Teaching Secular Stagnation

Sebastien Buttet
CUNY Guttman Community College

Udayan Roy
Long Island University

How does access to this work benefit you? Let us know!
Follow this and additional works at: http://academicworks.cuny.edu/nc_pubs
Part of the Business Commons
Teaching Secular Stagnation

Sebastien Buttet Udayan Roy

CUNY, Guttman CC and Long Island University

November 6th, 2015
Outline

1. Background
2. Model
3. Concluding Remarks
Background

- Lots of research and policy debate about Secular stagnation following Summers 2013 IMF speech
Background

- Lots of research and policy debate about Secular stagnation following Summers 2013 IMF speech
- No consensus about how to define Secular Stagnation (VOX EU collection of papers 2014)
Background

- Lots of research and policy debate about Secular stagnation following Summers 2013 IMF speech
- No consensus about how to define Secular Stagnation (VOX EU collection of papers 2014)
- Summers’ definition: drop in the natural interest rate.
Research Question

How can we modify a simple Neo-Keynesian of the business cycles to teach secular stagnation in Intermediate Macroeconomics courses?
Outline

1. **Background**

2. **Model**

3. **Concluding Remarks**
A simple Keynesian Model of the Business Cycle

IS-PC-MR Model

- Aggregate demand: \(Y_t = \bar{Y}_t - \alpha (r_t - \rho) + \epsilon_t \)
A simple Keynesian Model of the Business Cycle

IS-PC-MR Model

- Aggregate demand: $Y_t = \bar{Y}_t - \alpha(r_t - \rho) + \epsilon_t$
- Philips curve: $\pi_t = \pi_{t-1} + \phi(Y_t - \bar{Y}_t) + \nu_t$
A simple Keynesian Model of the Business Cycle

IS-PC-MR Model

- **Aggregate demand**: $Y_t = \bar{Y}_t - \alpha (r_t - \rho) + \epsilon_t$

- **Phillips curve**: $\pi_t = \pi_{t-1} + \phi(Y_t - \bar{Y}_t) + \nu_t$

- **Taylor rule**:
 $$i_t = \max\{0, \pi_t + \rho + \theta \pi_t (\pi_t - \pi_t^*) + \theta Y_t (Y_t - \bar{Y}_t)\}$$
A simple Keynesian Model of the Business Cycle

IS-PC-MR Model

- Aggregate demand: \(Y_t = \bar{Y}_t - \alpha(r_t - \rho) + \epsilon_t \)

- Philips curve: \(\pi_t = \pi_{t-1} + \phi(Y_t - \bar{Y}_t) + \nu_t \)

- Taylor rule:
 \[
 i_t = \max\{0, \pi_t + \rho + \theta_{\pi t}(\pi_t - \pi^*_t) + \theta_{Y t}(Y_t - \bar{Y}_t)\}
 \]

- Fisher equation: \(r_t = i_t - \pi_t \)
Drop in Natural Interest rate

Presented by Sebastien Buttet, Udayan Roy

Background
Model
Concluding Remarks
Raise inflation target
Outline

1. Background
2. Model
3. Concluding Remarks
Concluding Remarks

- Modified a simple Keynesian model of the business cycle to teach secular stagnation in Intermediate Macroeconomics.
Concluding Remarks

- Modified a simple Keynesian model of the business cycle to teach secular stagnation in Intermediate Macroeconomics.

- Interesting result: Central bank should raise inflation target even when the ZLB is \textit{not} binding to counter deflationary threats.