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Figure 8.1: The Planck distribution as a function of frequency for three sample values of temperature,
with T3 > T2 > T1; units are arbitrary.

Using the Maxwell equations in free space, we find

∂u
∂ t

= EiĖi +BiḂi = c [Ei(—⇥B)i �Bi(—⇥E)i]

= �c— · (~E ⇥~B) = �— ·~P (8.33)
~P = c(~E ⇥~B)

Integrating over a volume V , we find

∂
∂ t

Z
d3x u = �

I

∂V
~P ·d~S (8.34)

Thus the energy flux per unit area or the intensity is given by the Poynting vector ~P = c(~E ⇥~B).
For electromagnetic waves, |E| = |B|, ~E and ~B are orthogonal to each other and both are orthogonal
to~k, the wave vector which gives the direction of propagation, i.e., the direction of propagation of
the photon. In this case we find

u = E2, ~P = cu k̂ (8.35)

Using the Planck formula (8.28), the magnitude of the intensity of blackbody radiation is given by

d I = 2c
d3k

(2p)3
h̄w

eh̄w/kT �1
(8.36)

We have considered radiation in a box of volume V in equilibrium. To get the rate of radiation
per unit area of a blackbody, note that, because of equilibrium, the radiation rate from the body
must equal the energy flux falling on area under consideration (which is all taken to be absorbed
since it is a blackbody); thus emission rate equals absorption rate as expected for equilibrium. The
flux is given by

~P ·d~S = ~P · n̂dS = cu k̂ · n̂dS = cucosq dS (8.37)

where n̂ is the normal to the surface and q is the angle between k̂ and n̂. Further, in the equilibrium
situation, there are photons going to and away fromthe surface under consideration, so we must
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1. Basic Concepts

Thermodynamics is the description of thermal properties of matter in bulk. The study of
phenomena involving the transfer of heat energy and allied processes form the subject matter.
The fundamental description of the properties of matter in bulk, such as temperature, heat
energy, etc., are given by statistical mechanics. For equilibrium states of a system the results
of statistical mechanics give us the laws of thermodynamics. These laws were empirically
enunciated before the development of statistical mechanics. Taking these laws as axioms, a
logical buildup of the subject of thermodynamics is possible.

1.1 Definitions

Thermodynamic coordinates

The macroscopically and directly observable quantities for any state of a physical system are
the thermodynamic coordinates of that state. As an example, the pressure p and volume V of a
gas can be taken as thermodynamic coordinates. In more general situations, other coordinates,
such as magnetization and magnetic field, surface tension and area, may be necessary. The
point is that the thermodynamic coordinates uniquely characterize the macroscopic state of
the system.

Thermal contact

Two bodies are in thermal contact if there can be free flow of heat between the two bodies.

Adiabatic isolation

A body is said to be in adiabatic isolation if there can be no flow of heat energy into the
body or out of the body into the environment. In other words, there is no exchange of heat
energy with the environment.
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Thermodynamic equilibrium

A body is said to be in thermodynamic equilibrium if the thermodynamic coordinates of
the body do not change with time.

Two bodies are in thermal equilibrium with each other if on placing them in thermal
contact, the thermodynamic coordinates do not change with time.

Quasistatic changes

The thermodynamic coordinates of a physical can change due to any number of reasons,
due to compression, magnetization, supply of external heat, work done by the system, etc. A
change is said to be quasistatic if the change in going from an initial state of equilibrium to a
final state of equilibrium is carried out through a sequence of intermediate states which are
all equilibrium states. The expectation is that such quasistatic changes can be achieved by
changes which are slow on the time-scale of the molecular interactions.

Since thermodynamics is the description of equilibrium states, the changes considered in
thermodynamics are all quasistatic changes.

Work done by a system

It is possible to extract work from a thermodynamic system or work can be done by external
agencies on the system, through a series of quasistatic changes. The work done by a system
is denoted by W . The amount of work done between two equilibrium states of a system will
depend on the process connecting them. For example, for the expansion of a gas, the work
done by the system is

dW = p dV (1.1)

Exact differentials

Consider a differential form defined on some neighborhood of an n-dimensional manifold
which may be written explicitly as

A =
∑

i

fi dx
i (1.2)

where fi are functions of the coordinates xi. A is an exact differential form if we can integrate
A along any curve C between two points, say, ~x = (x1, x2, · · · , xn) and ~x′ = (x1′ , x2′ , · · · , xn′)
and the result depends only on the two end-points and is independent of the path C. This
means that there exists a function F in the neighborhood under consideration such that
A = dF . A necessary condition for exactness of A is

∂fj
∂xi
− ∂fi
∂xj

= 0 (1.3)
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Conversely, if the conditions (1.3) are satisfied, then one can find a function F such that
A = dF in a star-shaped neighborhood of the points ~x and ~x′.

The differential forms we encounter in thermodynamics are not necessarily exact. For
example, the work done by a system, say, dW is not an exact differential. Thus the work done
in connecting two states α and β, which is given by

∫ β
α dW , will depend on the path, i.e., the

process involved in going from state α to state β.

