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Abstract: 
 
 The purpose of this work is to design, develop and test integrated electronics and 
optoelectronic circuits comprised of devices that can yield a low cost and lightweight pulsed 
time-of-flight laser rangefinder.  The pulsed laser rangefinder measures distances of up to 60-
meters, provides a low power consumption, fast speed, and lightweight. The design 
implemented measures the range information based on the time taken for a light pulse to 
reach a target and echo back. This design comprised of a light emitting circuit that outputs 
short and powerful pulses of laser beam toward a measurement target object; a light receiving 
circuit that photo-electrically converts the laser light reflected from the target object and 
amplifies the converted optical signal; a time to digital converter (TDC) to calculate the TOF of 
the laser light; and a microprocessor which is used for system control, distance calculation, and 
synchronization with the host computer. The design presented here is implemented in such a 
way that it allows its expendability to a 2D scanning laser rangefinder without major changes. 
Expanding the system to a 2D scanning laser rangefinder will help to improve autonomous 
robots abilities of building a map of an unknown environment, navigation, object avoidance and 
qualification. 
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1. Introduction 
 Today’s societal needs require a more holistic approach to engineering design. Keeping in mind 
the demand of a more sustainable environment, the purpose of this research is to design and develop a 
low cost and lightweight pulsed laser rangefinder that could measure distances of up to 60-meters. 
Pulsed Laser rangefinders are high resolution systems used to measure targets whose distance ranges 
from centimeters to kilometers. A pulsed laser rangefinder operates on the time-of-flight (TOF) principle 
which measures the flight time (delay time) of a light from a pulsed laser to be reflected off the target 
and back to the receiver. By measuring the TOF of the laser signal, the range can be determined since 
the value of the speed of light is well established. The advantage of a pulsed TOF method over many 
other distance measurement methods, such as triangulation or phase modulation, is that unambiguous 
centimeter-level accuracy is already available in a single measurement [3]-[5].This principle is shown in 
Figure 1. 

 
Figure 1.1 Block Diagram of a Pulsed Laser Rangefinder 

 This type of distance measuring apparatus is used in a variety of application such as:  
 The military to measure long distances. 
  Robots visual sensors or an automatic guided vehicle. 
 The construction industry as digital measuring tape. 
 Safety sensor to measure a person proximity to dangerous equipments. 
 To measure height of small aerial vehicles. 

 
 Typically, pulsed TOF laser rangefinders are composed of: 

 A light emitting circuit- this circuit contains a pulsed laser diode (PLD) as a light source, 
and a driving circuit for driving the PLD and outputting a light pulsed measurement of several 
nano-seconds. 
 A light receiver circuit- this circuit includes an avalanche photodiode (APD) for photo-
electrically convert  the received light; a high voltage source to bias the APD;  and an amplifying 
system for impedance converting and amplifying the reflected signal photo-electrically 
converted by the APD. 
 Time measurement unit – this is composed of a time to digital converter (TDC) which is 
used to measure the TOF of the emitted laser beam. 
 Microprocessor- this is used to calculate the distance and system control. 
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 The design presented on this paper measures distances by sending a fire signal to the driving 
circuit of the PLD. This signal also serves as the START counter signal for the TDC. After the light is 
reflected from the measurement target, it is focused on an APD and the nano-amp level of current 
generated by the APD is amplified to a TTL voltage level which serves as the STOP mark for the time 
measurement unit by means of a leading edge discriminator. After the TDC calculates the TOF of the 
laser signal, the time information is read by the microprocessor which calculates the distance using the 

formula:         where D is the target distance, c is the speed of light, and t is time. The long term of 

this work is to implement a 2D scanning laser rangefinder and later a 3D scanning laser rangefinder. 
Therefore, the design presented here will be implemented in a way that it could be customized to 
implement a scanning laser rangefinder by adding a system of rotating mirrors and encoders to the 
implementation [6].    
 
2. Design Theory and Specification 
 This chapter derives a set of the steps taken toward the design of the sending and receiving 
channels of the laser rangefinder. The chapter then goes on to a breakdown of each of the subsystems 
in these channels and detail the theory of operation of each subsystem as well as the design 
considerations taken into consideration  for the design of each subsystem. 
 

2.1. Sending Channel Hardware 
 This section describes how the laser light sending circuit must be implemented. The sending 
channel fires a short and powerful pulse of light toward a measurement target object. The light 
projector circuit contains a light emitting device such as a pulsed laser diode (PLD) and a PLD driving 
device. The nano-seconds driving pulses are sent from a microcontroller. 
 

