly, we will introduce the VaR conception and three basic method to
estimate VaR. Then we will describe GPU computation and performance using matrix
multiplication. At last, we will focus on the parallel algorithm of estimation VaR using
Monte Carlo method, and implementation of VaR calculation using CUDA on GPU.
Extensive experiments will be performed to show that GPU can achieve a much faster
speed than Matlab, which demonstrates clear the advantage to use GPU in VaR

estimation.

Keywords: Value at Risk, Monte Carlo Method, CUDA, GPU

Contents

Lo INEFOAUCTION ettt e e e e et e 1
2. Value at RiSk MethOdOIOQIeSuuuuuiiiiiiiiiiiiiiiiiiiiiii s 4
2.1 HIiStOrCAl METNOMccuiiiiiieeeee ettt 4
2.2 Variance-CovarianCe Methodccooiiirireiiieieseeee e 6
2.3 Monte Carlo SIMUIALIONcoiriiieieieereeeee ettt st nee 8
3. Graphics Processing Unit (GPU) COMPULINGuuuiiiiiiiiiiiiiiiiiieee e 10
G €T U = o o [1 ST 10
G T 1V - i F= Lo TSR 13

3.3 Performance Comparison of Matrix Multiplication using C and Matlab in CPU, and

CUDA N GPU ettt ettt ettt et e st e e e st eseebestenteneeneeneebeseensensene eas 13
4. Monte Carlo Simulation to Estimate Value at RiSKcccoooiiiiiiiiiiiiees 15
4.1 Calculate Profit-LOSS-RALEc.ccceviecierieieieriieeee st se st te et s sae e eseesaeseesssensens 16
4.2 Multivariate Normal DiStrIBULIONccvvieiericiec et 16
4.3 Calculate POrtfOlio VAIUEc.ooieiicieiee ettt st aesresneensens 23
A4 IMBIGE SOttt sttt sttt ettt ettt e bt e bt e b e e s b e e s be e saeesatesanesare e bt e bt e nne e s e esreesreesanes eens 24
LT o q o 1= 1 1= 1 = 26
L TR ©o) o o] 115 E=3 Lo T o T 30
N o= = 1= o] = 31

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10

Figure 11

Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:

Figure 17:

Figure 18:
Figure 19:

Figure 20:

HISTOrCAl METNOMot st 4
Historical method disadvantage analySiSccccceveieeierenieeeenice e 6
Variance-covarianCe MEtNOU.........cooiriieirinereeee et 7
Variance-covariance method disadvantage analysis..........cccccvoveeevevineeceseceeese e 8
Monte Carlo METNOMAcooiiiiiree ettt sae s 9
CUDA Program MOELocueiiiiiieeeiesieeste sttt ettt e et be st s e nesneeneenes 11
KEINEI STIUCTUIE ...ttt sttt be e 12
MEMONY HIEIAICNY ...ttt s re et e st e s s et et e esaenbesbaenneneas 12
Performance of Matrix MURIPICAtIONccevviiieeiecicece e 14
: Profit-Loss-Rate parallel algorithm ..o 16
: Mean parallel algorithm ..ot 18
Covariance parallel algorithm............ccoiiieeiiiieecc e e e 18
Uniform Distribution parallel algorithm ..o 21
Box—Muller parallel algorithm.............ccooiiieiiiiieeeee e s 22
Matrixes Multiplication parallel algorithm............cccceveeceniceceeee e 23
Calculate portfolio parallel algorithmccocveieiiiieee e 24
Merge Sort algorithm @XamPleccveriieieieiiceece e 24
Parallel algorithm With M =8 e see e ee s eee e 25
Frequency Distribution of Monte Carlo Simulation and Historical Method................... 28
Running Time of Monte Carlo Simulation...........ccccoveereririenenieee e 29

List of Tables

Table 1: Algorithm for VaR estimation using Monte Carlo........c.cccecvevevieieceviciecececeee e
Table 2: Some Suggested Linear and Multiplicative Random Number Generators......................

Table 3 :NVIDIA Quadro FX 3700 PerfOrManCEecoveveiieeieecee et ettt eeteeeteesveestee s eaveeans

1. Introduction 1

1. Introduction

In the financial world nowadays, Value-at-Risk has become one of the most important
and the most used measures of risk. Investors like to focus on the promise of high returns, but
they should also ask how much risk they must assume in exchange for these returns. Risk is
about the odds of losing money, and VaR is based on that common-sense fact. By assuming
investors care about the odds of a really big loss, VaR answers the question, "What is the most |
can - with a 95% or 99% level of confidence - expect to lose in dollars over the next month?”, or
“What is the maximum percentage | can - with 95% or 99% confidence - expect to lose over the
next day? So we can see that the "VAR question” has three elements: a relatively high level of
confidence (typically either 95% or 99%), a time period (a day, a month or a year) and an
estimate of investment loss (expressed either in dollar or percentage terms). Jorion (1997)
defines Value at Risk as: “the expected maximum loss (or worst loss) over a target horizon

within a given confidence interval.”[1]

The first using VaR ideas can date to the late 1970s and early 1980s, the Chicago
Mercantile Exchange used “Standard Portfolio Analysis” (SPAN) system and the Chicago Board
Options Exchange (CBOE) used “Theoretical Intermarket Margining System” (TIMS) to do
margin calculations. [2] JP Morgan’s RiskMetrics system in 1995 increased the profile of Value
at Risk substantially, and as the importance of Value at Risk has increased, so has the volume

of academic literature developing, supporting or criticizing this risk measure. [3]

Theoretical research that relied on the Value-at-Risk as a risk measurement was
initiated by Jorion (1997)[1], Dowd (1998)[4], and Saunders (1999)[5], who applied the Value-at-
Risk approach based on risk management emerging as the industry standard by choice or by

regulation.

The existing VaR related academic literature focuses mainly on measuring VaR from
different estimation methods to various calculation models. Cabedo and Moya (2003)[20],
Estimating oil price Value at Risk using the historical simulation, and develop the variance-
covariance method based on ARCH models forecasts. Duffie and Pan (1997)[6], Cardenas
(21999) [7], Rouvinez (1997) [8], Jamshidian and Zhu (1997) [9] do research to improve Monte
Carlo method used to estimate VaR. Embrechts, Kluppelberg, and Mikosch (2003)[11], Lucas
and Klaassen (1998)[12] focus on the tail behavior of the returns. Bollerslev, Engle, and Nelson
(1994)[13] discuss the GARCH-type models. Andrey Rogachev(2002) [14] introduce dynamic

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

1. Introduction 2

Value-at-Risk. Dean Fantazzini(2009) [15]use dynamic Copula theory to model VaR, copula
functions allow to construct flexible multivariate distribution with different margins and different

dependence structure, without the constraints of the traditional joint normal distribution.

All these researches mentioned above are based on improvement the algorithm or
models. In reality, however, computational constraints are one of important factors in explaining
the simplifications which have been into systems such as SPAN or TIMS. Every time a trade
takes place, the positions of two economic agents are updated, and two VaR computations are
required. The most active futures exchanges in the world today experience roughly 1,000,000
trades in around 20,000 seconds. This requires 100 VaR computations per second, on average.
Given the unevenness of trading intensity in the day, this easily maps to a peak requirement of
500 VaR computations per second, or a VaR computation in two milliseconds. [2] So how to
improve the performance of VaR estimation becomes important practical issue in current

financial industry.

With the development of new hardware and improvement of processor speed, parallel
computing has been broadly used in the finance area. One of the representations is the Graphic
Processor Unit (GPU). GPUs are originally designed to very efficiently at manipulating computer
graphics, and their highly parallel structure makes them more effective than general-purpose
CPUs for a range of complex algorithms. The term of GPU was defined proposed and
popularized by NVIDIA in 1999, who marketed the GeForce 256 as "the world's first 'GPU', or
Graphics Processing Unit, a single-chip processor with integrated transform, lighting, triangle
setup/clipping, and rendering engines that is capable of processing a minimum of 10 million

polygons per second.”

Thanks to GPU’s highly parallel structure that makes them more effective than general-
purpose CPUs for a range of complex algorithms. Nowadays, GPU is widely used in financial
computing, such as VaR estimating, option pricing, etc. Lots of general methods used in finance
can be greatly accelerate by GPU, such as Finite Differences, Random number generation,
Monte Carlo test case, dynamic programming, etc. Michael Feldman, an HPCwire editor, said
that one of the new kids on Wall Street is GPU computing, a technology that is making inroads
across nearly every type of HPC application. [17]Greg N. Gregoriou described GPU computing
of VaR in his book that GPU approach is ten or even hundreds of times cheaper than other tow
supercomputing approaches (mainframs and grid computing).[18] And, Matthew Dixon(2009)

[19]compares NVIDIA GeForce GTX280 graphics processing unit (GPU) and a quadcore Intel

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

1. Introduction 3

Core2 Q9300 central processing unit (CPU) to simulate VaR based delta-gamma method. GPU
is hundreds times faster than the CPU. All of these researches show GPU have great potential
to do complex computation in financial industry with a much faster speed than general CPU and

a much lower cost than Supercomputers.

