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The human brain has been studied at multiple scales, from neurons, circuits, areas with we
defined anatomical and functional boundaries, to large-scale functional networks whi
mediate coherent cognition. In a recent work, we addressed the problem of the hiera
chical organization in the brain through network analysis. Our analysis identified function
brain modules of fractal structure that were inter-connected in a small-world topology. Her
we provide more details on the use of network science tools to elaborate on this behavio
We indicate the importance of using percolation theory to highlight the modular chara
ter of the functional brain network. These modules present a fractal, self-similar topolog
identified through fractal network methods. When we lower the threshold of correlatio
to include weaker ties, the network as a whole assumes a small-world character. Thes
weak ties are organized precisely as predicted by theory maximizing information transf
with minimal wiring costs.

ll-
ch
r-
al
e,
r.
c-
y,

ns
e

er

Keywords: fractal networks, brain functional networks, small-world, modularity, percolation, fMRI

1. INTRODUCTION
The functional magnetic resonance imaging (fMRI) technique is
a tool that has greatly improved our ability to probe brain activity.
The method detects changes in blood oxygenation when areas of
the brain are activated and consequently require increased blood
flow. In this way, we can monitor what brain areas respond to
different mental activities. The resulting datasets offer a three-
dimensional image of the brain indicating the level of activation
at various regimes.

Many methods have been applied to analyze fMRI data, ranging
from statistics to signal processing techniques. Recently, the brain
organization has been described as a complex network (Eguiluz
et al., 2005; Sporns et al., 2005; Bullmore and Sporns, 2009). This
approach can take various forms, such as physical connections
between neurons or correlations in the activity between brain
areas at a coarser level. In a recent work (Gallos et al., 2012) we
used recent advances in fractal network theory to characterize the
brain clusters structure, and studied one key problem of neuro-
science,namely the integration of modular clusters in a larger scale.
Here, we expand on those findings and describe the methodology
in detail, focusing on the use of network theory in the study of
fMRI data.

One of the main features of our sensations is its unitary nature.
The brain can receive many concurrent stimuli. These have to be
processed independently of each other, but at the same time they
have to be integrated into a unified entity. This suggests that the
modalities in the brain that process different characteristics have
to act isolated for efficient computations, but they need also be
sufficiently connected in order to perform coherent functions.

The notion of a complex network can be suitably adapted
to address this scaling problem and study optimal information
flow in modular networks. This representation of complicated

interactions has offered new insight in many processes across dif-
ferent disciplines. A key feature of many such networks is their
modular character, a topic which has attracted a lot of inter-
est in the literature. Many algorithms have been proposed for
the detection of modules, loosely defined as network areas well-
connected within themselves but sparsely connected to the rest
of the network. The detection and behavior of modules at dif-
ferent observation scales, though, remains a largely unexplored
problem. Network analysis of functional (Eguiluz et al., 2005) and
structural (Sporns et al., 2005) data has been used to character-
ize global connectivity and topological organization of the human
brain (Bullmore and Sporns, 2009). Many of those studies indi-
cate the small-world character (Watts and Strogatz, 1998) of brain
networks, but the idea of a simple small-world structure can be
contradictory to modular network.

In the present manuscript we implement a complex network
analysis to understand the hierarchical organization of functional
brain networks, and we study how we can explain the emergence
of both small-world and modular features in the same network.
We capitalize on a well known dual-task paradigm, the psycho-
logical refractory period, in which information from different
sensory modalities (visual and auditory) has to be coherently
routed to different motor effectors (in this experiment, the left
and right-hand).

The combination of high-temporal resolution fMRI with novel
network analysis tools allows the study of the module proper-
ties and their synergy toward accomplishing a cognitive task.
A functional correlation network is derived from the fMRI
phase information. We implement percolation and scaling analy-
sis methods to uncover a highly modular functional operation
and a network that is almost optimally connected for efficient
information flow.
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2. MATERIALS AND METHODS
2.1. EXPERIMENTAL DESIGN
We use time-resolved fMRI (Menon et al., 1998), based on
analysis of the phase signal (Sigman et al., 2007). Time-
resolved fMRI is capable of identifying the series of process-
ing stages which unfold sequentially during the execution of a
compound dual-task (Dux et al., 2006; Sigman and Dehaene,
2008).