2.1.1. Microcontroller Unit 
 This section outlines the functions of the microcontroller in the operation of the laser 
rangefinder. The main function of the microcontroller is to record the time measurement from 
the time-measuring unit, average the time measurements and calculate the distance. After the 
distance is calculated, the data is transmitted to a PC. 
 
 The microcontroller sends the signals to start the counter for the time measurement 
unit and to send the laser light pulse. Also, the microcontroller is used to initiate and set the 
parameters of the time measurement unit (speed, mode, resolution, etc.)  After the time 
measurement unit calculates the time, the microcontroller reads and stores the time 
information. At least fifty time measurements are taken from each distance to be measured. 
The more samples taken the most accurate the results are, but the more time needed to obtain 
the distance measurement. 
 
 Once the microcontroller has obtained the values for the time and computes their 
average, it calculates the distance value and transmits it to a PC using USART interface. Each 
distance calculation should take less than 20ms. This time depends on the number of time 
measurements taken and the duty factor of the pulse laser diode.  

 
2.1.2. Laser Diode Driver 
 This section outlines the function of the laser driver. The main function of this driver is 
to provide fast, high current pulses to drive the PLD. The PLD is operated in a short pulse mode 
in order to achieve high peak powers with fast rise and fall times.  
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 The design of the driver is relatively easy but some considerations must be taken in 
consideration due to the sensitivity of the PLDs. The frequency of the pulse must match the duty 
factor of the PLD which is around 0.1% (ex. a 100ns current pulse must be follow by a 100μs 
pause). Having a higher duty factor will deteriorate and damage the PLD. Furthermore, the pulse 
duration should be less than 1μs. 
 
 The amount of current generated by the driver must be limited not to exceed the 
maximum forward current of the PLD. Most PLDs found have a beam divergence from 12◦ to 25◦ 
parallel to the pn-junction. In order to maximize the optical power of the PLD, a collimating lens 
is used to minimize the divergence of the laser beam. This is explained in more details in the 
following sections. 

 
2.2. Receiving Channel Hardware 
 A small fraction of the light beam emitted by the PLD is received by an optical receiver and focus 
on the APD which photo-electrically convert the pulse of light received. The small pulse of current 
generated by the APD is converted into a TTL voltage level signal using a two-stage transimpedance 
amplifier. This voltage signal serves as the STOP signal for the time counter. 

  
2.2.1. Time of Flight Calculation 
 As mentioned above, the method of rangefinder used in this design is the TOF. To 
measure the time of flight of the emitted pulsed of light, an ultra-fast counter as a TDC is used.  
TDCs are used to measure the time intervals between two events with a resolution of less than 
one nanosecond.   
 
 The accuracy of a pulsed TOF laser radar depends critically on the performance of its 
time measurement unit [18]. Therefore, a high resolution and a high speed TDC is needed to 
improve the system performance.   Since the maximum distance for the laser rangefinder 
presented here is targeted to be 60-meters, the TDC should be able to measure time intervals 
larger than 400ns. 

 

2.2.2. High Voltage Power Supply 
 To reach the proper gain and responsivity of the APD, a high voltage is used to reverse 
bias the APD. This high voltage is generated and stabilized using a high voltage DC-DC converter 
which provides up to 400V output from a 5V input. The high voltage DC-DC converter must 
provide a low voltage noise and low voltage ripple. 
 
 Increasing the voltage output of the DC-DC converter increases the gain of the APD. 
Therefore, it increases the current output of the APD per optical power. A resistor is connected 
in series with the APD to limit the current it generates in order to protect the receiving channel 
from saturation and damage. 
 
2.2.3 Pre- and Post-Amplifiers 
  A small fraction of the reflected focused on the APD is converted to a voltage signal 
using a two transimpedance amplifiers.  This conversion represents one of the major challenges 
of the design because bandwidth, gain, and input referred noise are coupled together. 
Furthermore, to control the transimpedance gain such that the variation of the amount of 
current generated by the APD does not saturate the system is another challenge.  
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Figure 2.1 Transimpedance amplifier equivalent circuit 

 The figure above shows the equivalent circuit for a transimpedance amplifier. Is 

represents the output current generated by the current source.  Cs is the sum of the output 

capacitance of the current source and the input capacitance of the op amp. Rf is used to convert 

Is to a voltage. Therefore, Rf is the gain of the transimpedance amplifier. 

 At low frequencies, the op amp’s inverting input is forced to be at ground potential and 
Is must flow through Rf. This combination of effects creates an output voltage of Is*Rf  [17].  At 
higher frequencies, Cf affects the circuit respond and, together with Cs, has a strong effect on the 
stability of the amplifier [17].  Rn and Cn are used to reduce the output noise of the amplifier.  