In this paper, we will investigate how to use GPU to calculate VaR based on Monte

Carlo method.

The remaning part of this paper is organized as follows: section 2 will describe and
compare three basic methods to calculate VaR: historical, Monte-Carlo and variance-covariance
methods and point out the advantage and disadvantage of using these methods. Section 3 will
introduce GPU and CUDA computing, and then compare the performance using C and Matlab
in CPU, and CUDA in GPU to do matrix multiplication. Section 4 will describe the parallel
algorithm to calculate VaR using Monte Carlo simulation. Section 5 will show the experiments

and performance results. At last, secection 6 will conclude the whole paper.

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

2. Value at Risk Methodologies 4

2. Value at Risk Methodologies

All the methods used to estimate VaR can be separately in three categories. We simply
explain these three methods as following:

2.1 Historical Method

Historical simulations represent the simplest way of estimating the Value at Risk for
many portfolios. In this approach, the VaR for a portfolio is estimated by creating a hypothetical
time series of returns on that portfolio, obtained by running the portfolio through actual historical
data, putting returns from worst to best, and computing the changes that would have occurred in

each period. Historical method assumes that history will repeat itself, from a risk perspective.

Cabedo and Moya provide a simple example of the application of historical simulation to
measure the Value at Risk in oil prices. [20] Using historical data from 1992 to 1998, they
obtained the daily prices in Brent Crude Oil and then calculate the VaR. Another example from

this website: http://www.investopedia.com/articles/04/092904.asp, explains the historical

method very clearly, see Figure 1.

Distribution of Daily Returns
NASDAQ 100 - Ticker: QQQ

300 -
250

200

150

The worst 5%
100 of daily returns
are -4% to -8%

50 \

0 H-J*.*lrl - .. - ﬂ,l_,l,f,lﬂ_,,‘,-_rnf_,,_14,4|
5%

9% 7% -5% -3% -1% 1% 3% 7% 9% 11% 13% 159

Frequency (out of 1,387)

Figure 1: Historical method

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

2. Value at Risk Methodologies 5

The QQQ started trading in Mar 1999. Historical method will calculate each daily return
about 1400 points, and put them in a histogram that compares the frequency of return "buckets".
The returns are ordered from left to right, then we can get that with 95% confidence the worst
daily loss will not exceed 4%. If we invest $100, we are 95% confident that our worst daily loss

will not exceed $4.

Historical method is the simplest and fastest method to calculate VaR, but the underlying
assumptions, that the near future will be like the recent past and that we can reasonably used

the data from the past to estimate risks over the near future, give rise to its weaknesses.

While all three approaches estimating VaR use historical data, historical simulations are
much more reliant on historical data than the other two as the Value at Risk is computed entirely
from historical price changes. There is little room to overlay distributional assumptions (as we do
with the Variance-covariance approach) or to bring in subjective information (as we can with
Monte Carlo simulations). In Figure 2 (a), it shows an example of GE stock price change in the
period from 09/30/1992 to 09/30/2010. From 1992 to 2003, stock price increased gently, but in
the period 2003-2005, 2005-2009 and 2009-2010, stock price changed periodically and
increased dramatically. And in Figure 2 (b), the Profit-Loss-Rate in the period 1993-1995 and
2000-2006 changed intensively than period 1996-1998 and 2006-2010. We compute VaR, using
historical data, where all data points are weighted equally. In other words, the price changes
from trading days in 1994 or 2001 affect the VaR in exactly the same proportion as price
changes from trading days in 1997 or 2009. But the trend of changing in volatility is different in
different historical time period, so, based upon 1993-1996 and 2000-2006 data, we would have
been exposed to much larger losses than expected over the 1996-1998 and 2006-2010 period.

We will under estimate or over estimate the VaR.

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

2. Value at Risk Methodologies 6

GE stock price from 09/30/1992 to
09/30/2010

180
160

140

120

100 (\.\
80 Ve | M |
60

40

20 FM
D -

T A W S S S S VR S N T A W SR
PP PN LTS LT TP &S
R TG R O SR I R LI S S S S S & &3
MTNIRNINGANIAANSNIPN L SINI\ %0\'\’ ¥ ¥ v GJ0\”" N ,,,0\'\’
g

R T o o o o o o G g o o o o o of

Dollar

DATE

(@) GE stock price change from 09/30/1992 to 09/30/2010

GE stock Profit-Loss Rate from 09/30/1992 to
09/30/2010

Percentage

© %1 9

) LI = A A I | [4

> ,,DQ\"’ ,bgi" %Q\N ,,:Q\“’ %Q\'L N
o N o\ o o\ o

DATE

(b) GE profit-loss rate change from 09/30/1992 to 09/30/2010

Figure 2: Historical method disadvantage analysis

2.2 Variance-Covariance method

Since Value at Risk measures the probability that the value of an asset or portfolio will
drop below a specified value in a particular time period, it should be relatively simple to compute
if we can derive a probability distribution of potential values. So the idea behind the variance-
covariance is similar to the ideas behind the historical method - except that we use the familiar
curve instead of actual data. The advantage of the normal curve is that we automatically know

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

2. Value at Risk Methodologies 7

where the worst 5% and 1% lie on the curve. They are a function of our desired confidence and
the standard deviation (9), see

Figure 3 (b).

Use the example from this website: http://www.investopedia.com/articles/04/092904.asp,
to explain variance-covariance method. The curve above is based on the actual daily standard
deviation of the QQQ, which is 2.64%. So we can very easily get VaR, which is 4.36% when
confidence level is 95%, and which is 6.16% when confidence level is 99% (

Figure 3 (a) and
Figure 3 (c)).

Distribution of Daily Returns
NASDAQ 100 - Ticker: QQQ

300 -

mm QQQ Actual Daily Returns

250
—— A "Normal" Distribution

200 +

Instead of actual
160 1 returns, here we
look at the
"worst" 5% (or

4 worst 1%) of the
normal curve

g

g

Frequency (out of 1,387 actual returns)

o
4

9% 7% 5% -3% -1% 1% 3% 5% 7% 9% 11% 13% 15%

(@)
of Standard
Coonﬁdgnce Deviations (o) Confidence #of o Calculation Equals:
95% (high) _ -1685x0 95% (high) 165xc |- 166%(264%)= | -436%
99% (really high) -233x0 99% (really high) | -233x0 | -233x(264%) = -6.16%
(b) (©)

Figure 3: Variance-covariance method

That is basically what we do in the variance-covariance method, an approach that has
the benefit of simplicity but is limited by the difficulties associated with deriving probability
distributions. The most convenient assumption both from a computational standpoint and in
terms of estimating probabilities is normality and it should come as no surprise that many VaR
measures are based upon some variant of that assumption. If, for instance, we assume that

each market risk factor has normally distributed returns, we ensure that that the returns on any

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

2. Value at Risk Methodologies 8

portfolio that is exposed to multiple market risk factors will also have a normal distribution. But if
conditional returns are not normally distributed, the computed VaR will understate the true VaR.
Moreover, as showed in Figure 4, the mean and covariance across assets change over time,

that means standard deviations can be changed over time.

GE stock mean and covariance (1992 - 2010)

3.00E-03
2.00E-03 -~

1.00E-03 -~ I l I I I
| Il o L i aols o B i
0.00E+00 il I -
£

-
-1.00E-03 —&¥ 9 o N O 5 O o L &b ® mean
) R S) DR NS
pssen @‘i@ M L S e S e

-3.00€-03 -

-4.00€E-03 -

-5.00E-03

cov

year

Figure 4: Variance-covariance method disadvantage analysis

2.3 Monte Carlo Simulation

A Monte Carlo simulation refers to any method that randomly generates trials, but by
itself does not tell us anything about the underlying methodology. As Variance-covariance
method, Monte Carlo method has first to calculate mean and covariance. Rather than calculate

VaR using o, it simulates route, specify probability distributions using random number.

Use the example from this website: http://www.investopedia.com/articles/04/092904.asp,

the result shows in Figure 5. Run 100 hypothetical trials of monthly returns for the QQQ. Among
them, two outcomes were between -15% and -20%; and three were between -20% and 25%.
That means the worst five outcomes (that is, the worst 5%) were less than -15%. The Monte
Carlo simulation therefore leads to the following VAR-type conclusion: with 95% confidence, we

do not expect to lose more than 15% during any given month (Figure 5).