1.2 The zeroth law of thermodynamics

This can be stated as follows.

The zeroth law of thermodynamics: If two bodies A and B are in thermal equilib-
rium with a third body C, then they are in thermal equilibrium with each other.

Consequences of the zeroth law

Thermal equilibrium of two bodies will mean a restrictive relation between the thermo-
dynamic coordinates of the first body and those of the second body. In other words, thermal
equilibrium means that

F (~xA, ~xB) = 0 (1.4)

if A and B are in thermal equilibrium. Thus the zeroth law states that

F (~xA, ~xB) = 0

F (~xB, ~xC) = 0

}
=⇒ F (~xA, ~xC) = 0 (1.5)

This is possible if and only if the relations are of the form

F (~xa, ~xB) = t(~xA)− t(~xB) = 0 (1.6)

This means that, for any body, there exists a function t(~x) of the thermodynamic coordinates ~x,
such that equality of t for two bodies implies that the bodies are in thermal equilibrium. The
function t is not uniquely defined. Any single-valued function of t, say, T (t) will also satisfy
the conditions for equilibrium, since

tA = tB =⇒ TA = TB (1.7)

The function t(~x) is called the empirical temperature. This is the temperature measured by gas
thermometers.

The zeroth law defines the notion of temperature. Once it is defined, we can choose n+ 1

variables (~x, t) as the thermodynamic coordinates of the body, of which only n are independent.
The relation t(~x) is an equation of state.
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1.3 Equation of state

The ideal gas equation of state

In specifying the equation of state, we will use the absolute temperature, denoted by
T . We will introduce this concept later, but for now, we will take it as given. The absolute
temperature is always positive, varying from zero (or absolute zero) to infinity. The ideal gas is
then characterized by the equation of state

p V = N k T (1.8)

where N denotes the number of molecules of the gas and k is a constant, known as Boltzmann’s
constant. Another way of writing this is as follows. We define the Avogadro number as
6.02214× 1023. This number comes about as follows. The mass of an atom is primarily due to
the protons and neutrons in its nucleus. Each proton has a mass of 1.6726× 10−24 gm, each
neutron has a mass of 1.6749×10−24 gm. If we neglect the mass difference between the proton
and the neutron, the mass of an atom of atomic weight A (= number of protons + number
of neutrons in the nucleus) is given by A × 1.6726 × 10−24 gm. Thus if we take A grams of
the material, the number of atoms is given by (1.67× 10−24)−1 ≈ 6× 1023. This is essentially
the Avogadro number. The mass difference between the proton and neutron is not completely
negligible and also there are slight variations from one type of nucleus to another due to the
varying binding energies of the protons and neutrons. So we standardize the Avogadro number
by defining it as 6.02214 × 1023, which is very close to the number of atoms in 12 gm of the
isotope C12 of carbon (which was used to standardize the atomic masses).

If we have N molecules of a material, we say that it has n moles of the material, where
n = N/(Avogadro number). Thus we can rewrite the ideal gas equation of state as

p V = nRT, R = k (Avogadro number) (1.9)

Numerically, we have, in joules per kelvin unit of temperature,

k ≈ 1.38065× 10−23 J/K, R ≈ 8.3145 J/(moleK) (1.10)

The van der Waals equation of state

The ideal gas law is never obtained for real gases. There are intermolecular forces which
change the equation of state, not to mention the quantum nature of the dynamics of the
molecules which becomes more important at low temperatures. The equation of state can in
principle be calculated or determined from the intermolecular forces in statistical mechanics.
The corrections to the ideal gas law can be expressed as series of terms known as the virial
expansion, the second virial coefficient being the first such correction. While the method
is general, the specifics depend on the nature of the molecules and a simple formula is not
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Figure 1.1: The general form of the intermolecular potential as a function of distance

easy to write down. An equation of state which captures some very general features of the
intermolecular forces was written down by van der Waals, in the 1870s, long before the virial
expansion was developed. It is important in that it gives a good working approximation for
many gases. The van der Waals equation of state is

(
p+

aN2

V 2

)
(V − bN) = NkT (1.11)

The reasoning behind this equation is as follows. In general, intermolecular forces have a
short range repulsion, see Fig. 1.1. This prevents the molecules from forming bound states.
The formation of bound states would be a chemical reaction, so we are really considering
gases where there is no further chemical reaction beyond the initial formation of the molecules.
For example, if we consider oxygen, two oxygen atoms bind together to form the oxygen
molecule O2, but there is no binding for two oxygen molecules (two O2’s) to form something
more complicated. At the potential level, this is due to a short range repulsion keeping them
from binding together. In van der Waals’ reasoning, such an effect could be incorporated by
arguing that the full volume V is not available to the molecules, a certain volume b around
each molecule is excluded from being accessible to other molecules. So we must replace V by
(V − bN) in the ideal gas law.