 
2.2.4. Optical Lens 
 The infrared (IR) light pulses emitted by the PLD are collimated by the transmitter lens. 
Collimating lens used to reduce to a minimum the divergence of the laser beam such that the 
laser light does not disperse with distance.  An example of an optical collimator is shown in 
Figure 16. 
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Figure 2.2 Optical collimating lens 
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 The collimating lens used on this project has an antireflective IR coating of 600-1050nm 
wavelength from ThorLabs, INC. 

 
Figure 2.3 C170TME mounted aspherical lens from Thorlabs, INC 

 

 The optical power reflected from the measurement target object is collected, focused 
and filtered by a plano-convex lens and an optical band-pass filter with an AR coating for 600- 
1050nm wavelenght. The plano-convex lens is used to focus the collimated reflected laser beam 
of the target on the APD. The band-pass filter is integrated in the APD and it is used to further 
block the surrounding light. Using an AR coated lens and a band-pass filter helps to achieve a 
better signal-to-noise ratio, and minimize the effect of the background light.  
 

Avalanche 
photodiode

Band-pass 
filter

Focal point

Plano-convex 
lens

Optical 
received 
power

Current-to-
voltage 

converter and 
amplifier

 
Figure 2.4 Optical receiving lens 

  
 
3. Design Implementation 
 This section describes the implementation of each of the subsections discussed in the previous 
section. The theory, calculations, design considerations and specifications in the previous chapter are 
used to select the components to implement each subsection. Furthermore, this chapter includes circuit 
simulation analysis of the implemented subsystems’ circuits. 
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Figure 3.1 Block diagram of the laser rangefinder electronics 

 

 
3.1. Sending Hardware 
 This section describes the components and circuits used in the implementation of the sending 
channel of the rangefinder. This channel is designed such that short and powerful light pulse are 
generated and sent toward a target measurement object. Also, this section describes the system 
controller and its speed. 
 
 

 3.1.1. Microcontroller  
 The microprocessor used for this design was the ATMega128 from AVR. The ATmega128 
is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By 
executing powerful instructions in a single clock cycle, the ATmega128 achieves throughputs 
approaching 1 MIPS per MHz to optimize power consumption versus processing speed1. The 
ATmega128 clock speed is set to 16MHz. 

                                                           
1
 ATMega128 Product datasheet 
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Figure 3.2 Block diagram of the ATMega128 

 
  A 125ns pulse is generated using PORTD of the ATMega128. This pulse starts the 

counter in the TDC-GP1, and to send the laser signal. Also, the ATMega128 is used to read the 
time calculated by the TDC-GP1 and calculate the distance. The calculated information is sent to 
the host computer through USART interface. 
 
 
 3.1.2. Pulsed Laser Diode and Driver Circuit 
  The light emitting circuit implemented in this research outputs a short and powerful 
pulse of laser beam toward a measurement target object. It is composed of a 905 nm 
wavelength PLD (905D1S1.5 from Laser Components, INC.); a fast switching MOSFET (IRF840) to 
turn on/off the PLD; and a MOSFET driver (EL7104 from Intersil Corporation). Figure 7 shows the 
implemented circuit to drive the 905D1S1.5 PLD. 
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Figure 3.3 Pulsed laser diode driver 

 
 The circuit for the EL7104 was implemented using [2].   A 125 ns pulsed is sent from the 
microcontroller to the EL7104 driver that increases the TTL level voltage to 12V with a 
propagation delay of 18ns. This allows the laser to turn-on for the time mentioned.  The input 
current to the PLD is limited to 2.4A by using a 12V input and 5Ω resistor. 
 

3.2. Receiver Hardware 
  The light receiver circuit is composed of the SARF500F2 905nm wavelength avalanche 

photodiode from Laser Components, INC., for photo-electrically converting the reflected light; a high 
voltage DC-DC converter to bias the SAR500F2; a two-stage amplifier to convert to voltage and 
amplify the small current generated by the SAR500F2; and TDC to measure the time interval 
between the sent and received signals. The SARF500F2 operates in avalanche breakdown mode and 
creates a high gain junction. In order to operate the SARF500F2 in the breakdown mode, it must be 
reverse biased with a minimum of 300V. 
 