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

2. Value at Risk Methodologies 9

Monte Carlo Simulation
100 Random Trials
(using historical volatility of QQQ)

12 4 The 5 worst

outcomes
10 { among 100
trials (the
8 4 worst 5%]
[
‘ .
2 - I
0

-25% -20% - lS’h 10% -5% 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Frequency (out of 100 random trials)

Figure 5: Monte Carlo method

The strengths of Monte Carlo simulations can be seen when compared to the other two
approaches for computing Value at Risk. Monte Carlo is by far the most flexible, since it allows
considering arbitrarily complex models and/or portfolio instruments. Unlike the variance-
covariance approach, we do not have to make unrealistic assumptions about normality in
returns. In contrast to the historical simulation approach, we begin with historical data but are
free to bring in both subjective judgments and other information to improve forecasted
probability distributions. All of these changes make Monte Carlo a better method to calculate
VaR in reality. However, Monte Carlo method is extremely computationally intensive because it
is based on the iteration of a particular, generally simple, procedure. [18]When the number of
portfolio assets or the samples of simulation is large, Monte Carlo method is very slow. This
limitation triggers us to investigate more fast way to do Monte Carlo calculation. Next, we will
introduce GPU computing, which is a good way to conduct Monte Carlo calculation to estimate
the VaR.

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

3. Graphics Processing Unit (GPU) Computing 10

3. Graphics Processing Unit (GPU) Computing

3.1 GPU and CUDA

Driven by the insatiable market demand for real-time, high-definition 3D graphics, the
programmable Graphic Processor Unit or GPU has evolved into a highly parallel, multithreaded,
manycore processor with tremendous computational horsepower and very high memory
bandwidth. The reason behind the discrepancy in floating-point capability between the CPU and
the GPU is that the GPU is specialized for compute-intensive, highly parallel computation —
exactly what graphics rendering is about — and therefore designed such that more transistors
are devoted to data processing rather than data caching and flow control. The GPU has evolved
over the years to have teraflops of floating point performance. NVIDIA revolutionized the GPU
and accelerated computing world in 2006-2007 by introducing its new massively parallel
architecture called “CUDA”".

CUDA is a general purpose parallel computing architecture — with a new parallel
programming model and instruction set architecture — that leverages the parallel compute
engine in NVIDIA GPUs to solve many complex computational problems in a more efficient way
than on a CPU. The CUDA architecture consists of 100s of processor cores that operate
together to crunch through the data set in the application. CUDA comes with a software
environment that allows developers to use C as a high-level programming language. Other
languages or application programming interfaces are supported, such as CUDA FORTRAN,
OpenCL, and Direct Compute. [16]

CUDA programming model is showed in the following Figure 6. CUDA is a serial
program with parallel kernels using C code. When a program is running, general C code
executes in the host CPU, and parallel kernel C code executes in many device threads (GPU
threads) across multiple processing elements. One kernel is executed at a time on the device,

and it has many threads execute parallel.

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

3. Graphics Processing Unit (GPU) Computing 11

Device

Parallel Kernel
KernelA (args);

Device

Parallel Kernel
KernelB (args);

Figure 6: CUDA Program Model

The structure of a kernel is showed in Figure 7. A kernel also called a grid in the device
that includes several blocks, and each block includes several threads. So, the number of total
threads is equal to the number of threads per block times the number of blocks. Thread blocks
are required to execute independently: It must be possible to execute them in any order, in
parallel. This independence requirement allows thread blocks to be scheduled in any order
across any number of cores, enabling programmers to write scalable code. So each thread

executes the same code but processes different data based on its threadID.

CUDA threads may access data from multiple memory spaces during their execution as
illustrated by Figure 8. Each thread has private local memory. Each thread block has shared
memory visible to all threads of the block and with the same lifetime as the block. All threads
have access to the same global memory. The speed of a thread access these three different

memories are increasing.

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

3. Graphics Processing Unit (GPU) Computing

Host Device
Grid 1
Kernel Block = Block | Block
i ©,0 | (1,00 (20

Block-" Block ' Block
()] L1 5 @1

. erid2 !
Kernel 1
2 I o
' ol I N
Block (1, 1) !

Figure 7: Kernel Structure

Thread
Per-thread local
memory
Thread Block
Per-block shared
> memory
Grid 0
Block (0, 0) | Block (1, 0) | Block (2, 0)
—
Block (0,1) | Block (1,1) | Block (2, 1)
Grid 1
Global memory
Block (0, 0) Block (1, 0)
Block (0, 1) Block (1, 1)
—
Block (0, 2) Block (1, 2)

Figure 8: Memory Hierarchy

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

3. Graphics Processing Unit (GPU) Computing 13

3.2 Matlab

MATLAB is a high-level language and interactive environment that enables you to
perform computationally intensive tasks faster than with traditional programming languages
such as C, C++, and FORTRAN. MATLAB allows for easy numerical calculation and
visualization of the results without the need for advanced and time consuming programming.

The disadvantage is that it can be slow, especially when bad programming practices are applied.

3.3 Performance Comparison of Matrix Multiplication using C and Matlab in
CPU, and CUDA in GPU

In order to show the advantage of CUDA in GPU, we use matrix multiplication to test the
performance of C programming and Matlab programming in CPU and C programming in CUDA
in GPU. We set up a simple test scenario, two matrixes multiplication, with each of matrix is
anxndimension matrix. The result shows in the following Figure 9. We can find it clearly shows
that the trend of time consumption using C program is exponentially increased with the matrix
size increasing. On the other hand, the speed of CUDA program is thousands of times faster
than C program when matrix size is large. For example, C program in CPU takes 9 minutes
when the matrix size is 2048x2048 , while CUDA in GPU takes 0.3 seconds. Matrix
multiplication is the best example to show the advantage using of CUDA than using C program
in CPU. The result also shows the property of GPU. The number of thread blocks in a grid is
typically dictated by the size of the data being processed rather than by the number of
processor in the system. When we use GPU sufficiently, which means the parallel threads used
are almost maximum threads the device allowed, the performance of GPU is better. And
reading and writing data with global memory is much more time consuming in GPU than reading
and writing data in CPU. That's why CUDA programming is slower then C programming in CPU
when matrix size is small. When matrix size is16x16, the running time of C programming in
CPU is almost 0, but the running time of CUDA GPU is 1.7 milliseconds.

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

3. Graphics Processing Unit (GPU) Computing 14

GPU and CPU Performance
60000
50000 -
§ 40000
= .
§ 30000 - =@—C program in CPU
= —— CUDA program in GPU
£ 20000
MATLAB in CPU
10000 -
e MATLAB Single in CPU
o] F =2 £ 3 -5
16 64 256 512 1024 2048
matrix size
GPU and CPU Performance
400
350 -
" 300 -~
2 250 -
S
£ AW —e—CUDA program in GPU
T % —#—MATLAB in CPU
100 o
50 MATLAB Single in CPU
0 —i—llgG
16 64 256 512 1024 2048
matrix size

Figure 9: Performance of Matrix Multiplication

At the same time, we can also find that, Matlab is also very fast to do simple matrix
computing. The Matlab programming using original format (double) is a little slower than CUDA.
But as we known, CUDA just support float point computation. When we use single value to do
matrix multiplication, Matlab is faster than CUDA (see Figure 9). So this example also shows

that Matlab is very efficient in the simple numerical calculation.

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

4. Monte Carlo Simulation to Estimate Value at Risk 15

4. Monte Carlo Simulation to Estimate Value at Risk

In this section, we will describe the detail of VaR estimation using Monte Carlo and how
to implement it in CUDA. The algorithm of Monte Carlo Simulation to estimate VaR is showed in

the following Table 1. The input is portfolio data, which includes historical data and the close
price of the previous day V, on each asset in the portfolio. Based on the historical data, we can
get profit-loss rate, which is used for further simulation. The second step is to calculate profit-
loss rate int+1time using the multivariate normal distribution, and wheret +1 profit-loss rate

has ms samples. Based onV, and t+1 profit-loss rate, we will then calculate t+1 portfolio

priceV,

1.1 - Finally, we will sortV,

1.1 and output the VaR of the confidence level.

Table 1: Algorithm for VaR estimation using Monte Carlo

Algorithm of VaR estimation using Monte Carlo

Input: Portfoliow € R"
Output: VaR of portfolio w .

Procedure:
1. Let V, be the value of the portfolio at the close of the previous day; let I‘tm'n be the historical
profit-loss rate.

2. Simulate M draws r** from the multivariate normal distribution of returns on the

samples ms,n ?

underlying.

3. Ateachdrawr™ apply theoretical valuation formulas to obtainV,_, , the value of the

ms,n’ t+1°

portfoliow if prices changed by I,

s,t+1 *

4. Sortthe M values forV,,, , and read of the percentile value, which is the desired VaR.

samples

In the following part, we will present the detail implementation to use parallel computing

to do Mente Carlo VaR estimation. We assume there are n stocks; every stock has m business

day historical data; set the stock vector X, X, ---, X, each vector is m dimension.