Intermolecular forces also have an attractive part at slightly larger separations. This
attraction would lead to the molecules coming together, thus reducing the pressure. So the
pressure calculated assuming the molecules are noninteracting, which is the kinetic pressure
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pkin, must be related to the actual pressure p by

p = pkin −
aN2

V 2
(1.12)

The interaction is pairwise primarily, so we expect a factor of N(N − 1)/2 (which is number of
pairings one can do) for N molecules. This goes like ∼ N2, which explains the second term
in (1.12). Using the ideal gas law for pkin with the volume (V − bN), we get (1.11). In this
equation, a and b are parameters specific to the gas under consideration.



2. The First Law of Thermodynamics

2.1 The First Law

The first law of thermodynamics is the conservation of energy, including the equivalence of
work and energy, and about assigning an internal energy to the system.

The first law of thermodynamics: When an amount of heat dQ is supplied to the
system and an amount of work dW is done by the system, changes are produced in
the thermodynamic coordinates of the system such that

dU = dQ− dW (2.1)

where U is a function of the thermodynamic coordinates of the system. (In other
words, dU is an exact differential.)

If the system is in adiabatic isolation, dQ = 0 and dU = −dW . Since dU is an exact
differential, this means that

Wadiab = Uinitial − Ufinal (2.2)

Thus the adiabatic work done by the system is independent of the process involved and depends
only on the initial and final states of the system. It is the recognition of this fact through careful
experiments (by Joule) which led to the first law.

The quantity U is called the internal energy of the system. For a gas, where the work done
is given by (1.1), we may write the first law as

dU = dQ − p dV (2.3)

If we put dQ = 0, we get a relation between p and V which is valid for adiabatic processes.
The curve connecting p and V so obtained is called an adiabatic. Starting with different initial
states, we can get a family of adiabatics. In general, when we have more thermodynamic
coordinates, adiabatics can be similarly defined, but are higher dimensional surfaces.
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Specific heats

When heat is supplied to a body, the temperature increases. The amount of heat dQ needed
to raise the temperature by dT is called the specific heat. This depends on the process, on what
parameters are kept constant during the supply of heat. Two useful specific heats for a gas are
defined for constant volume and constant pressure. If heat is supplied keeping the volume
constant, then the internal energy will increase. From the first law, we find, since dV = 0,

dU = dQ = Cv dT (2.4)

Thus the specific heat Cv may be defined as the rate of increase of internal energy with respect
to temperature. For supply of heat at constant pressure, we have

d(U + pV ) = dQ+ V dp = dQ ≡ Cp dT (2.5)

Thus the specific heat at constant pressure may be taken as the rate at which the quantity
U + p V increases with temperature. The latter quantity is called the enthalpy.

In general the two specific heats are functions of temperature. The specific heat at constant
volume, Cv, can be calculated using statistical mechanics or it can be measured in experiments.
Cp can then be evaluated using the equation of state for the material. The ratio Cp/Cv is often
denoted by γ.

2.2 Adiabatic and isothermal processes

Among the various types of thermodynamic processes possible, there are two very important
ones. These are the adiabatic and isothermal processes. An adiabatic process is one in which
there is no supply of heat to the body undergoing change of thermodynamic state. In other
words, the body is in adiabatic isolation. An isothermal process is a thermodynamic change
where the temperature of the body does not change.

The thermodynamic variables involved in the change can be quite general; for example, we
could consider magnetization and the magnetic field, surface tension and area, or pressure
and volume. For a gas undergoing thermodynamic change, the relevant variables are pressure
and volume. In this case, for an adiabatic process, since dQ = 0,

dU ≡ Cv dT = −p dV
d(U + pV ) ≡ Cp dT = V dp (2.6)

From these, we find

γ
dV

V
+
dp

p
= 0 (2.7)
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Generally γ can depend on temperature (and hence on pressure), but if we consider a material
(such as the ideal gas) for which γ is a constant, the above equation gives

p V γ = constant (2.8)

This is the equation for an adiabatic process for an ideal gas.
If we consider an isothermal process for an ideal gas, the equation of state gives

p V = nRT = constant (2.9)

2.3 Barometric formula, speed of sound

Here we consider two simple examples of using the ideal gas law and the formula for adiabatic
expansion.

First consider the barometric formula which gives the density (or pressure) of air at a height
h above the surface of Earth. We assume complete equilibrium, mechanical and thermal. The
argument is illustrated in Fig. 2.1. We consider a layer of air, with horizontal cross sectional
area A and height dh. If we take the molecules to have a mass m and the number density of
particles to be ρ, then the weight of this layer of air is mg × ρAdh. This is the force acting
downward. It is compensated by the difference of pressure between the upper boundary and
the lower boundary for this layer. The latter is thus dp × A, again acting downward, as we
have drawn it. The total force being zero for equilibrium, we get

dpA+mgρAdh = 0 (2.10)

Thus the variation of pressure with height is given by

dp

dh
= −mgρ (2.11)

Let us assume the ideal gas law for air; this is not perfect, but is a reasonably good approxima-
tion. Then p = NkT/V = ρkT and the equation above becomes

dp

dh
= −mg

kT
p (2.12)

p + dp

p

dh

mg × ρAdh

Figure 2.1: Matching of forces for barometric formula
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The solution is

p = p0 exp

(
−mgh
kT

)
, or ρ = ρ0 exp

(
−mgh
kT

)
(2.13)

This argument is admittedly crude. In reality, the temperature also varies with height.
Further, there are so many nonequilibrium processes (such as wind, heating due to absorption
of solar radiation, variation of temperature between day and night, etc.) in the atmosphere that
(2.13) can only be valid for a short range of height and over a small area of local equilibrium.