3.2.1. Time to Digital Converter 
 As mentioned in the previous chapter, a fast-speed TDC is need to measure the time-of-
flight of the pulsed light. This system uses the TDC-GP1 to measure the time-of-flight. The TDC-
GP1 can be utilized either 1-channel with a high resolution mode of 125ps which is equivalent to 
19mm distance or 2-channels with a 250ps resolution with is equivalent to 38mm distance The 
TDC-GP1 measures the time different between a START and STOP input signals.  The TDC-GP1 
transforms time intervals calculated into digital values with high precision. When the time 
interval is calculated by the TDC-GP1, it generates an interrupt signal to start reading the time 
result from its registers.  
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Figure 3.4 TDC-GP1 pinout 

3.2.1.1. Key Features 
 Some of the key features of the TDC-GP1 are: 

 Allows double pulse resolution of approximately 15 ns. 
 Two Measurement ranges : 3 ns to 7.6 μs  and 60 ns to 200 ms. 
 Up to 8-events on both channels that can be measured against one 
another arbitrarily, no minimum time difference. 
 Up to 4 calibrated or 8 uncalibrated measurement values can be stored 
internally. 
 Calibration and control clocks from 500 kHz up to 35 MHz. 
 Variable edge sensitivity of the measuring inputs.  
 Small 44-TQFP package. 
 Extremely low power consumption. 

 
 3.2.1.2. Microprocessor Interface 

 The TDC-GP1 provides a standard 8-bit microcontroller parallel interface. The 
TDC-GP1 has seven 8-bits write only registers, four 8-bits value control registers, 8 only 
read results registers for the measurement result. It has a 4-bits address bus and an 8-
bits data bus. The time calculation values and the status of the TDC-GP1 can be read out 
via the following signals: ALE, RDN, WRN and CSN which correspond to pins 29-31 as 
seen on the TDC-GP1 pinout.    
 

   
3.2.1.3. Measurement Range Mode 
  The TDC-GP1 is operate using measurement range mode 1 which offers 
a 2 channel TDC with common start, and allows 4-hits per channel with a resolution of 
125 ps.  This mode is used because of its higher resolution when compare to mode 2. 
Also, it allows shorter distance measurements. 
 
  The TDC-GP1 is controlled and initialized by addressing the values on 
the control registers. The TDC-GP1 is initialized to work on measurement mode 1 with 
high resolution by writing the following values to the control registers: 
 REG0= 0x48 – Measurement range 1, Auto_cal + Calibrate 
 REG1= 0x4D – High resolution, precision adjust mode 4D 
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 REG2= 0x01 – Set Hit1 on Channel 1 – Start 
 REG4= 0x80 – Set calibrate clock to run at 20MHz/16= 1.25MHz  
 REG6= 0x02 – Set the ALU speed to medium 
 REG7= 0x01 – Enable one stop on Channel 1 

   
 

3.2.2. High Voltage Supply 
 Different circuit were simulated and tested to provide high voltage output from a low 
voltage input with a low voltage noise. The circuit from [9] on Figure 3.5 was simulated using 
LTSpice IV from Linear Technology, INC. and built to test its capabilities of providing a low noise 
bias voltage for the APD. 
 

 
Figure 3.5 5V to 200V Output converter for APD bias 

 

 As explained on [9], the circuit is a basic inductor flyback boost regulator with a major 

important deviation. The IRF840 MOSFET, a high voltage device, has been interposed between 

the LT1172 switching regulator and the inductor. This permits the regulator to control the 

IRF840’s high voltage switching without undergoing high voltage stress. The IRF840, operating as 

a “cascode” with the LT1172’s internal switch, withstands L1’s high voltage flyback. For more 

information, please refer to [9, page 20]. The gain of the SARF500F2 APD was too small with a 

200V bias. The current generate by the APD was too small to be detected by the amplification 

circuit. Furthermore, a high voltage ripple was generated by the circuit causing the receiver 

channel to read false STOP signals. 
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 A device or circuit that provides a voltage output up to 350V was required such that the 
gain of the APD was at least 100. A micro-size high voltage DC-DC converter as the 0.4US5-P0.1 
from Ultravolt, INC is used.  This DC-DC converter offers a low-voltage ripple (<20mV peak to 
peak), small package size, lightweight (around 13g), and low noise due to its metal shielding. 
Figure 3.6 shows the circuit implemented using the 0.4US5-P0.1 DC-DC converter. 
 

 
Figure 3.6 High voltage DC-DC converter 

 

 The output voltage of the 0.4US5-P0.1 is adjusted by changing the voltage applied to its 

remote adjust input (pin 3) by changing the value of R15. The output voltage of the 0.4US5-P0.1 

is set to 350V. This way, the gain of the SARF500F2 is 100. The only drawback of this device is 

that the maximum current output is 250μA.  Therefore, the maximum current that could be 

generated by the APD is also 250μA. 