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

4. Monte Carlo Simulation to Estimate Value at Risk 16

4.1 Calculate Profit-Loss-Rate

According to the algorithm listed above, the first step is to get the historical data

forn stocks, the opening and the close stock price of a business day. And then calculate the

profit-loss rate (pIRate).
plRate = (close —open) / open (4.2)

The parallel calculation is implemented as following Figure 10, there are

total mxn threads in parallel, the block i and the thread |
calculates plRate, ; = (close, ; —open, ;) /open,; i=1---,n;j=1--m.
n Threads
= plia plis | .. Plina Plin
m == Plaa plays Plon1 Plan
Blocks : Pl Plap, | . Plsn1 Plan
$ plm,l le,z plm,n—l plm,n

Figure 10: Profit-Loss-Rate parallel algorithm

4.2 Multivariate Normal Distribution

After obtaining the profit-loss rate form business day, the next is to assume X stocks fit to
multivariate normal distribution, and generate ms samples r”lmsvn :

The multivariate normal distribution is a generalization of the one-dimensional (univariate)

normal distribution to higher dimensions. A random vector is said to be multivariate normally

distributed if every linear combination of its components has a univariate normal distribution.

If we have a p random vector X that is distributed according to a multivariate normal
distribution with population mean vector 4 and population variance-covariance matrix 2, then

this random vector, X , will have the joint density function as shown in the expression below:

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

4. Monte Carlo Simulation to Estimate Value at Risk 17

(x) = (2—12)*”2 ISV exp{et (X —)" (X -)} 4.2)
o 2

And the distributionis X ~ N(x,%) |

A widely used method for drawing a vector X from the n-dimensional multivariate normal

distribution with mean vector x and covariance matrix X (required to be symmetric and

positive-definite) works as follows:

(1) Find any matrix A such that AA" =X . Often this is a Cholesky decomposition, but a

square root of X would also suffice; here we use Singular Value Decomposition instead.

(2) Let Z=(Z,,---Z,) be a vector whose components are nindependent standard normal

variates (which can be generated by using the Box-Muller transform).

(3) Letmvd =u+ A*Z . This has the desired distribution due to the affine transformation

property.

According to this theory, generate a multivariate normal distribution matrix, which has

ms rows, can be achieved in the following steps.

4.2.1 Mean (#)

The mean is the arithmetic average of a set of values.

According to Eq. (4.3), the easiest way is to setn threads. But it wastes lots of resource,

which not sufficiently use all the blocks and threads. So | setn blocks, and every block

hasm/32 +1threads, each threads calculate pl, ; + pl,,, ; +---+ pl, 5, ; . (Figure 11)

=i2xij i=12n (4.3)
m

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

4. Monte Carlo Simulation to Estimate Value at Risk 18

m/32+1
Threads

[—=J

—

n Blocks
pli Pl plin plin
Pl pl: Plna | Pl
plazs | Plaza Pz Plazn
Plizy | plas Plhasns | Plan
Plsss | Plesa Pleans | Ploan
Plesa plesz Ples,na Plesa
plm_! le.z plm,n-l plm,n
’ mu;, | mu; | o | Mugg | mu,

Figure 11: Mean parallel algorithm

4.2.2 Covariance(Z)

Covariance is a measure of how much two variables change together as defined in

Eq.(4.4).

Z:cov(Xi,Xj):%Zn:(Xi -u)(X;-u;) i,j=12,-n (4.4)

Using the same idea as mean to do parallel computing of covariance, there

are nxn blocks, and every block has m/32+1 threads,

(pl; =)(Pl ;= 4;) + (Pl —) (Pl — 44) +

m/32+1
Threads

n#*n
Blocks

Figure 12: Covariance parallel algorithm

each threads -calculate

"'+(p|t+31,i _/Ui)(plt+3l,j _'I'lj)' (Figure 12)

- plis plis Plina plin
Pl Pl Plan Plan
Pliza | Plaza Plizaa Pliza
== | pl Pl Plazn Plaan
Plsas | Plsaz Plea.n1 Plean
== | plsss | plass Plgs,n-1 Plas.n
p[m,l le,Z le.n 1 plrn.n
&> | sigmajy | sigmag; sigma; .1 | sigmay,
.¢ 5i8m3-n.1 Sigmarn,l SiEmam,n 1 Sigm am,n

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

4. Monte Carlo Simulation to Estimate Value at Risk 19

4.2.3 Singular Value Decomposition (Two-sided Jacobi Scheme[21])

In order to get a matrix A, where AA =X the easiest way is Cholesky decomposition,

but, unfortunately, the numbers can become negative because of round-off errors, in which case
the square-root algorithm cannot continue. So in this situation, using singular value

decomposition is a good choice.

We consider the standard eigenvalue problem
Bx = Ax (4.5)
where Bis a real N*N -dense symmetric matrix, which is covariance Z in this project.
One of the best known methods for determining all the eigenpairs of Eq. (4.6) was developed by

the 19th century mathematician, Jacobi. We recall that Jacobi’'s sequential method reduces the

matrix B to the diagonal form by an infinite sequence of plane rotations

B.,=V,BV,, k=12 (4.6)

cosd O

o

sin@

V= : : : (4.7

o
o

—siné@ cosd

where B,=B and V, =V, (i, J.6) s a rotation of the (i, j)— plane where Vi =V} =¢, =c0s6;

and Vj =-Vj=s,=singj . The angle 6 is determined so that bj”=b;"=0
k

2b; 1
ortan 219:,-(=— ,where‘eﬂﬁ—ﬁ.
b b 4

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

4. Monte Carlo Simulation to Estimate Value at Risk 20

1
For numerical stability, we determine the plane rotation by Cy Zﬁand S« =Gt ,
1+t 7

signa
where & = €0t 20, andt, Zg—kz. Each By, remains symmetric and differs from B, only
la|++/1+2a,

in rows and columns 1and J , where the modified elements are given by
biiiﬁl = bili(+tkbiij(
by = b, — b
byt =chby +sbi r=i,]
bit =—sby +cbi r=i,j
bilj<+1 _ b;‘fl -0

So, matrix B can be decomposed into B=VAV' =(VA"*)(A"V)" | where 4 diagonal
matrix, A=V,---V,---V\B V=&V --V,---VVE = and E is unit matrix. We can
get A=Vﬂll2 and AAT =2,

Multiplicative congruential Jacobi rotation is matrix multiplication. So we can do parallel

computing as matrix multiplication.

4.2.4 Uniform Distribution (4)

Multiplicative congruential algorithm is the basis for many of the random number

generators in use today. It involves three integer parameters,a, ¢, and m, and an initial value,

X, , called the seed. A sequence of integers is defined by

Xy =@*X, +C mod m (4.8)

k+1

Some of the linear or multiplicative generators which have been suggested are the

following Table 2:

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

4. Monte Carlo Simulation to Estimate Value at Risk 21

Table 2: Some Suggested Linear and Multiplicative Random Number Generators [22]

m a C
2% -1 7° = 16807 0 Lewis, Goodman, Miller (1969)IBM
2% -1 6303600016 0 Fishman (Simscript I1)
2% -1 742938285 0 Fishman and Moore
2% 65539 0 RANDU
2% 69069 1 Super-Duper (Marsaglia)
2% 3934873077 0 Fishman and Moore
2% 3141592653 1 DERIVE
2% 663608941 0 Ahrens (C-RAND)
2% 134775813 1 Turbo-Pascal, Version 7 (period= 2%)
2% 5% 0 APPLE
10%-11 | 427419669081 0 MAPLE
2> 13" 0 NAG
2% -1 272" 0 Wu (1997)

In the 1960s, the Scientific Subroutine Package (SSP) on IBM mainframe computers
included a random number generator named RANDU. It has parameters a = 65539, ¢ = 0, and
m = 23, After test all the method list in the table, RANDU is one of the best methods to generate
uniform random number. So in this project, | use RANDU to generate pseudo random number.
The parallel computing algorithm shows in Figure 13 . There are ms /1000 +1blocks and every

block has nthreads, and each thread generate random number separately.

n Threads
= Ugg Uz | e Ugng Ui
Uz Uz Uon1 Uon
ms/1000 + 1

Blocks U1goo,1 | Utooo2 | - | Yiooo,n1 | Uiooon
[——m— U1go1,1 | Uioo12 | - | Yioorn1 | Uiooin
Uz000,1 | Y20002 | - | Y2000,n1 | Y2000,n

ums,l ums,z ums,n-l ums,n

Figure 13: Uniform Distribution parallel algorithm

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

4. Monte Carlo Simulation to Estimate Value at Risk 22

4.2.5 Box-Muller

A Box—Muller transform (by George Edward Pelham Box and Mervin Edgar Muller
1958[23]) is a method of generating pairs of independent standard normally distributed (zero
expectation, unit variance) random numbers, given a source of uniformly distributed random

numbers.