Our next example is about the speed of sound. For this, we can treat the medium, say, air,
as a fluid, characterized by a number density ρ and a flow velocity ~v. The equations for the
fluid are

∂ρ

∂t
+∇ · (ρ~v) = 0

∂~v

∂t
+ vi∂i~v = −∇p

ρ
(2.14)

The first equation is the equation of continuity which expresses the conservation of particle
number, or mass, if we multiply the equation by the mass of a molecule. The second term is
the fluid equivalent of Newton’s second law. In the absence of external forces, we still can have
force terms; in fact the gradient of the pressure, as seen from the equation, acts as a force term.
This may also be re-expressed in terms of the density, since pressure and density are related by
the equation of state.

Now consider the medium in equilibrium with no sound waves in it. The equilibrium
pressure should be uniform; we denote this by p0, with the corresponding uniform density as
ρ0. Further, we have ~v = 0 in equilibrium. Now we can consider sound waves as perturbations
on this background, writing

ρ = ρ0 + δρ, p = p0 + δρ

(
∂p

∂ρ

)

0

~v = 0 + ~v (2.15)

Treating δρ and ~v as being of the first order in the perturbation, the fluid equations can be
approximated as

∂

∂t
(δρ) ≈ −ρ0∇ · ~v
∂~v

∂t
≈ − 1

ρ0

(
∂p

∂ρ

)

0

∇δρ (2.16)

Taking the derivative of the first equation and using the second, we find

(
∂2

∂t2
− c2

s∇2

)
δρ = 0 (2.17)
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where

c2
s =

(
∂p

∂ρ

)

0

(2.18)

Equation (2.17) is the wave equation with the speed of propagation given by cs. This equation
shows that density perturbations can travel as waves; these are the sound waves. It is easy to
check that the wave equation has wave-like solutions of the form

δρ = A cos(ωt− ~k · ~x) +B sin(ωt− ~k · ~x) (2.19)

with ω2 = c2
s
~k · ~k. This again identifies cs as the speed of propagation of the wave.

We can calculate the speed of sound waves more explicitly using the equation of state.
If we take air to obey the ideal gas law, we have p = ρ kT . If the process of compression
and de-compression which constitutes the sound wave is isothermal, then (∂p/∂ρ)0 = p0/ρ0.
Actually, the time-scale for the compression and de-compression in a sound wave is usually
very short compared to the time needed for proper thermalization, so that it is more accurate
to treat it as an adiabatic process. In this case, we have pV γ = constant, so that

c2
s =

(
∂p

∂ρ

)

0

= γ
p0

ρ0
(2.20)

Since γ > 1, this gives a speed higher than what would be obtained in an isothermal process.
Experimentally, one can show that this formula for the speed of sound is what is obtained,
showing that sound waves result from an adiabatic process.





3. The Second Law of Thermodynamics

3.1 Carnot cycle

A thermodynamic engine operates by taking in heat from a hot reservoir and performing
certain work and then giving up a certain amount of heat into a colder reservoir. If it can be
operated in reverse, it can function as a refrigerator. The Carnot cycle is a reversible cyclic
process (or engine) made of the following four steps:
1) It starts with an adiabatic process which raises the temperature of the working material of
the engine to, say, TH
2) This is followed by a isothermal process, taking in heat from the reservoir at TH .
3) The next step is an adiabatic process which does some amount of work and lowers the
temperature of the material to TL.
4) The final step is isothermal, at the lower temperature TL, dumping some amount of heat
into a colder reservoir, with the material returning to the thermodynamic state at the beginning
of the cycle.

This is an idealized engine, no real engine can be perfectly reversible. The utility of the
Carnot engine is to give the framework and logic of the arguments related to the second law of
thermodynamics. We may say it is a gedanken engine. The processes involved in the Carnot
cycle may refer to compression and expansion if the material is a gas; in this case, the cycle can
be illustrated in a p− V diagram as shown in Fig. 3.1. But any other pair of thermodynamic
variables will do as well. We can think of a Carnot cycle utilizing magnetization and magnetic
field, or surface tension and area, or one could consider an electrochemical cell.

Let the amount of heat taken in at temperature TH be QH and let the amount of heat given
up at the lower temperature TL be QL. Since this is an idealized case, we assume there is no
loss of heat due to anything like friction. Thus the amount of work done, according to the first
law is

W = QH −QL (3.1)
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Figure 3.1: The Carnot cycle for a gas

The efficiency of the engine is given by the amount of work done when a given amount of
heat is supplied, which is W/QH . (The heat QL which is dumped into the reservoir at lower
temperature is not usable for work.) The efficiency η for a Carnot cycle is thus

η =
QH −QL
QH

= 1− QL
QH

(3.2)

The importance of the Carnot cycle is due to its idealized nature of having no losses and
because it is reversible. This immediately leads to some simple but profound consequences.