The details of the experiments are described in Sigman et al.
(2007), and are briefly reviewed here. Sixteen participants per-
formed a dual-task paradigm: first a visual task of comparing an
Arabic numeral (target T1) to a fixed reference, with a right-hand
response and, second, an auditory task of judging the pitch of an
auditory tone (target T2) with a left-hand response. The stimulus
onset asynchrony (SOA) between T1 and T2 was varied between
0, 300, 900, and 1200 ms. In the course of this analysis we did not
detect significant differences in the resulting patterns of different
SOA conditions.

While subjects performed the dual-task, whole-brain fMRI
images were recorded at a sampling time (TR) of 1.5 s, and sub-
sequently the phase and amplitude of the hemodynamic response
were computed (Sigman et al., 2007). This activated map exhibits
phases consistently falling within the expected response latency for
a task-induced activation. As expected for an experiment involving
visual and auditory stimuli and bimanual responses, the respon-
sive regions included bilateral visual occipito-temporal cortices,
bilateral auditory cortices, motor, premotor and cerebellar cor-
tices, and a large-scale bilateral parieto-frontal network (Sigman
and Dehaene, 2008). In this study we try to understand the topol-
ogy of the modular organization of this broad functional network
during dual-task performance. For this purpose, we derived a large
functional network of brain areas by measuring the phase correla-
tions in these responses for all pairs of voxels. We then connected
the highly correlated pairs which gave us the brain cluster network
structure.

2.2. PHASE CORRELATIONS AND FUNCTIONAL BRAIN NETWORK
We use network theory concepts for the analysis of correlations
between different brain areas, based on the temporal activation
of these areas when a subject responds to external stimuli. We
reconstruct the network topology of brain voxels, where a net-
work link indicates a high correlation in the phase-space activity
of the two connected voxels, and compare this structure with the
corresponding topology of the voxel location in the brain.

The time evolution of the phase of all brain voxels over 440 s
was recorded for each participant and each of the four SOA con-
ditions, for a total of 64 measurements. For our analysis, we create
a mask where we only keep voxels which were activated in more
than 75% of the cases, i.e., in at least 48 instances.

We want to detect the correlation between the phases of two
voxels i and j in the activated mask. The measure of correlation for
vectors is the co-directionality, i.e., we need to calculate the angle
between the two vectors. Therefore, the correlation cij between two
vectors �ri and �rj is given, in general, by cij ≡ �ri · �rj/|�ri ||�rj |, which
is equivalent to the cosine of the included angle, i.e., cij = cos(θ),
where θ is now the phase difference ai − aj. We average the corre-
lation between any two voxels i and j in the activated mask over

roughly 40 trials of each experiment. The resulting correlation pij

between these two voxels is then given by

pij = 1

N

N∑

t=1

cos
[
ai(t ) − aj(t )

]
, (1)

where N is the number of trials for a given combination of sub-
ject and stimulus. We link two voxels if their correlation is larger
than a threshold value p. The resulting network is a representa-
tion of functional relations among voxels for a specific subject and
stimulus.

The topology of this network strongly depends on the value of p.
The variation of p describes a percolation process. A large p-value
enables isolated module identification, since only the strongest
(i.e., more correlated) functional links between voxels are pre-
served. As p is lowered, these modules get progressively merged
to larger entities and the emphasis is shifted toward large-scale
properties of the spanning network.

The complex network representation (Figure 1A) reveals func-
tional links between brain areas, but cannot directly reveal spatial
correlations. Since voxels are embedded in space, we also study
the topological features of spatial clusters in three-dimensions,
where now voxels assume their known positions in the brain and
links between them are transferred from the corresponding net-
work (Figure 1B), i.e., they are assigned according to the degree
of correlation between any two voxels, independently of the voxels
proximity in real-space.

The above procedure yields a different network or spatial clus-
ters for each subject. We study each of those networks and clusters
separately and show that they all carry statistically similar proper-
ties. For efficiency purposes, we focus our attention to the case of
the largest pc value where three clusters, including at least 1000 vox-
els, emerge in each trial. The spread of the corresponding pc values
is small, demonstrating a similar behavior in the brain response of
different subjects.