 
3.2.3. Current to Voltage Converter and Amplifier 
 The op amps tested and used in this design are the OPA656 which has a gain bandwidth 
product (GBP) of 230 MHz with a 7nV/ √Hz input noise, the OPA657 which GPB is 1.65GHz with a 
4.8nV/ √Hz input voltage noise, and the OPA846 which has a 1.75GHz GBP with a 1.2nV/ √Hz 
input voltage noise. All these devices are from Texas Instruments, INC. The transimpedance 
amplifiers circuits using these components were simulated using TINA Simulator from Texas 
Instrument. 
 
 Since the maximum current supply by the DC-DC converter is around 250μA, the 
maximum current generated by the APD is around 250μA. Knowing the expected maximum 
current, the gain of the transimpedance amplifier can be chosen for both pre- and post-
amplifiers. The value of Rf was chosen to be 10kΩ such that the maximum voltage output at the 
pre-amplifier is around 2.5V. The output capacitance of the APD with a 350V bias is around 1pF 
according to figure 5 in the data sheet for the SARF500F2 [10]. 
 
 To achieve a maximally flat 2nd-order Butterworth frequency response, the feedback 
pole should be set to [11], [12]: 
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 =   

   

        
                          (1) 

 
Using the values of Cs for the different op amps, targeting a 10kΩ transimpedance gain and using 
their GBP of each op amp, the following feedback poles are obtained: 
  

Table 1 Transimpedance amplifier feedback pole values 

Device 

GBP 

(MHz) 

Feedback pole 

(MHz) 

OPA656 230 42.782 

OPA657 1650 114.587 

OPA846 1750 118.009 

 
Using Equation 1 and the calculated values for the feedback poles, the following values for the 
feedback capacitor, Cf ,  of each op amp is obtained: 
 

Table 2 Transimpedance amplifier feedback capacitor values 

Device 

Feedback capacitor 

(pF) 

OPA656 0.37202 

OPA657 0.1389 

OPA846 0.1349 

 
 The maximum bandwidth will be achieved for a Butterworth response with Q= 0.707 
[11].  To determine the GBP requirements for the transimpedance amplifiers, equation 12 of 
[11] was used: 
 

GBP= 2π ● F2
-3dB ● RfCs                                               (2) 

 
This gives an approximate -3dB bandwidth set by: 
 

F-3dB=  
   

           
                                              (3) 

 
Knowing the values for Rf, Cs, Cf and the GBPs of the op amps, the transimpedance bandwidth 
can be calculated using equation 3. 
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Table 3 Transimpedance amplifier -3dB computed bandwidth values 

Device 

Input 

Capacitance (pF)  

Source 

Capacitance (pF) 

Max Bandwidth 

(MHz) 

OPA65

6 3.5 4.5 27.6155 

OPA65

7 5.2 6.2 64.5627 

OPA84

6 3.8 4.8 75.3930 

 
 3.2.3.1 Noise Analysis 

 The dominant noise sources of the receiver channel are the thermal noise 
generated by RF and the noise generated by the input of the transimpedance 
preamplifier. This noise can be reduced using high RF values which imply increasing the 
gain of the preamplifier. The transimpedance amplifier circuits using the OPA656, 
OPA657 and OPA846 op amps were designed and tested using TINA Simulator. The 
noise parameters for the op amps are calculated using [17]. The following values are 
obtained for the OPA656: 

 Low –frequency noise gain (GN1)= 1 V/V 
 High-frequency noise gain (GN2)= 1 + CS/CF=  10 V/V 
 Noise gain’s zero (fNZ)= 1/(2πRF (CF+ CS))= 3.32MHz 
 Noise gain’s pole (fNP)= 1/(2πRF CF)= 31.831MHz 

 
The following values are calculated for the OPA657: 

 GN1= 1 V/V 
 GN2= 1 + CS/CF=  21.7 V/V 
 fNZ= 1/(2πRF (CF+ CS))= 3.25MHz 
 fNP= 1/(2πRF CF)= 53.1MHz 

 
 The values for the OPA846 are very similar to the values of the OPA657 because 
they have similar GBPs, but the OPA846 introduces a higher noise frequency. This is in 
agreement with [16, page 7] which shows that for transimpedance gains greater than 
2kΩ, a field-effect transistor (FET) such as the OPA656/657 will have a lowest input-
referred noise when compare to the OPA846 bipolar amplifier. Therefore, the OPA846 
was discarded from the op amp choices. 
 