3.2 The second law

The second law of thermodynamics is a statement of what we know by direct experience.
It is not something that is derived from more fundamental principles, even though a better
understanding of this law has emerged over time. There are several ways to state the second
law, the most common ones being the Kelvin statement and the Clausius statement.

K: Kelvin statement of the second law: There exists no thermodynamics process
whose sole effect is to extract an amount of heat from a source and convert it
entirely to work.

C: Clausius statement of the second law: There exists no thermodynamics process
whose sole effect is to extract an amount of heat from a colder source and deliver it
to a hotter source.
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The key word here is “sole". Consider the expansion of a gas and consequent conversion of
heat into work. Complete conversion can be achieved but this is not the sole effect, for the
state of the system has been changed. The second law does not forbid such a process.

The two statements are equivalent. This can be seen by showing that K̃ =⇒ C̃ and
C̃ =⇒ K̃, where the tildes denote the negation of the statements.

First consider K̃ =⇒ C̃. Consider two heat reservoirs at temperatures TL and TH , with
TH > TL. Since K is false, we can extract a certain amount of heat from the colder reservoir
(at TL) and convert it entirely to work. Then we can use this work to deliver a certain amount
of heat to the hotter reservoir. For example, work can be converted to heat by processes like
friction. So we can have some mechanism like this to heat up the hotter source further. The
net result of this operation is to extract a certain amount of heat from a colder source and
deliver it to hotter source, thus contradicting C. Thus K̃ =⇒ C̃.

Now consider C̃ =⇒ K̃. Since C is presumed false, we can extract an amount of heat, say
Q2, from the colder reservoir (at TL) and deliver it to the hotter source. Then we can have a
thermodynamic engine take this amount of heat Q2 from the hotter reservoir and do a certain
amount of work W = Q2 −Q1 delivering an amount of heat Q1 to the colder reservoir. The
net result of this cycle is to take the net amount of heat Q2 −Q1 from the reservoir at TL and
convert it entirely to work. This shows that C̃ =⇒ K̃.

The two statements K̃ =⇒ C̃ and C̃ =⇒ K̃ show the equivalence of the Kelvin and Clausius
statements of the second law.

The second law is a statement of experience. Most of the thermodynamic results can be
derived from a finer description of materials, in terms of molecules, atoms, etc. However, to
date, there is no clear derivation of the second law. Many derivations, such as Boltzmann’s
H-theorem, or descriptions in terms of information, have been suggested, which are important
in their own ways, but all of them have some additional assumptions built in. This is not to
say that they are not useful. The assumptions made have a more fundamental nature, and do
clarify many aspects of the second law.

3.3 Consequences of the second law

Once we take the second law as an axiom of thermodynamics, there are some important and
immediate consequences. The first result is about the efficiency of the Carnot cycle, captured
as the following theorem.

Theorem 3.3.1 — Carnot Theorem. No engine operating between two specified heat reser-
voirs can be more efficient than a Carnot engine.

The proof is easy, based on the second law. Consider two engines, say a Carnot engine E1

and another engine we call E2, and two reservoirs, at temperatures TH and TL. The Carnot
engine is reversible, so we can operate it as a refrigerator. So we can arrange for it to take a
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certain amount of heat Q1 from the colder reservoir and deliver an amount Q2 > Q1 to the
hotter reservoir. This will, of course, require work W = Q2 −Q1 to drive the Carnot engine.
Now we can arrange for E2 to take Q2 from the hotter reservoir, and do an amount of work
W ′ = Q2 −Q′1, delivering heat Q′1 to the colder reservoir. The efficiencies are given by

η1 =
W

Q2
, η2 =

W ′

Q2
(3.3)

Assume E2 is more efficient. Then η2 > η1, or W ′ > W . Thus Q1 > Q′1 The net amount of heat
extracted from the hotter reservoir is zero, the net amount of heat extracted from the colder
reservoir is Q1 −Q′1. This is entirely converted to work (equal to W ′ −W ) contradicting the
Kelvin statement of the second law. Hence our assumption of η2 > η1 must be false, proving
the Carnot theorem. Thus we must have η2 ≤ η1.

We also have an immediate corollary to the theorem:

Proposition 1 All perfectly reversible engines operating between two given temperatures have
the same efficiency.

This is also easily proved. Consider the engine E2 to be a Carnot engine. From what we
have already shown, we will have η2 < η1. Since E2 is reversible, we can change the roles of
E1 and E2, running E2 as a refrigerator and E1 as the engine producing work. In this case,
the previous argument would lead to η1 ≤ η2. We end up with two statements, η1 ≤ η2 and
η2 ≤ η1. The only solution is η1 = η2. Notice that this applies to any reversible engine, since
we have not used any specific properties of the Carnot engine except reversibility.