2.3. FRACTAL ANALYSIS
We analyze the resulting networks and the embedded three-
dimensional clusters in terms of their fractal and modular prop-
erties. For the spatial representation, we characterize the fractality
of a connected cluster through the standard Hausdorff dimension
df. Starting from an arbitrary point in a cluster, df measures how
the mass Nf (number of voxels in the same cluster) scales with the
Euclidean distance r from this origin, i.e.:

Nf (r) ∼ rdf . (2)

The exponent df shows how densely the area is covered by a specific
cluster.

The box-covering technique is used for the fractal analysis of
the complex networks. A network (in our case each cluster) is first
tiled with the minimum possible number of boxes, NB, of a given
size �B. A box is defined as a union of nodes, all of which are at
a distance from each other smaller than a given threshold length,
the box size �B (the distance between two nodes, �, is defined as
the number of links along the shortest path between those nodes
in the functional brain network).
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A B

FIGURE 1 | (A) Network representation of a brain cluster, as found by the phase correlation between pairs of voxels. (B) The same cluster in real-space
representation, where each voxel is now placed in its known location in the brain.

The fractality (self-similarity) of the network is quantified in
the power-law relation between the number of boxes needed to
cover the network and the box size �B:

NB (�B) = N0�
−dB
B , (3)

where dB is the fractal dimension (or box dimension) and N 0 is
the number of nodes in the original network (Song et al., 2005a,
2006; Goh et al., 2006; Kim et al., 2007; Radicchi et al., 2008). Finite
and small values of dB show that the network has fractal features,
where the covering boxes retain their connectivity scheme under
different scales, and larger-scale boxes behave in a similar way as
the original network.

The requirement that the number of boxes should be min-
imized poses an optimization problem which can be solved
using a number of box-covering algorithms. The method that
we implement here is called Maximum Excluded Mass Burning
algorithm (MEMB), and the algorithm can be downloaded from
http://lev.ccny.cuny.edu/hmakse/soft_data.html). The method is
roughly explained in Figure 2. The detection of modules or boxes
in our work follows from the application of this algorithm (Song
et al., 2005a, 2007) at different length-scales.

The MEMB method starts by determining the minimum num-
ber of boxes of radius rB required for a complete coverage of the
network. This radius is the distance from a box “center,” so that by
definition all nodes in a box are within a distance from each other
smaller than �B = 2rB + 1. The method detects the nodes that will
act as the centers of the boxes, by calculating the mass around
each node if it would act as a center. The node with maximum
mass around it is selected as a center and we proceed iteratively
to find the minimum number of such centers. Once these nodes
have been determined, the boxes are built by including successive
layers of nodes around the centers. The details of the method are
reported in Song et al. (2007).

The resulting boxes are characterized by the proximity between
all their nodes, at a given length-scale and the maximization of the
mass associated with each module center. Thus, MEMB detects
boxes that also tend to maximize modularity. Different values of
the box diameter �B yield boxes of different size. These boxes are
then identified as modules which at a smaller scale �B may be

FIGURE 2 | Demonstration of the MEMB box-covering algorithm. For a
given radius value, e.g., rB = 1 in the center panel and rB = 2 in the right
panel, we cover the network with the smallest possible number of boxes.
The diameter of the box, �B (i.e., the distance between any two nodes in a
box) is defined as �B = 2rB + 1. First, we detect the smallest possible
number of box origins (shown with blue color) that provide the maximum
number of nodes (mass) in each box, according to an optimization algorithm
described in Song et al. (2007). Then, we build the boxes through
simultaneous burning from these center nodes, until the entire network is
covered with boxes. For the calculation of modularity, we consider the
boxes at each rB value as separate modules. Then we calculate the ratio
between the number of links within the modules (black links) and the
number of links between modules (blue links).

separated, but merge into larger entities as we increase �B. Thus,
we can study the hierarchical character of modularity, i.e., mod-
ules of modules, and we can detect whether modularity is a feature
of the network that remains scale-invariant.