 The value of the feedback capacitor was increase for the designs of the 
transimpedance amplifiers using the FET amplifiers.  CF= 3pF and CF= 2pF were used for 
the OPA657 and OPA656 respectably. The system still stable and GN2 is reduced to 
2.94V/V for the OPA657 and 3.05V/V for the OPA656.  
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Figure 3.7 Transimpedance amplifier circuit using the OPA657 

 

 
Figure 3.8 Transimpedance amplifier circuit using the OPA656 
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 The following graphs show the simulation results of the above circuits: 

 

Figure 3.9 Output noise of the transimpedance amplifier using the OPA657 

 

 

Figure 3.10 Input noise of the transimpedance amplifier using the OPA657 
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Figure 3.11 Total noise of the transimpedance amplifier using the OPA657 

 

 

Figure 3.12 Output noise of the transimpedance amplifier using the OPA656 
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Figure 3.13 Input noise of the transimpedance amplifier using the OPA656 

 

Figure 3.14 Total noise of the transimpedance amplifier using the OPA656 
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the  fNZ= 2.45MHz. Since each laser pulse is 125ns with a 125μs delay, the fC for the low-
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pass filter must be above 8kHz. The fC of the filter is set to 10.61KHz using RN= 1.5kΩ and 

CN= 10nF. The following total noise is generated at the transimpedance circuit: 

 

Figure 3.15 OPA656 filtered noise signal 

 
 A post-amplifier is used to amplify the voltage pulse further. The post-amplifier is also designed 
using the OPA656. Its bandwidth is designed to be sufficiently wide that it does not degrade the 
bandwidth of the channel. Figure 3.16 depicts the receiver channel’s circuit implemented on this 
work: 
 

 
Figure 3.16 Receiver channel amplifying circuit 
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 This circuit design was simulated using TINA Simulator. A fast silicon diode (1N4148) is used to 

reduce the noise output of the first-stage transimpedance amplifier.  The simulation results are 

shown in the figures below. 

 

Figure 3.17 DC transfer characteristic of the amplifying circuit 

 

Figure 3.18 Output noise of the amplifying circuit 
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Figure 3.19 Input noise of the amplifying circuit 

 

Figure 3.20 Total noise generated by the amplifying circuit 
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edge discriminator is designed and tested using two types of ultra-fast and high precision 
comparators: LT1016 and LT1394 both from Linear Technology Corporation. 
 
 The LT1016 is a 10ns propagation delay comparator that interfaces directly to 
TTL/CMOS logic while operating off either ±5V or single 5V supplies. Figure 3.21 shows the 
circuit used to test the respond time of the LT1016. 
 

 
Figure 3.21 LT1016 voltage comparator 

 

The circuit above was built and tested. The minimum voltage reference for this comparator is 

1.2V when using a single supply as it is mentioned in the LT1016 datasheet. A voltage reference 

of 1.2V is too high when compared to 50mV noise signal at the input of the comparator.  

 A second circuit was tested using the LT1394 which is pin compatible with the LT1016. 
The LT1394 offers a 7ns propagation delay which helps to reduce the systematic delay of the 
receiver channel.  The LT1394 has an input voltage range from 0 to 3.5V when using a single 5V 
supply voltage. This device is used in the implementation of the receiver channel with a voltage 
reference of 80mV (30mV above the measure signal noise). 
 
    
 3.3. PCB Design 
 After the circuits for the sender and receiver channels were tested on a breadboard, the 
PBC was designed using Protel DXP 2004. Designing a PCB which reduces the propagation of the 
received signal helps to reduce the systematic error of the system. The size of the board is 3-
inches by 3-inches. A smallest size could not be achieved because of the difficulties of soldering 
micro-size components by hand. The figures bellow shows PCB designed for the laser 
rangefinder implemented in this research. 
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Figure 3.22 PCB of laser rangefinder 

 

                    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. System Testing 
 This chapter describes the measured results when testing the designed laser rangefinder. First, 
the interface of the microcontroller with the TDC-GP1 was tested to determine how accurate the time 
measured is. Later, the circuits for the sending and receiving channels were implemented and tested 
shielding the following results. 

Figure 3.23 Unpopulated rangefinder board Figure 3.24 Populated rangefinder board 
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4.1. Microcontroller –TDCGP1 Interface 

 This section shows the time measurement obtained when interfacing the ATMega128 
with the TDC-GP1. As previously mentioned, the ATMega128 is running at 16MHz and the 
reference clock for the TDC-GP1 is set to 1.25MHz.  Figure 4.1 shows how the ATMega128 is 
connected with the TDC-GP1.  

 
Figure 4.1 ATMega128 and TDC-GP1 interface 

 PORTA is used to initiate the GP1, set its parameters and read the time information. The 
address bus of the GP1 is connected to pins 4, 5, 6, and 7 of PORTD. The INT signal of the GP1 is 
connected to INT0 of the ATMega128. The RDN, WRN and CSN pins of the GP1 are connected to 
pins 0, 1 and 2 of PORTC respectively.  
 