If an engine is irreversible, the previous arguments hold, showing η2 ≤ η1, but we cannot
get the other inequality because E2 is not reversible. Thus irreversible engines are less efficient
than the Carnot engine.

A second corollary to the theorem is the following:

Proposition 2 The efficiency of a Carnot engine is independent of the working material of the
engine.

The arguments so far did not use any specific properties of the material of the Carnot
engine, and since all Carnot engines between two given reservoirs have the same efficiency,
this clear. We now state another important consequence of the second law.

Proposition 3 The adiabatics of a thermodynamic system do not intersect.

We prove again by reductio ad absurdum. Assume the adiabatics can intersect, as shown
in Fig. 3.2. Then we can consider a process going from A to B which is adiabatic and hence
no heat is absorbed or given up, then a process from B to C which absorbs some heat ∆Q,
and then goes back to A along another adiabatic. Since the thermodynamic state at A is
restored, the temperature and internal energy are the same at the end as at the beginning, so
that ∆U = 0. Thus by the first law, ∆Q = ∆W , which means that a certain amount of heat is
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Figure 3.2: Argument for no-intersection of adiabatics

absorbed and converted entirely to work with no other change in the system. This contradicts
the Kelvin statement of the second law. It follows that adiabatics cannot intersect.

3.4 Absolute temperature and entropy

Another consequence of the second law is the existence of an absolute temperature. Although
we have used the notion of absolute temperature, it was not proven. Now we can show this
just from the laws of thermodynamics.

We have already seen that the efficiency of a Carnot cycle is given by

η = 1− Q2

Q3
(3.4)

where Q3 is the amount of heat taken from the hotter reservoir and Q2 is the amount given up
to the colder reservoir. The efficiency is independent of the material and is purely a function
of the lower and upper temperatures. The system under consideration can be taken to be
in thermal contact with the reservoirs, which may be considered very large. There is no
exchange of particles or any other physical quantity between the reservoirs and the system, so
no parameter other than the temperature can play a role in this. Let θ denote the empirically
defined temperature, with θ3 and θ2 corresponding to the reservoirs between which the engine
is operating. We may thus write

Q2

Q3
= f(θ2, θ3) (3.5)
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for some function f of the temperatures. Now consider another Carnot engine operating
between θ2 and θ1, with corresponding Q’s, so that we have

Q1

Q2
= f(θ1, θ2) (3.6)

Now we can couple the two engines and run it together as a single engine, operating between
θ3 and θ1, with

Q1

Q3
= f(θ1, θ3) (3.7)

Evidently

Q2

Q3

Q1

Q2
=
Q1

Q3
(3.8)

so that we get the relation

f(θ1, θ2) f(θ2, θ3) = f(θ1, θ3) (3.9)

This requires that the function f must be of the form

f(θ1, θ2) =
f(θ1)

f(θ2)
(3.10)

for some function f(θ). Thus there must exist some function of the empirical temperature
which can be defined independently of the material. This temperature is called the absolute
temperature. Notice that since Q1 < Q2, we have |f(θ1)| < |f(θ2)| if θ1 < θ2. Thus |f | should
be an increasing function of the empirical temperature. Further we cannot have f(θ1) = 0 for
some temperature θ1. This would require Q1 = 0. The corresponding engine would take some
heat Q2 from the hotter reservoir and convert it entirely to work, contradicting the Kelvin
statement. This means that we must take f to be either always positive or always negative, for
all θ. Conventionally we take this to be positive. The specific form of the function determines
the scale of temperature. The simplest is to take a linear function of the empirical temperatures
(as defined by conventional thermometers). Today, we take this to be

f(θ) ≡ T = Temperature in Celsius + 273.16 (3.11)

The unit of absolute temperature is the kelvin.

Once the notion of absolute temperature has been defined, we can simplify the formula for
the efficiency of the Carnot engine as

η = 1− TL
TH

(3.12)



3.4 Absolute temperature and entropy 27

p

V

Figure 3.3: Illustrating Clausius theorem

Also we have Q1/Q2 = T1/T2, which we may rewrite as Q1/T1 = Q2/T2. Since Q2 is the heat
absorbed and Q1 is the heat released into the reservoir, we can assign ± signs to the Q’s, + for
intake and − for release of heat, and write this equation as

−Q1

T1
+
Q2

T2
= 0 (3.13)

In other words, if we sum over various steps (denoted by the index i) of the cycle, with
appropriate algebraic signs,

∑

cycle

Qi
Ti

= 0 (3.14)

If we consider any closed and reversible cycle, as shown in Fig. 3.3, we can divide it into small
cycles, each of which is a Carnot cycle. A few of these smaller cycles are shown by dotted lines,
say with the long dotted lines being adiabatics and the short dotted lines being isothermals. By
taking finer and finer such divisions, the error in approximating the cycle by a series of closed
Carnot cycles will go to zero as the number of Carnot cycles goes to infinity. Since along the
adiabatics, the change in Q is zero, we can use the result (3.14) above to write

∮

cycle

dQ

T
= 0 (3.15)

where we denote the heat absorbed or given up during each infinitesimal step as dQ. The
statement in equation (3.15) is due to Clausius. The important thing is that this applies to any
closed curve in the space of thermodynamic variables, provided the process is reversible.