For this, we can extend the box-covering concept to act as
a community detection algorithm (Galvao et al., 2010). MEMB
identifies modules of size �B, composed of highly connected brain
areas. Typical modularity approaches do not place constraints on
the size of the modules, but they focus on minimizing the num-
ber of inter-module links. The MEMB approach, though, has the
additional advantage that modularity can be studied at different
scales. The requirement of minimal number of modules to cover
the network (NB) guarantees that the partition of the network is
such that each module contains the largest possible number of
nodes and links inside the module with the constraint that the
modules cannot exceed size �B. This optimized tiling process gives
rise to modules with the fewest number of links connecting to
other modules. This implies that the degree of modularity for
a given �B value is maximized, and we can define a modularity
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measure, M through (Newman and Girvan, 2004; Guimerà and
Amaral, 2005; Caldarelli and Vespignani, 2007; Gallos et al., 2007)

M(�) ≡ 1

NB

NB∑

i=1

Lin
i

Lout
i

. (4)

Here Lin
i and Lout

i represent the number of links that start in a
given module i and end either within or outside i, respectively.
Large values of M (i.e., Lout

i → 0) correspond to a higher degree
of modularity (Gallos et al., 2007).

The value of the modularity of the network M varies with �B,
so that we can detect the dependence of modularity on differ-
ent length-scales, or equivalently how the modules themselves are
organized into larger modules that enhance the degree of modu-
larity. In the case that the dependence has a power-law form, we
can define a modularity exponent dM, through the relation:

M (�B) ∼ �
dM
B . (5)

3. RESULTS
3.1. PERCOLATION ANALYSIS REVEALS THE MODULAR STRUCTURE
We use percolation theory (Bunde and Havlin, 1996) to identify
the functional clusters resulting from the correlation between the
phases of two voxels. The percolation problem is a paradigm of
critical phase transitions (Stanley, 1971; Vicsek, 1992) which can
be used to identify the functional clusters in the brain network. In
the simplest version of percolation, we can consider a lattice where
each bond is absent with probability p or present with probability
1 − p (Bunde and Havlin, 1996). In lattices, it is well known that
there exists a critical probability pc, below which the largest cluster
of connected bonds spans the whole length of the lattice, while for
p > pc only small isolated clusters survive.

In the case of the functional brain network, the corresponding
probability p for the existence of a link between any two voxels in
the brain is based on the value of the phase correlation between
them. For each participant, we calculated the mass of the largest
cluster as a function of the percolation threshold p. As explained
above, in a broad variety of systems in nature, the size of the largest
cluster in a percolation process remains very small and increases
abruptly through a phase transition, in which a single largest clus-
ter spans the whole system (Bunde and Havlin, 1996). A single
incipient cluster is expected to appear if the bonds in the network
are occupied at random without correlations, i.e., when the prob-
ability to find an active bond is independent on the activity of all
the other bonds in the network. For the functional brain network
our results revealed a more complex picture.

We found that, for all participants in this study, the cluster size
increased progressively with a series of sharp jumps (Figure 3)
and not with a single jump as expected for the simpler picture
of uncorrelated percolation. Moreover, in random percolation the
second largest cluster has a strong peak around pc and vanishes
otherwise. In the brain network, the second largest cluster also
increases through jumps of absorbing smaller clusters. This sec-
ond cluster remains comparable in size with the largest cluster over
a wider range of p. The evolution of these cluster sizes with p is a
strong indication of strong correlations deviating from a random
process.

We identified each of the jumps in the largest cluster as a sin-
gle percolation transition focused on a region of the brain that
is highly correlated and therefore represents a well-defined mod-
ule (Figure 3). These sharp transitions are indicative of a marked
modular structure in the network. They indicate that at any given
p-value there are many isolated clusters in the brain network,
which subsequently merge into the largest cluster as p decreases.
This is a universal behavior observed in all participants, and allows
the identification of functional modules, which we proceed to
study next.