 The table bellow shows the time measured by the GP1 after sending different delayed 
signals from the microcontroller. The left column shows the time measured using a 100MHz 
oscilloscope and the right column the time measured by the GP1. 

 
Table 4 TDC-GP1 testing measurements 

Time observed in oscilloscope Time Measured by TDC-GP1 

489 ns 487.1429 ns 

610 ns 608.4286 ns 

740 ns 731.8571 ns 
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860 ns 859.7143 ns 

984 ns 984.8571 ns 

1106 ns 1106.25 ns 

1228 ns 1229.286 ns 

1352 ns 1352.5 ns 

1476 ns 1475.571 ns 

1600 ns 1598.857 ns 

 
 As can be seen from Table 4, the different between the time measured by the 
oscilloscope and the time measured by the GP1 is less than 2ns for the different delayed signals 
except for row-four where the different is almost 9ns. This is caused by an error during 
measurement and it is not taken into considerations because of the agreement of all the others 
measured values. 
 
4.2. Distance Measurement 
 The implemented laser rangefinder’s capability to measure range is tested. The time 
measured for distances up to 5-meters is presented. The time measured for the implemented 
system is expected to increase linearly with distance.  The table bellow shows the time 
measured at a reference distance with the corresponding standard deviation of the 
measurements. 
 
 

Table 5 Time of flight measured 

Distance (m) Time_Avg (ns) STDDEV(ns) 

0.3 3.8776 0.194999796 

0.6 12.08926 0.070016033 

1 20.43533 0.224011947 

1.3 24.68651 0.213276478 

1.6 28.32517 0.254478447 

2 37.86404 0.285151948 

2.3 44.22642 0.270473239 

2.6 49.75942 0.267926581 
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3.01 55.30008 0.242158148 

3.3 62.67117 0.58272521 

3.97 72.7074 0.492283922 

 
 
 
 The reference distance was measured using a measurement tape. At each distance, 
more than 1000 time measurements are taken and it average is shown on the second column of 
the table. Figures 29 and 30 show the graphs of the measurement obtained. 
 
 
 

 
Figure 4.2 Time measured at different reference distances 
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Figure 4.3 Average time measured at different reference distances 

 As can be seen from the figures above, the time increases linearly with distance as 
expected. The equation of the line, distance= 0.0536*time-0.0081, is used to calculate the 
distance using the ATMega128.  

 The problems with the current implementation are: 
 The distance measured by the current system is affected by temperature changes in the 

environment. 
 The error in the system increases with the increase in the distance measured. 
 Not enough memory to compensated time errors by software. 

  
 Some improvement must be done to improve the current design. These improvements are 
 described in the following section. 
 
5. System Improvements and Conclusion 
 This section describes changes that will be done to the designed laser rangefinder in order to 
improve its accuracy and resolution. These changes will be done without increasing the size of the 
rangefinder and keeping the cost to a minimum.  
 

5.1. Sending Channel Improvement 
 The minimum pulse width of the laser signal is 125ns with the ATMega128 running at 16MHz. 
The pulse width of this signal will be reduced to 80ns in order to increase the bandwidth of the 
system from 6MHz to around 88MHz.  This bandwidth will be suitable for the receiver channel 
implemented using the OPA657. 
 
 To obtain shorter pulses, a faster microcontroller needs to be used. The ATMega128 
microcontroller will be replaced by the PIC32MX795F512 from Microchip Technology Incorporated. 
This 32-bits microcontroller has a speed of 80MHz, an internal RAM of 512KB and a 64-TQFP 
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package which is smaller than the package of the ATMega128.  Furthermore, free samples are 
available which will not add cost to the redesign. 
 
 Also, to help with the reduction on the size of the board and obtain a higher optical power, the 
905D1S1.5U PLD will be replaced for the SPL LL90 PLD which has an integrated MOSFET and output 
peak power of 25W.  The SPL LL90 can be drive using the EL7104 driver and will not require the use 
of the IRF840 MOSFET helping to reduce the board size. In addition, the SPL LL90 is half the price of 
the 905D1S1.5 and is currently available for the project. 
 
5.2. Receiver Channel Improvement 
 The current implementation is strongly affected by the changes in temperature. At a constant 
bias voltage, the APD operating temperature affects its output current. This produces error of up to 
2ns in the time measurement.  This error can be seen when comparing the time measurements on 
figures 4.3 and 5.1. 
 

 
Figure 5.1 Averaged time measured at cooler temperature 

There is a time different of up to 6ns between the times measured at cool and warn temperatures. 