28 Chapter 3. The Second Law of Thermodynamics

This equation has another very important consequence. If the integral of a differential
around any closed curve is zero, then we can write the differential as the derivative of some
function. Thus there must exist a function S(p, V ) such that

dQ

T
= dS, or dQ = T dS (3.16)

This function S is called entropy. It is a function of state, given in terms of the thermodynamic
variables.

Clausius’ inequality

Clausius’ discovery of entropy is one of most important advances in the physics of material
systems. For a reversible process, we have the result,

∮

cycle

dQ

T
=

∮
dS = 0 (3.17)

as we have already seen. There is a further refinement we can make by considering irreversible
processes. There are many processes such as diffusion which are not reversible. For such a
process, we cannot write dQ = T dS. Nevertheless, since entropy is a function of the state
of the system, we can still define entropy for each state. For an irreversible process, the heat
transferred to a system is less than T dS where dS is the entropy change produced by the
irreversible process. This is easily seen from the second law. For assume that a certain amount
of heat dQirr is absorbed by the system in the irreversible process. Consider then a combined
process where the system changes from state A to state B in an irreversible manner and then
we restore state A by a reversible process. For the latter step dQrev = T dS. The combination
thus absorbs an amount of heat equal to dQirr−T dS with no change of state. If this is positive,
this must be entirely converted to work. However, that would violate the second law. Hence
we should have

dQirr − T dS < 0 (3.18)

If we have a cyclic process,
∮
dS = 0 since S is a state function, and hence

∮
dQ

T
≤ 0 (3.19)

with equality holding for a reversible process. This is known as Clausius’ inequality.
For a system in thermal isolation, dQ = 0, and the condition dQirr < TdS becomes

dS > 0 (3.20)

In other words, the entropy of a system left to itself can only increase, equilibrium being
achieved when the entropy (for the specified values of internal energy, number of particles,
etc.) is a maximum.
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The second law has been used to define entropy. But once we have introduced the notion
of entropy, the second law is equivalent to the statement that entropy tends to increase. For
any process, we can say that

dS

dt
≥ 0 (3.21)

We can actually see that this is equivalent to the Kelvin statement of the second law as follows.
Consider a system which takes up heat ∆Q at temperature T . For the system (labeled 1)
together with the heat source (labeled 2), we have ∆S1 + ∆S2 ≥ 0. But the source is losing
heat at temperature T and if this is reversible, ∆S2 = −∆Q/T . Further if there is no other
change in the system, ∆S1 = 0 and ∆U1 = 0. Thus

∆S1 + ∆S2 ≥ 0 =⇒ −∆Q

T
≥ 0 =⇒ ∆Q ≤ 0 (3.22)

Since ∆U1 = 0, ∆Q = ∆W and this equation implies that the work done by the system cannot
be positive, if we have dS/dt ≥ 0. Thus we have arrived at the Kelvin statement that a system
cannot absorb heat from a source and convert it entirely to work without any other change.
We may thus restate the second law in the form:

Proposition 4 Second law of thermodynamics: The entropy of a system left to itself will tend
to increase to a maximum value compatible with the specified values of internal energy, particle
number, etc.

Nature of heat flow

We can easily see that heat by itself flows from a hotter body to a cooler body. This may
seem obvious, but is a crucial result of the second law. In some ways, the second law is the
formalization of such statements which are “obvious" from our experience.

Consider two bodies at temperatures T1 and T2, thermally isolated from the rest of the
universe but in mutual thermal contact. The second law tells us that dS ≥ 0. This means that

dQ1

T1
+
dQ2

T2
≥ 0 (3.23)

Because the bodies are isolated from the rest of the world, dQ1 + dQ2 = 0, so that we can
write the condition above as

(
1

T1
− 1

T2

)
dQ1 ≥ 0 (3.24)

If T1 > T2, we must have dQ1 < 0 and if T1 < T2, dQ1 > 0. Either way, heat flows from the
hotter body to the colder body.
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Figure 3.4: The Otto cycle for an automobile engine

3.5 Some other thermodynamic engines

We will now consider some other thermodynamic engines which are commonly used.

Otto cycle

The automobile engine operates in four steps, with the injection of the fuel-air mixture into
the cylinder. It undergoes compression which can be idealized as being adiabatic. The ignition
then raises the pressure to a high value with almost no change of volume. The high pressure
mixture rapidly expands, which is again almost adiabatic. This is the power stroke driving the
piston down, The final step is the exhaust when the spent fuel is removed from the cylinder.
This step happens without much change of volume. This process is shown in Fig. 3.4. We will
calculate the efficiency of the engine, taking the working material to be an ideal gas.