The clusters identified by percolation analysis at a given thresh-
old p are functionally connected, but the nodes in such a cluster are
not necessarily clustered in space. Thus, we first studied whether
the percolation clusters had a consistent spatial projection. The
p-values at which clusters appear varied across participants. To
group the data, we measured, for each participant, the highest cor-
relation p-value for which there were at least three clusters of 1000
voxels each. The topography of these clusters reflected coherent
patterns across different individuals. In virtually all participants we
observed a cluster covering the premotor, supplementary motor
area (SMA) region, a cluster covering the medial part of the pos-
terior parietal cortex (PPC) and a cluster covering the medial
part of early retinotopic cortex (area V1), along the calcarine
fissure.

We then measured the likelihood that a voxel may appear in
a percolation cluster, by counting, for each voxel, the number of
individuals for which it was included in one of the first three
percolation clusters (Figure 4).

Clusters in the three main nodes, V1, SMA, PPC, are ubiq-
uitously present in percolation clusters and, to a lesser extent,
voxels in the motor cortex (along the central sulcus) slightly more
predominantly on the left hemisphere.

This analysis demonstrated that the correlation networks
obtained from each subject yielded percolation clusters with con-
sistent topographic projections. Next we focus on our main aim;
exploring the topology and scaling properties of the network
modules using fractal network analysis.

3.2. FRACTAL ANALYSIS RESULTS
For each of the 16 participants and each of the 4 SOA conditions
we calculated the resulting network through the phase correlation.
Then, for each network, we estimated the percolation threshold
that yields three clusters of at least 1000 voxels each. This results in
a total of 192 clusters which were pooled together for the present
analysis.

We applied the box-covering algorithm (Song et al., 2005a,
2007) to measure the fractal dimension dB of these 192 clusters.
The fractal dimension dB was calculated separately for each clus-
ter. The resulting network fractal dimensions were distributed in
a relatively narrow range, with an average value dB = 1.9 ± 0.1
(Figure 5A).

The cluster structure can be also probed by its topological fea-
tures when every node-voxel assumes its assigned location at the
brain. Each cluster identified by the box-covering algorithm can
be mapped to their anatomical projections, where two voxels are
still connected according to their correlation but their distance is
now defined by the Euclidean three-dimensional spatial distance

Frontiers in Physiology | Fractal Physiology May 2012 | Volume 3 | Article 123 | 4

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Fractal_Physiology
http://www.frontiersin.org/Fractal_Physiology/archive


Gallos et al. Conundrum of functional brain networks

A

C

B

FIGURE 3 | (A) Bond percolation in a 2-dimensional lattice. We remove a
random bond with probability p, and with probability 1 − p a bond remains
(denoted by a solid black line). The lattice with solid black bonds is at the
percolation transition p = pc. (B) Evolution of modules at different thresholds.
The size of the three largest clusters as a function of the correlation threshold

p for a given subject. As we lower p the cluster size increases in jumps, and
new clusters emerge, grow, and finally get absorbed by the largest cluster.
This behavior is significantly different from the random percolation in (A). (C)

Cluster evolution. Brain clusters with more than 1000 voxels, as identified
through correlation analysis for a given p-value.

r (Figure 5B). This mapping allows the use of the classical frac-
tal dimension in real-space for the study of the structure of these
functional clusters in the brain.

The method that we use to calculate the fractal dimension here
is an alternative method to the one used in Gallos et al. (2012).
There, df was calculated by measuring the number of nodes, NC,
in a cluster as a function of the cluster diameter. Here, for every
cluster we start from a random point and open a circle of radius r
and measure the number of nodes Nf(r) in this circle. The depen-
dence of Nf(r) on r for this cluster gives its fractal dimension,
and the process is repeated for all clusters. The scaling of the mass
Nf(r) (i.e., number of nodes in the cluster) included in a sphere
with Euclidean radius r follows the power-law form of equation

(2). The calculation of the individual Euclidean fractal dimensions
yields an average of df = 2.1 ± 0.1 (Figure 5B), which is similar for
all clusters, and which is exactly the same as the one found in Gal-
los et al. (2012). The network fractal dimension of all clusters was
systematically lower than the real-space fractal dimension, which
was in the range 2–2.4.