Suppose U, and U, are independent random variables that are uniformly distributed in

the interval (0, 1]. Let
Z,=R*cosd=,/-2InU, cos(2~U,) (4.9)
and
Z,=R*sin@=,/-2InU, sin(27U,) (2.8)

ThenZ, and Z, are independent random variables with a normal distribution of standard

deviation 1. The parallel computing algorithm shows in Figure 14. There are msblocks and
every block has n/2threads. We don't use nthreads in this algorithm, because reading data

from memory is time consuming.

n/2 Threads

R

—_ U Ui Ugn1 Ui
—_— Up1 Uza Uzn1 Uzn
ms u u u u
0 3,1 32 301 3n
Blocks
ums,l ums,2 ums,n-l ums,n

Figure 14: Box—Muller parallel algorithm

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

4. Monte Carlo Simulation to Estimate Value at Risk 23

4.2.6 Matrix Multiplication(mvd =u+A*Z

>
>

+«——
BLOCK_SIZE BLOCK_SIZE

H

»>

-—
BLOCK_SIZE

ha

+— ‘-~
BLOCK_SIZE BLOCK_SIZE BLOCK_SIZE

wh wB

- >+

Figure 15: Matrixes Multiplication parallel algorithm

As illustrated in Figure 15, Cgyp is equal to the product of two rectangular matrices: the
sub-matrix of A of dimension (WA, block_size) that has the same line indices as Cqy,, and the
sub-matrix of B of dimension (block_size, wA) that has the same column indices as Cgy. In
order to fit into the device’s resources, these two rectangular matrices are divided into as many
square matrices of dimension block_size as necessary and Cg, is computed as the sum of the

products of these square matrices. [16]
In this project,mvd =u+Zx A, Zismsxn, Ais nxn, gis 1xn.

Thread Number = BLOCK_SIZE * BLOCK_SIZE and Block Number = ms / Block_SIZE

N . . .
The value of MVd jg' msn , we mentioned in the algorithm.

4.3 Calculate Portfolio Value

portofolioi:le(1+mvdi’j)xlc':lstpricej><sharesj i=1---,ms; j=1---,n
J=!

portofolioismsxn, mvd ismsxn, lastpriceislxn, sharesis 1xn.

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

4. Monte Carlo Simulation to Estimate Value at Risk 24

Because this is a matrix multiply two vectors, the fastest and easiest way to do parallel is

n
to set msthreads, each of which calculate portofolio, =Z(l+ mvd, ;) x lastprice; x shares; (see

j=1
Figure 16).
$ POq1 PO 12 po 1,1 po Ln
o [e} 05, o
ms Threads PO | PO2 PO2n1 | PO2n
$ POms1 | POms,2 | - POmen-1 POmsn

Figure 16: Calculate portfolio parallel algorithm

4.4 Merge sort

In computer science, merge sort is a sorting algorithm for rearranging lists into a
specified order. It can be seen as a good example of the divide and conquer algorithmic
paradigm.

Conceptually, merge sort works as follows steps, and a simple example is showed in
Figure 17:

¢ Divide the unsorted list into two sublists of about half the size.
e Sort each of the two sublists.

e Merge the two sorted sublists back into one sorted list.

e[[a[:[[a[x]

EIEI

= |[=#]|[=]]=]]>]

|2? 38

Figure 17: Merge Sort algorithm example

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

4. Monte Carlo Simulation to Estimate Value at Risk 25

If the number of sorting elements is power of 2, merge sort is the fastest algorithm in all

sorting algorithms. The time complexity of parallel computing is
(O(1+2+---+1g(n)) =0(lg(n)?)). For example, whenn =8, the parallel loop steps are 6, while

odd-even needs parallel loop step are 8 (Figure 18). And whenn =64, the parallel loop steps

for merge sort are 21.

So in this project, we use merger sort to do sorting parallel computing.

S T ! S T T
"2 ! I S T R
P4 T vl ‘4 P4 ¢¢¢¢¢¢¢¢
R T O A S T
P7 1 vlvy P7 ¢ ¢ ¢ ¢
g 1 1 I g Y Y ¥ ¥

(a) Merge Sort (b) Odd-Even Sort

Figure 18: Parallel algorithm with N =38

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

5. Experiments 26

5. Experiments

This project is to test the performance of Monte Carlo simulation using GPU and CPU.
We don’t use very complex finance model; and we assume that all the assets in the portfolio are
stocks, no future, option, and any other derivatives. And this model is used to estimate the

Value at Risk in a day.

The computer we used to do simulation has the following properties. CPU processor is
Intel Xeon, E5410 @2.33GHz (2 processors), installed memory (RAMO is 8.00 GB (3.25 GB
usable), system type is 32-bit operating system. GPU is NVIDIA Quadro FX 3700, and its main
performance shows in Table 3. NVIDIA Quadro FX 3700 has 128 parallel processor cores, so it
can run 128 blocks in parallel. And the maximum number of threads per block is 512, so the

maximum number of threads in a grid is 65536.

Table 3 :NVIDIA Quadro FX 3700 Performance

Mobile Platform CUDA Parallel | Memory | Memory | Memory Memory

Generation Processor Size Type Interface | Bandwidth
Cores
Centrino 2 128 1GB GDDR3 | 256-hit 51.2GB

We use CUDA and Matlab to build the Monte Carlo Model separately. The reason why
we not use C program is that: first, we can very easily get current and historical stock price with
Matlab package function. Using following codes in Matlab, we can get the last day close price of
a stock, and the history open price and close price in a time period. The following Matlab codes
use ‘fetch’ to get ‘GE’ stock information from Yahoo Finance. Open and Close historical data of
‘GE’ are from 06/01/2008 to 06/30/2010.

y = yahoo;

last = fetch(y, 'GE','Last";

open = fetch(y, 'GE', 'Open’, '06/01/2008', '06/30/2010";
close = fetch(y, 'GE', 'close’, '06/01/2008', '06/30/2010";

Second reason is that we assumed the simplest condition, so Matlab program is very

easy, and if we can get the result that CUDA is faster than Matlab in this case, it much faster

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

5. Experiments 27

than C program absolutely, according to the conclusion we get from the matrix multiplication

example.

Since loading data using Matlab is very slow when the data is very large, so we saved all

the data in EXCEL, and the program read from EXCEL when computing.

We conduct two different sets of experiment to do Monte Carlo Simulation. In the first
experiment, we use n =16 stocks, and in the second experiment, we use n =192 stocks. All the

history data of assets are from 06/01/2008 to 06/30/2010. The open matrix is the open price of
the assets in the business day from 06/01/2008 to 06/30/2010, which is 525x n matrix; and the
close matrix is the open price of the assets in the business day from 06/01/2008 to 06/30/2010,
which is also 525 x n matrix. The lastprice matrix is the previous business day price of the assets,
assuming current day is 10/30/2010, lastprice is also1xn matrix. The shares matrix is the

shares of every asset, which is alsolx n matrix. And we assume the confidence level is 95%. So

the output is the maximum loss in the 95% confidence level on current day 10/30/2010.
Result and Discussion

First we discuss the result of Monte Carlo Simulation and Historical Method. Figure 19 (a)
is the frequency of Monte Carlo simulated profit-loss rate of the portfolio. In the 99% confidence
level in a day, the loss rate is 4.5%, and in the 95% confidence level, the loss rate is between
3.0% and 3.5%. Figure 19 (b) is the frequency of historical method profit-loss rate of the
portfolio. In the 99% confidence level in a day, the loss rate is 7%, and in the 95% confidence

level, the loss rate is 3.0%.

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

5. Experiments 28

Frequency Distribution of Monte Carlo Simulation
(65536 samples)

7000

6000

5000

4000
3000 957
2000 P i
S |
1000 2% 2 I
7 /7 sl i
0 = mBHN i B § I

go e de o g0 g0 g g6 g0 g0 g g g0 g g g g0 ge o g do g
JC AR S A R SIS S G

percentage

(a)
Frequency Distribution of Historical Method
(625 samples)
90
80
70
60
a0
40 95%
30 "Fi‘Nh“*‘\---ss\u
20 O I
/99 o \ I
" : //\\ I
S et anan LLRRRNLRRAN] laatana .
de o e de o o o o o J o e de o o e o o J o o de
FCHIC A I PG P I K KKK I S K
percentage

(b)
Figure 19: Frequency Distribution of Monte Carlo Simulation and Historical Method

Then we discuss about the running time of Monte Carlo Simulation in GPU using CUDA
programming and in CPU using Matlab. Figure 20 (a) is the running time when assets number is
16, Figure 20 (b) is the running time when assets number is 192. We can find that when assets
number is 16, CUDA is two times faster than Matlab, and when assets number is 192, CUDA is
five times faster then Matlab. This result shows GPU is much faster than CPU. According to the
experiment about matrix multiplication, we know that Matlab is very fast in simple matrix
computing. Because we assume very simple condition to do Monte Carlo Simulation, Matlab
just needs ten lines of programming to make this model, while in CUDA, we need hundreds of

lines. We don’t do the C programming, because CUDA will be thousands of times faster than C

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

5. Experiments 29

absolutely. There are lots of matrix operations in the programming, and the largest matrix size

is65536x192 . In this case, C programming will be very slowly.