For example, at a distance of 0.3-meters, the time shown on figure 4.3 is 3.8776ns while in figure 5.1 

is 9.8732ns. Furthermore, at 1-meter, the time measured on figure 4.3 is 20.4353ns while in figure 

5.1 is 23.858ns. The variations on temperature affect the accuracy and reliability of the laser 

rangefinder. Moreover, it is not possible to use the calculate distances and compensated for the 

error using in the laser using a time table. 

 A temperature controller must be added to the APD to reduce the effects of temperature. A 

thermoelectric controller (TEC) as shown on Figure 5 of [1] depicted below. 
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Figure 5.2 Thermoelectric Controller  

The Thermistor is used to sense the temperature of the APD. Therefore, the Thermistor must be 
placed as closed as possible to the APD in order to ensure a minimal temperature gradient between 
the two devices. Adding this TEC circuit to the design will increase the power consumption and size 
of the board. 
 
 Instead of adding a TEC circuit to the design, the 0.4US5-P0.1 high voltage DC-DC converter will 
be replaced for a DC-DC converter with an integrated temperature controller.  The dBC-380-5R from 
Laser Components, INC., is a high voltage module specially design for APD operation. It delivers a 
380V output from a 5V input, and includes a temperature compensation circuit for the APD. In 
addition, the dBC-380-5R comes in a smaller package than the 0.4US5-P0.1, and can supply a higher 
output current. Also, the dBC-380-5R provides RS232 interface to regulate the bias voltage of the 
APD. 
 
 In addition, a new TDC will be used. The TDC-GP1 will be replaced for the TDC-GP2 because the 
last mentioned has a higher resolution and smaller package size. The resolution of the GP2 is 65ps 
which is equivalent to around 1cm in distance, and comes in a QFN32 package.  Furthermore, the 
GP2 has a lower power consumption when compare to the GP1, and has a 4-wire SPI-Interface that 
helps to reduce the number of connection between the TDC and the microcontroller. Replacing the 
GP1 for the GP2 will improve the resolution of the system; reduce its power consumption and size. 
 
 Moreover, the LT1394 comparator will be replaced for the LT1720 comparator. The LT1720 has 
a propagation delay of 4.5ns which helps to reduce the propagation delay of the received signal.  
The LT720 is a dual-comparator which can be operate using a single 5V supply and its voltage range 
is from -0.1V to 3.8V. The LT1720 comes in the same package as the LT1394, and free-samples are 
available. 
 
 Using the LT1720 comparator will allow reducing the walk-error of the signal by using the 
method in [4] and [5]. The compensation technique describe in [4] and [5] utilizes the TDC to 
measure the slew-rate of the front edge of the pulse using two comparators with two different 
thresholds resulting in two timing marks for the GP2, and then using the known relationship of the 
walk and signal-ratio to compensate for the walk-error. This principle is shown on figure 4 of [4] 
shown below. 
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Figure 5.3 Principle of time domain compensation 

 This method takes advantages of the on board TDC. Like the GP1, the GP2 has one start channel 

and two-stop channels.  These channels will be used to measure the slew-rate of the received signal 

and a table look-up will be used to further reduce the walk error. Also, the OPA657 will be change 

from a SOIC package to a SOT-23 package without the addition of any cost.  

5.3. Conclusion 
 This thesis addresses the design and implementation of a pulsed laser rangefinder using the 
time-of-flight principle. The implemented system uses a pulsed laser diode and a laser driver to send 
a light pulse toward a measurement target; an avalanche photodiode and signal amplifiers to photo-
electrically convert and amplify the reflected light of the target; a TDC to measure the delay time of 
the light signal; and a microprocessor to send the driving signal to the pulsed laser diode driver, 
send the start counter signal to the TDC, read the time information from it and calculate the 
distance. 
 
 The rise time of the driver signal for the PLD is 58ns which gives a system bandwidth of around 
6MHz. The noise measured at the output of the amplifying channel was 50mV. The maximum 
output signal of the receiver channel is 4V which gives a signal-to-noise ratio (SNR) of 80. Knowing 
these values, according to equation 2 of [8], the single-shot resolution for the system is 
approximately 10cm. The resolution is improve by averaging of 100 measurements [8, equation 3] 
to 1cm for distances of less than 1m. The resolution of the system deteriorates with increasing 
distance. 
 
 The total accuracy of the laser rangefinder is affected by the walk error of the receiver channel 
and the changes in the room temperature. Also, the noise at the output of the receiver channel 
limits the minimum detectable signal. Some improvements need to be done to the system to 
improve its accuracy and speed. These improvements are explained in the previous sections. They 
will allow the expandability of the current system to a scanning laser rangefinder without the need 
of major changes. 
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