It is possible that the difference between the fractal dimen-
sions of individual clusters can be due to systematic variations,
influenced by various factors. We performed a number of tests to
identify the stability of these calculations. In Figure 6A we show
a cross-plot for the exponents dB and df, as calculated for each
individual cluster. The value of dB was systematically below df.
From the same plot we deduce that the value of the percolation
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A

B C

FIGURE 4 |The emerging clusters have consistent spatial projections. (A)

The color denotes the fraction of the total number of voxels that appear to
one of the three largest clusters in N subjects at a given percolation threshold
p. As we reduce the threshold the peak shifts toward larger N values, i.e., the
same voxels appear consistently in the largest clusters for all subjects. (B,C)

Spatial distribution of the first percolation clusters (in subject counts). The two
brain slices show for the highest p-values the shared voxels. White bleached
regions correspond to voxels which are included in the first percolation cluster
for all subjects. The SMA, a region involved in planning motor action is the
only shared region for all subjects.

A B

FIGURE 5 | (A) Fractal dimension dB of the network clusters. The line is
representative of the average dimension dB = 1.9. (B) Fractal dimension df of
the spatially embedded clusters. The large points represent the number of

nodes Nf(r ) included within a fixed distance r, averaged over all clusters, while
smaller points refer to individual clusters. The fitted line corresponds to the
average dimension df = 2.1.

transition does not influence the fractal dimension, since the dif-
ferent pc values of different clusters yield a uniform spreading of
the fractal dimensions. It is also possible that the location of the

brain clusters may have an effect on their fractal character. Our
results do not provide any evidence toward this direction, either.
In Figure 6B we plot the exponents dB and df for each cluster as
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A B

FIGURE 6 | Consistency of the fractal dimension calculations.

(A) Cross-plot of df vs dB for individual brain clusters. The colors
correspond to the threshold values of pc where the first percolation
transition was identified. (B) The network fractal dimension, df

(blue), and the three-dimensional fractal dimension, dB (red) as a
function of the location of each cluster. This location corresponds to
the center of mass, and is expressed through the y -index, posterior
to anterior.

a function of the y-coordinate of the cluster’s center of mass, i.e.,
increasing y indexes corresponds to moving from the posterior to
the anterior part of the brain. It is obvious that there is no system-
atic variation of the exponents in different locations. The above
results emphasize the robustness of the fractal structure and indi-
cate that we can consider the averages over all those structures to
be representative of a typical brain module.

We can now characterize each single cluster, both at the func-
tional level and at the topological level (i.e., the shape that the
cluster assumes in the brain). Together, these results indicate that
none of the clusters fill the 3D space densely; although the objects
are embedded in three-dimensions their fractal dimension df is
significantly smaller than 3. The network structure provides infor-
mation on functional clusters, since it relates areas that are highly
correlated independently of their physical proximity. Since the
network fractal dimension dB is even smaller than df, connec-
tions are fewer than one would expect through nearest-neighbor
connections only. In simpler words, clusters do not form densely
connected neighborhoods.

3.3. MODULAR STRUCTURE
In the Materials and Methods section we described how we can
use the optimal MEMB coverage of the network with NB nodes
for a given �B value, in order to characterize the network modular-
ity. Analysis of the modularity equation (4) in Figure 7 reveals a
monotonic increase of M(�B) with a lack of a characteristic value
of �B. Indeed, the data can be approximately fitted with a power-
law functional form, equation (5), which is characterized by the
modularity exponent dM. We analyze the resulting networks of dif-
ferent subjects and we find that dM = 1.9 ± 0.1 is approximately
constant over different individuals (Figure 7).

This value reveals a considerable degree of modularity in the
entire system as evidenced by the network structure. For com-
parison, a random network has dM = 0 and a uniform lattice has
dM = 1 (Gallos et al., 2007). The lack of a characteristic length-scale
in the modularity shown in Figure 7 suggests that the mod-
ules appear at all length-scales, i.e., modules are organized within
larger modules in a self-similar way, so that the inter-connections
between those clusters repeat the basic modular character of the

FIGURE 7 | Modularity as a function of �B for different clusters. The
average value of the exponent is dM = 1.9, shown by the solid line.

entire brain network. Thus, the modular organization of the net-
work remains statistically invariant when observed at different
scales.