Running Time of Monte Carlo Simulation
(16 assets)
0.14
0.12] — — — — 1 —
0.1 4+
4008 Omatiab
§ 0.06 H mcuda
20
0.04 1
0.02 —
[] -
1 2 3 4 5 6 7 8 9 10
(a)
Running Time of Monte Carlo Simulation
(192 assets)

7

6 4 _

5 - I—
€471 || [omatian
E 3 | | |®cuda

2 4 _

0+

1 2 3 4 5 6 7 8 9 10
(b)

Figure 20: Running Time of Monte Carlo Simulation

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

6. Conclusion 30

6. Conclusion

In this paper, we have implemented the Monte Carlo Simulation based VaR estimation
using CUDA. This paper describes the detailed computing algorithm by leveraging the parallel
computation capability of CUDA. We run two different experiments to compare CUDA results
and Matlab based results, with one portfolio having 16 assets and the other having 192 assets.
The results show that using CUDA in GPU can greatly improve the performance of Monte Carlo

Simulation.

In the future, we will consider to achieve the real-time VaR estimation, and to build more

complicated financial model to support most of VaR cases.

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

7. Reference 31

7. Reference

[1] Jorion, P. (1997). “Value at Risk”, The New Benchmark for Controlling Derivatives Risk,
McGraw Hill, New York.

[2] Ashok Srinivasan, Ajay Shah (2001): “Improved techniques for using Monte Carlo in VaR

estimation”, http://www.cs.fsu.edu/~asriniva/papers/nsefinal.pdf

[3] Stephen Lawrence (2000): “Value at Risk Incorporating Dynamic Portfolio Management”, No

147, Computing in Economics and Finance 2000 from Society for Computational Economics.

[4] DOWD, K. (1998): “Beyond Value-at-Risk: The New Science of Risk Management”, John
Wiley & Sons, London.

[5] SAUNDERS, A. (1999): “Financial Institutions Management: A modern Perspective (3rd ed.)”,

Irwin Series in Finance, McGraw-Hill, New York.

[6] DUFFIE, D. and J. PAN (1997): “An Overview of Value-at-Risk”, Journal of Derivatives, Vol.
4, No. 3, 7-49.

[7] CARDENAS, J., E. FRUCHARD, J.-F. PICRON, C. REYES, K. WALTERS, W. YANG (1999):
“Monte-Carlo within a Day: Calculating Intra-Day VAR Using Monte-Carlo”, Risk, Vol. 12, No. 2,
55-60.

[8] ROUVINEZ, C. (1997): “Going Greek with VAR”, Risk, Vol. 10, No. 2, 57-65.

[9] JAMSHIDIAN, F. and Y. ZHU (1997): “Scenario Simulation: Theory and Methodology”,
Finance and Stochastics, Vol. 1, No. 1, 43-67.

[10] ABKEN, P. (2000): “An Empirical Evaluation of Value-at-Risk by Scenario Simulation”,
Journal of Derivatives, Vol. 7, No. 4, 12-29.

[11] Embrechts, P. Klippelberg, C. and Mikosch, T. (2003): “Modelling Extremal Events for

Insurance and Finance” Springer-Verlag, 648 pages, corr. 4th printing, 1st ed.

[12] Lucas, A. and P. Klaassen (1998): “Extreme Returns, Downside Risk, and Optimal Asset

Allocation”. Journal of Portfolio Management, Fall, 71-79.

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

7. Reference 32

[13] Bollerslev, T., R.F. Engle and D.B. Nelson (1994), “ARCH Models,” in R.F. Engle and D.
McFadden (eds.), Handbook of Econometrics, Volume IV, 2959-3038. Amsterdam: North-
Holland.

[14] Andrey Rogachev, (2002): “Dynamic Value-at-Risk”,
http://www.fmpm.org/docs/6th/Papers 6/Papers Netz/SGF658b.pdf

[15] Dean Fantazzini (2009): “Value at Risk for High-Dimensional Portfolios: A Dynamic
Grouped-T Copula Approach”, The VAR IMPLEMENTATION HANDBOOK, McGraw-Hill, pp.
253-282, 2009

[16] “CUDA programming guide”, version 3.0, 2/20/2010

[17] Michael Feldman (2008): “GPUs Finding A New Role on Wall Street”,
http://www.hpcwire.com/specialfeatures/hpws08/features/GPUs Finding A New Role on Wall
Street.html

[18] Greg N. Gregoriou (2009): “The VaR implementation handbook” McGraw-Hill; 1 edition

[19] Matthew Dixon, Jike Chong, Kurt Keutzer (2009): “Acceleration of market value-at-risk
estimation”, Proceeding WHPCF '09 Proceedings of the 2nd Workshop on High Performance

Computational Finance.

[20] J.D. Cabedo and I. Moya (2003): “Estimating oil price Value at Risk using the historical
simulation Approach”, Energy Economics, v25, 239-253.

[21] Erricos John Kontoghiorghes (2005): “Handbook of Parallel Computing and Statistics”,
Chapman and Hall/CRC; 1 edition

[22] Don L. McLeish (2005): “Monte Carlo Simulation and Finance”, Wiley; 1 edition

[23] G. E. P. Box and Mervin E. Muller (1958): “A Note on the Generation of Random Normal
Deviates”, The Annals of Mathematical Statistics, Vol. 29, No. 2 pp. 610-611(wiki)

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

8. Appendix

33

8. Appendix

(1) Value at Risk . m

function [current VaRmc VaRnor] = Stock192_VaR(p)

nvmex -f nvmexopts.bat Value_at Risk Stock192.cu -IC:\cuda\include -LC:\cudallib -lcufft -lcudart;

so = xlsread('C:\Users\CUDA_admin\Desktop\ww\VaR\VaR program\stockprice','SQ','/A2:CR526");

sc = xIsread('C:\Users\CUDA_admin\Desktop\ww\VaR\VaR program\stockprice','SC','/A3:CR527");
last = xIsread('C:\Users\CUDA_admin\Desktop\ww\VaR\VaR program\stockprice','SC','’A530:CR530");
so = single([so s0));

sc = single([sc sc));

last = single([last last]);

share = [10; 20; 30; 10; 15; 5; 25; 60; 25; 20; 18; 7; 9; 13; 34; 26];

share = [share; share; share; share; share; share; share; share; share; share; share; share];

share = single(share);

current = sum(last .* share");

% CUDA-GPU
tic;
VaRmc= Value_at_Risk_Stock192(so, sc, last, share, single(p));

toc;

% Matlab-CPU
tic;
level = floor(65536*(1-p));
plRate = (sc - s0) ./ so;
mu = mean(plRate,1);
sigma = cov(plRate);
mvd = single(mvnrnd(mu, sigma, 65536));
fori=1:192
stockPrice(;, i) = last(i) * (1 + mvd(, i));
end
portfolioPrice = stockPrice * share;
s= sort(portfolioPrice);
VaRnor = s(level);

toc;

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

8. Appendix 34

(2) Value_at_Risk_Stock192.cu
#include "mex.h"
#include "math.h"
#include "cuda.h”

#include "cuda_runtime.h"

#define Pl 3.14159265358979f
#define BLOCK_SIZE 16
#define MAX 32768

/ * Profit and Loss Rate o */
__global__ void profitLossKernel(float *open, float *close, float *plRate, int mrows, int ncols)
{

int xIndex = blockDim.x * blockldx.x + threadldx.x;

int yindex = blockDim.y * blockldx.y + threadldx.y;

if(xIndex < mrows && yIndex < ncols)
plRate[ylndex * mrows + xIndex] = (close[ylndex * mrows + xIndex] - open[ylndex * mrows +

xIndex])/open[ylndex * mrows + xIndex];

}

/ mu /
__global__ void meanParallelKernel(float *plRate, float *mu, int mrows, int k)
{

int yindex = blockldx.x;

int xIndex = threadldx.x * k;

inti=0;

extern __shared__ float shared][];
shared[threadldx.x] = O;
for(i=0; i <k; i++)
{
if((xIndex + i) < mrows) // && yIndex < ncols

shared[threadldx.x] += pIRate[yIndex * mrows + (xIndex + i)];

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

8. Appendix 35

__syncthreads();

mu[ylndex] = 0;

for(i=0;i<32; i++)
mu[ylndex] += shared]i];

mu[ylndex] = mu[ylndex] / mrows;

/

{

sigma /
global__ void covParallelKernel(float *plRate, float *mu, float *sigma, int mrows, int ncols, int k)

int xIndex = threadldx.x * k;

int i;

extern __shared__ float shared[];
shared[threadldx.x] = O;
for(i=0; i <k; i++)
{
if(xIndex + i) < mrows) // && yIndex < ncols
{
int x1 = blockldx.x * mrows + (xIndex + i);
int x2 = blockldx.y * mrows + (xIndex + i);
shared[threadldx.x] += (pIRate[x1] - mu[blockldx.x]) * (pIRate[x2] - mu[blockldx.y]);

__syncthreads();
sigma[blockldx.y * ncols + blockldx.x] = O;
for(i=0;i<32;i++)

sigmalblockldx.y * ncols + blockldx.x] += shared][i];

sigma[blockldx.y * ncols + blockldx.x] = sigma[blockldx.y * ncols + blockldx.x] / mrows;

/***************************SV D**********************************/

{

global__ void SingluarValueDecompositionKernel(float *B, float *F, int n)

int j = threadldx.y;

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

8. Appendix

__shared__ float A[192][4];//p=0/1;q=2/3
__shared__ float E[192][2];//p=0;0=1
int p,q,l;
for(l=0;1<3; 1 ++4)
{
for(p = 0; p < n; p++)
{
for(@=p+1; g <n; g++)
{
ifp==0&& q==1&&1==0)
{
Fi*n+j =1,
}
__syncthreads();

if(abs(B[g*n+p]) >0.00001)
{
if(threadldx.x == 0)
{
A[][0] = B[* n + p];
A[I[]=B[p* n +JJ;
E[][0] = F[p * n +];
}
else if(threadldx.x == 1)
{
Alll[2] = B[*n +q];
A[IBT =B[g* n +]J;
E[I[1] = Flg*n +]];
}

__syncthreads();

float w, t, cos, sin;

w = (B[p*n+p] - Blg*n+q]) / (2 * Blg*n+p]);

t = (w/absw)) / ((abs(w) + sqrt(1 + w * w)));
cos =1/sqrt(1 +t*t);

sin =t/sqgrt(1 +t*t);

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

36

8. Appendix 37

if(threadldx.x == 0) // i=p
{
ifj == p)
{
B[p*n+p] = A[p][0] * cos * cos + A[q][2] * sin * sin + A[q][0] * 2 * sin * cos;
Flp*n+p] = E[p][0] * cos + E[p][1] * sin;
}
else if(j==q)
{
Blg*n+p] = 0.5 * (A[q][2] - AIp][O]) * 2 * sin * cos + A[g][0] * (2 * cos * cos - 1);
Fla*n+p] = -E[p][0] * sin + E[p][1] * cos;
}
elseif(j!l=p &&j!=q)
{
B[j*n+p] = A[j][0] * cos + A[j][2] * sin;
B[p*n+j] = A[j][1] * cos + A[j][3] * sin;//else if(j==p && i = p && i = Q)
Flp*n+j] = E[i][0] * cos + E[j][1] * sin;

}
else if(threadldx.x == 1) // i=q
{
ifG ==q)
{
B[g*n+q] = A[p][0] * sin * sin + A[q][2] * cos * cos - A[q][0] * 2 * sin * cos;
Flg*n+q] = -E[g][0] * sin + E[q][1] * cos;
}
else if(j == p)
{
B[p*n+q] = 0.5 * (A[q][2] - A[p][O]) * 2 * sin * cos + A[g][0] * (2 * cos * cos - 1);
Flp*n+q] = E[q][0] * cos + E[q][1] * sin;
}
elseif(j!l=p &&j'=q)
{
B[j*n+q] = - A[j][O] * sin + A[j][2] * cos;
Blg*n+j] = - A[J][1] * sin + A[j][3] * cos;//else if(j==q && i1 !'=p && i !=Q)
Flg*n+j] = - E[j][0] * sin + E[j][1] * cos;

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

8. Appendix

}
YI end-if(abs(A[g*n+p]) >0.000001)

__syncthreads();

}

__syncthreads();

__global__ void GetSVD(float *SVD, float *F, float *B, int n)
{
int j = threadldx.x;
for(int k = 0; k < 2; k++)
{
inti = gridDim.x * k + blockldx.x;
float x = sqrt(B[j*n+j]);
if(x < 0.000001)
X =X * 100000;
else if(x < 0.00001)
X =X * 10000;
else if(x < 0.0001)
X =X *1000;
else if(x < 0.001)
X =x *100;
else if(x < 0.01)
X =x*10;

SVD[j*n+i]=Fj*n+i]*x //[F[j *n +i];//

/ Uniform Distribution /
__global__ void UniformKernell(float *ND, float *ud, int n, int m, float M)
{

int j = threadldx.x;

int lambda, mu;

lambda = 65539;

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

8. Appendix 39

mu = 0;
int g = blockDim.x;
for (inti=0;i<1000; i++)

{
if(blockldx.x * 1000 + i < m)
{
if(il == 0)
{
ND[j * m + (blockldx.x * 1000 + i)] = ud[j + blockldx.x * n];
}
else
{
int x = floor((lambda * ND[j * m + (blockldx.x * 1000 + i) - 1] + mu) / M);
ND[j * m + (blockldx.x * 1000 + i)] = lambda * ND[j * m + (blockldx.x * 1000 + i) - 1] + mu - x * M;
if(ND[j * m + (blockldx.x * 1000 + i)] == 0)
NDJ[j * m + (blockldx.x * 1000 +i)] = 11111111;
}
}
}

__global__ void UniformKernel2(float *ND, int n, int m, float M)

{
inta=m/ gridDim.x +1;
for(inti=0; i< a; i++)
{
int xIndex =i * gridDim.x + blockldx.x;

int yindex = threadldx.x;
if(xIndex < m && ylndex < n)

{
ND[ylndex * m + xIndex] /= M;

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

8. Appendix

40

/

{

Normal Distribution /

global__ void BoxMullerKernel(float *ND, int n, int m)

inta=m/ gridDim.x +1;
for(inti=0;i<a; i++)
{

int xIndex =i * gridDim.x + blockldx.x;

int yindex = threadldx.x;

if(xIndex < m && (yIndex + n/2) < n)

{
float r = sqrt(-2.0f * logf(ND[yIndex * m + xIndex]));
float phi = 2 * P1 * ND[(yIndex + n/2) * m + xIndex];
ND[ylndex * m + xIndex] = r * __cosf(phi);
ND[(ylndex + n/2) * m + xIndex] = r * __sinf(phi);

/

{

Matrix Multiplication C=A*B + mu * x|
global__ void Muld(float* A, float* B, float *mu, int hA, int wA, float* C)

int bx = blockldx.x;
int by = blockldx.y;
int tx = threadldx.x;

int ty = threadldx.y;

for (inti=0;i<hA/(BLOCK_SIZE * gridDim.x); i++)
{
int rx =i * gridDim.x * BLOCK_SIZE;
int xIndex = rx + blockldx.x * blockDim.x + threadldx.x;
int yindex = blockldx.y * blockDim.y + threadldx.y;
if(xIndex < hA && ylndex < wA)
{
int aBegin = rx + BLOCK_SIZE * bx;
int aEnd = hA * (gridDim.y - 1) * BLOCK_SIZE + aBegin;

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

8. Appendix 41

int aStep = hA * BLOCK_SIZE;

int bBegin = wA * BLOCK_SIZE * by;
int bStep = BLOCK_SIZE;

float Csub = 0;

for (int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep)
{

__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

As[tx][ty] = Ala + hA * ty + tX];

Bs[tx][ty] = B[b + WA * ty + tX];

__syncthreads();

for (int k = 0; k < BLOCK_SIZE; ++k)

Csub += As|[tx][k] * Bs[k][ty];

__syncthreads();
}
ClyIndex * hA + xIndex] = Csub + mu[ylndex];
}
__syncthreads();
}
}
/ Portfolio Price /

__global__ void portfolioPriceKernel(float *lastPrice, float *MVD, float * share, float *portfolioPrice, int

mrows, int ncols, int k)

{

int rx = blockDim.x * blockldx.x + threadldx.x;

int xIndex;

for(inti =0;i<k; i++)
{
xIndex = rx + i * gridDim.x * 16 * 16;

if(xIndex < mrows)

{
float temp = 0;
for(intj = 0; j < ncols; j++)
{

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

8. Appendix

42

temp += lastPrice[j] * (1 + MVD[j * mrows + xIndex]) * share[j];

}
portfolioPrice[xIndex] = temp;
}
}

}
/ Merge Sort /
__global__ void mergeSortKernel(float *array, int i, int j)
{

int xIndex = blockldx.x * blockDim.x + threadldx.x;
int multiple = (int) pow(2.0, i);

int d = (int) pow(2.0, j-1);

int step = multiple / 2 / d;

int x1;

float temp;

if(step == 1)
{
x1 = 2 * xIndex;
}
else
{
if(xIndex < step)
x1 = xIndex;
else if(xIndex >= step && xIndex % step == 0)
x1 = xIndex * 2;
else

x1 = xIndex * 2 - xIndex % step;

if((x1 / multiple) % 2 == 0) //x1/multiple is even, min up and max down

{
if(array[x1] > array[x1 + step])