3.4. SHORT-CUT WIRING IS OPTIMIZED FOR EFFICIENT FLOW
A major advantage of the present analysis approach is that the
analysis of the type of short-cuts present in the brain networks
can convey a notion of optimal navigability in the network.

The addition of long-range links can turn the balance of a
network structure toward either a self-similar structure with sig-
nificant modularity but poor transfer or toward a small-world
structure with very efficient flow at the cost of modularity (special-
ization). A small number of such short-cuts, quantified through
renormalization group analysis (Rozenfeld et al., 2010), has been
shown to provide the optimal trade-off between these two prop-
erties. In the case of the brain clusters the need for specializa-
tion/modularity is obvious, as also shown in the previous section,
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so it is important to understand how short-cuts influence the
efficiency of signal transport in these structures.

In order to study how the modules that we recovered by the first
percolation transition integrate at a larger scale, we also considered
another percolation transition that corresponds to the emergence
of a spanning cluster. We chose this transition as the correlation
point where the largest cluster is equal to half of the total size. This
global network connects practically all the smaller brain modules.

We probed the connectivity for this network, by analyzing the
distance distribution of the links in the network, i.e., the Euclid-
ean distance between any two voxels that are connected through
their phase correlation (Figure 8A). We find an approximately
power-law distribution (Figure 8B) of the form:

P(r) ∼ r−α , (6)

with a short-cut exponent α ≈ 3.1. The value of this exponent is
very significant, since it approximately satisfies the scaling relation
with the fractal dimension of the brain network:

α = df + 1. (7)

Such a scaling relation was recently (Li et al., 2010) found to opti-
mize the transfer of information across a network with fractal
dimension df when the short-cuts in the network are added with
a cost constraining the number of total links. Thus, our scal-
ing and modular analysis suggests that, taking into account the
spatial restrictions, the functional behavior of the brain is opti-
mally wired for facilitating efficient information transfer among
different areas.

4. DISCUSSION
Our analysis revealed a fractal structure for the individual brain
clusters. These clusters have a consistent topological behavior and
are located at the areas that correspond to the expected brain

responses. These modular structures present consistent fractal
properties, both at the functional level and at a topological level.
This indicates that the individual processing units that we recover
do not have significant small-world properties. In contrast, when
we include weaker correlations, the modules that appear at smaller
scales are connected through long-range links. These short-cuts
give a small-world character to the brain network as a whole, i.e.,
when studied at scales larger than an individual module.

The study of the distribution for these links suggests inter-
estingly that they are optimizing transfer network properties, by
also considering the wiring cost. In simpler terms, this topology
does not minimize the global connectivity, simply to connect all
the nodes; instead it minimizes the amount of wire required to
achieve the goal of shrinking the network to a small-world.

The existence of modular organization of strong ties in a sea
of weak ties is reminiscent of the structure found to bind dissim-
ilar communities in social networks. Granovetter’s (1973) work
in social sciences proposes the existence of weak ties to cohese
well-defined social groups into a large-scale social network. Such
a two-scale structure has a large impact on the diffusion and
influence of information across the entire social structure. Our
observation of this two-layer organization in brain networks sug-
gests that it may be a ubiquitous natural solution to the puzzle of
information flow in highly modular structures.

Previous studies have found that wiring of neuronal networks at
the cellular level is close to optimal (Song et al., 2005b). Specifically
it is found that long-range connections do not minimize wiring
but achieve network benefits. In agreement with this observation,
at the mesoscopic scale explored here, we find an optimization
which reduces wiring cost while maintaining network proximity.
An intriguing element of our observation is that this minimization
assumes that broadcasting and routing information are known
to each node. How this may be achieved – what aspects of the
neural code convey its own routing information – remains an
open question in Neuroscience.

100 101 102

(mm)
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FIGURE 8 | (A) Real-space representation of the network at the second global
percolation. The largest component is half the total mass. The blue lines
highlight the longest links in Euclidean distance, which correspond to the
weak ties. (B) Cumulative probability distribution P (rij > r ) of Euclidean

distances rij between any two voxels that are directly connected in the
correlation network. The straight line fitting yields an exponent
α − 1 = 2.1 ± 0.1 indicating optimal information transfer with wiring cost
minimization.
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