{
temp = array[x1];

array[x1] = array[x1 + step];

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

8. Appendix 43

array[x1 + step] = temp;

}

else //x1l/multiple is odd, min down and max up

{

if(array[x1] < array[x1 + step])
{

temp = array[x1];

array[x1] = array[x1 + step];

array[x1 + step] = temp;

void mexFunction(int nlhs, mxArray *plhs|[], int nrhs, const mxArray *prhs[])

{

float *open, *close, *lastPrice, *share, *level; //five inputs

if (nrhs 1=5)

mexErrMsgTxt("Five input required!");
if (nlhs > 3)

meXxErrMsgTxt("Too many output arguments!");
if (!mxiIsSingle(prhs[0]) || !'mxiIsSingle(prhs[1]) || !'mxIsSingle(prhs[2]) || !'mxIsSingle(prhs[3])

[| 'mxIsSingle(prhs[4]))
mexErrMsgTxt("Input arry must be single precision!");

int mrows = mxGetM(prhs[0]);
int ncols = mxGetN(prhs[0]);

/ PART | - Caculate plRate, mu, and sigma

float *mu, *sigma, *plRate;

if(cudaMalloc((void**) &open, sizeof(float) * ncols * mrows) != cudaSuccess)
mexErrMsgTxt("Memory allocating open failure on GPU!");
if(cudaMalloc((void**) &close, sizeof(float) * ncols * mrows) |= cudaSuccess)

mexErrMsgTxt("Memory allocating close failure on GPU!");

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

8. Appendix 44

if(cudaMalloc((void**) &lastPrice, sizeof(float) * ncols * 1) != cudaSuccess)
mexErrMsgTxt("Memory allocating lastPrice failure on GPU!");
if(cudaMalloc((void**) &share, sizeof(float) * ncols * 1) != cudaSuccess)
mexErrMsgTxt("Memory allocating share failure on GPU!");
cudaMemcpy(open, (float*)mxGetData(prhs[0]), sizeof(float) * ncols * mrows,
cudaMemcpyHostToDevice);
cudaMemcpy(close, (float*)mxGetData(prhs[1]), sizeof(float) * ncols * mrows,
cudaMemcpyHostToDevice);
cudaMemcpy(lastPrice, (float*)mxGetData(prhs[2]), sizeof(float) * ncols, cudaMemcpyHostToDevice);

cudaMemcpy(share, (float*)mxGetData(prhs[3]), sizeof(float) * ncols, cudaMemcpyHostToDevice);

/IpIRate

if(cudaMalloc((void**) &plRate, sizeof(float) * ncols * mrows) != cudaSuccess)
mexErrMsgTxt("Memory allocating plRate failure on GPU!");

int blocky = ncols/BLOCK_SIZE + 1;

int blockx = mrows/BLOCK_SIZE + 1;

dim3 dimBlock1(BLOCK_SIZE, BLOCK_SIZE);

dim3 dimGrid1(blockx, blocky);

profitLossKernel <<<dimGrid1, dimBlock1>>> (open, close, pIRate, mrows, ncols);

/ICaculate mu and sigma

if(cudaMalloc((void**) &mu, sizeof(float) * ncols * 1) = cudaSuccess)
meXxErrMsgTxt("Memory allocating mu failure on GPU!");

if(cudaMalloc((void**) &sigma, sizeof(float) * ncols * ncols) |= cudaSuccess)

meXxErrMsgTxt("Memory allocating sigma failure on GPU!");

int threadNum = 32;
int blockNum = ncols;
int k;
if(mrows % 32 == 0)
k = mrows / 32;
else
k=mrows /32 + 1,
//mu
dim3 dimBlock2(threadNum);
dim3 dimGrid2(blockNum);
meanParallelKernel <<<dimGrid2, dimBlock2, threadNum * sizeof(float)>>> (pIRate, mu, mrows, Kk);

/Isigma

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

8. Appendix 45

dim3 dimBlock3(threadNum));

dim3 dimGrid3(ncols, ncols);

covParallelKernel <<<dimGrid3, dimBlock3, threadNum * sizeof(float)>>> (pIRate, mu, sigma, mrows,
ncols, Kk);

cudaFree(open);
cudaFree(close);
cudaFree(plRate);

[Hikikkkk ke D ART 1 Multivariate Normal Distribution ikttt

/ISVD

float *F, *SVD;//B- sigma

if(cudaMalloc((void**) &F, sizeof(float) * ncols * ncols) != cudaSuccess)
mexErrMsgTxt("Memory allocating F failure on GPU!");

if(cudaMalloc((void**) &SVD, sizeof(float) * ncols * ncols) = cudaSuccess)

meXxErrMsgTxt("Memory allocating SVD failure on GPU!);

dim3 dimBlock4(2,192);

SingluarValueDecompositionKernel <<<1, dimBlock4>>> (sigma, F, ncols);
GetSVD<<<192/2, 192>>>(SVD, F, sigma, ncols);
cudaThreadSynchronize();

cudaFree(sigma);

cudaFree(F);

//Normal distribution

int m = 65536; //samples
int g = m/1000 + 1,

float *ND, *MVD, *ud, *ini;

if(cudaMalloc((void**) &ND, sizeof(float) * ncols * m) != cudaSuccess)
meXxErrMsgTxt("Memory allocating ND failure on GPU!");

if(cudaMalloc((void**) &MVD, sizeof(float) * ncols * m) != cudaSuccess)
mexErrMsgTxt("Memory allocating MVD failure on GPU!");

if(cudaMalloc((void**) &ud, sizeof(float) * ncols * g) = cudaSuccess)

mexErrMsgTxt("Memory allocating ud failure on GPU!);

srand(clock());

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

8. Appendix

46

float M = pow(2.0,31);
ini = (float *)malloc(sizeof(float) * ncols * g);
for(inti=0;i<ncols * g; i++)
{
ini[i]=floor(float(111111111 + rand()));

}

cudaMemcpy(ud, ini, sizeof(float) * ncols * g, cudaMemcpyHostToDevice);

UniformKernell <<<g, ncols>>> (ND, ud, ncols, m, M);
cudaThreadSynchronize();

dim3 dimGrid5(m / ncols + 1);

UniformKernel2 <<<dimGrid5, ncols>>> (ND, ncols, m, M);
cudaThreadSynchronize();

dim3 dimGrid6(2 * m / ncols + 1);
BoxMullerKernel<<<dimGrid6, ncols/2>>>(ND, ncols, m);

cudaThreadSynchronize();

dim3 dimBlock7(BLOCK_SIZE, BLOCK_SIZE);
blockx = m / BLOCK_SIZE;
blocky = ncols / BLOCK_SIZE;
int maxBlockx = MAX / (BLOCK_SIZE * BLOCK_SIZE * blocky);
if(blockx > maxBlockx)
blockx = maxBlockx;
dim3 dimGrid7(blockx, blocky);
Muld<<<dimGrid7, dimBlock7>>>(ND, SVD, mu, m, ncols, MVD);

free(ini);
cudaFree(ud);
cudaFree(SVD);
cudaFree(mu);
cudaFree(ND);

/ PART llI: Stock Price, all var, sort /
float *portfolioPrice;
if(cudaMalloc((void**) &portfolioPrice, sizeof(float) * m) != cudaSuccess)

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

8. Appendix

47

meXxErrMsgTxt("Memory allocating portfolioPrice failure on GPU!);
dim3 dimBlock8(BLOCK_SIZE * BLOCK_SIZE);
int blockx8 = MAX / (BLOCK_SIZE * BLOCK_SIZE);
k = m/MAX;
dim3 dimGrid8(blockx8);
portfolioPriceKernel <<<dimGrid8, dimBlock8>>> (lastPrice, MVD, share, portfolioPrice, m, ncols, k);

int x = log(65536.0) / log(2.0);

for(inti=1;i<=x; i++)

{
for(intj=1;j <=i; j++)
{
mergeSortKernel <<<128, 256>>> (portfolioPrice, i, j);
}
}

cudaThreadSynchronize();

level = (float*)mxGetData(prhs[4]);

float *var;

float b = *level;

int a =floor((1-b)*m);

var = &portfolioPrice[a];

plhs[0] = mxCreateNumericMatrix(1, 1, mxSINGLE_CLASS, mxREAL);//output VaR
cudaMemcpy((float*)mxGetData(plhs[0]), var, sizeof(float), cudaMemcpyDeviceToHost);

cudaFree(MVD);
cudaFree(lastPrice);
cudaFree(share);

cudaFree(portfolioPrice);

Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)

	Acceleration of Monte Carlo Value at Risk Estimation Using Graphics Processing Unit (GPU)
	Microsoft Word - REPORT5.doc