Heat is taken in during the ignition cycle B to C. The heat comes from the chemical process
of burning but we can regard it as heat taken in from a reservoir. Since this is at constant
volume, we have

QH = Cv(TC − TB) (3.25)

Heat is given out during the exhaust process D to A, again at constant volume, so

QL = Cv(TD − TA) (3.26)

Further, states C and D are connected by an adiabatic process, so are A and B. Thus
pV γ = nRTV γ−1 is preserved for these processes. Also, VA = VD, VB = VC , so we have

TD = TC

(
VB
VA

)γ−1

, TA = TB

(
VB
VA

)γ−1

(3.27)
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Figure 3.5: The idealized Diesel cycle

This gives

QL = Cv(TC − TB)

(
VB
VA

)γ−1

(3.28)

The efficiency is then

η = 1− QL
QH

= 1−
(
VB
VA

)γ−1

(3.29)

Diesel cycle

The idealized operation of a diesel engine is shown in Fig. 3.5. Initially only air is admitted
into the cylinder. It is then compressed adiabatically to very high pressure (and hence very
high temperature). Fuel is then injected into the cylinder. The temperature in the cylinder
is high enough to ignite the fuel. The injection of the fuel is controlled so that the burning
happens at essentially constant pressure (B to C in figure). This is the key difference with the
automobile engine. At the end of the burning process the expansion continues adiabatically
(part C to D). From D back to A we have the exhaust cycle as in the automobile engine.

Taking the air (and fuel) to be an ideal gas, we can calculate the efficiency of the diesel
engine. Heat intake (from burning fuel) is at constant pressure, so that

QH = Cp(TC − TB) (3.30)

Heat is given out (D to A) at constant volume so that

QL = Cv(TD − TA) (3.31)

We also have the relations,

TA = TB

(
VB
VA

)γ−1

, TD = TC

(
VC
VA

)γ−1

(3.32)
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Further, pB = pC implies TB = TC(VB/VC), which, in turn, gives

TA = TC

(
VB
VC

) (
VB
VA

)γ−1

(3.33)

We can now write

QL = CvTC

[(
VC
VA

)γ−1

−
(
TB
TC

)(
VB
VA

)γ−1
]

= CvTC

(
VC
VA

)γ−1 [
1−

(
VB
VC

)γ]
(3.34)

QH = CpTC

[
1− VB

VC

]
(3.35)

These two equations give the efficiency of the diesel cycle as

η = 1− 1

γ

(
VC
VA

)γ−1 [1− (VB/VC)γ

1− (VB/VC)

]

= 1− 1

γ

(
TD
TC

)[
1− (VB/VC)γ

1− (VB/VC)

]
(3.36)



4. The Third Law of Thermodynamics

The second law defines entropy by the relation dQ = TdS. Thus entropy is defined only up to
an additive constant. Further, it does not tell us about the behavior of S as a function of T
close to absolute zero. This is done by the third law.

Third law of thermodynamics: The contribution to the entropy by each set of
degrees of freedom in internal thermodynamic equilibrium tends to zero in a
differentiable way as the absolute zero of temperature is approached.

The limiting value of S in independent of the process by which T = 0 is approached; it
does not matter whether the system is in liquid or solid phase, whether it is under pressure,
etc. Further, the differentiability condition says that (∂S/∂T ) is finite at absolute zero, where
the derivative is taken along any process.

Unattainability of absolute zero

For different starting points, the variation of entropy with temperature will be as shown in
Fig. 4.1. A process which reduces the temperature can be viewed as an isothermal decrease of
entropy from A to B, followed by an isentropic (adiabatic) decrease of temperature along BC.
By continuing the process, one can get closer and closer to absolute zero. But it is obvious that
the temperature decreases achieved will become smaller and smaller; after any finite number
of steps, there will still be a positive nonzero temperature. Thus we conclude that only an
asymptotic approach to absolute zero is possible for any thermodynamic process. Since any
thermodynamic process for cooling can be built up as a sum of steps like ABC, the conclusion
holds in general.

Vanishing of specific heats at absolute zero

The specific heat for any process can be written as

CR =

(
∂Q

∂T

)

R

= T

(
∂S

∂T

)

R

(4.1)
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Figure 4.1: Illustrating the unattainability of absolute zero

where R specifies the quantity held constant. Since, by the third law, (∂Q/∂T )R is finite as
T → 0, we find CR → 0 as T → 0. In particular, the specific heats at constant volume (Cv) and
at constant pressure (Cp) vanish at absolute zero.



5. Thermodynamic potentials and equilibrium

Extensive and intensive variables

All quantities in thermodynamics fall into two types: extensive and intensive. If we consider
two independent systems, quantities which add up to give the corresponding quantities for the
complete system are characterized as extensive quantities. The volume V , the internal energy
U , the enthalpy, and as we will see later on, the entropy S are extensive quantities. If we
divide a system into subsystems, those quantities which remain unaltered are called intensive
variables. The pressure p, the temperature T , the surface tension are examples of intensive
variables.

In any thermodynamic system, there is a natural pairing between extensive and intensive
variables. For example, pressure and volume go together as in the formula dU = dQ− p dV .
Temperature is paired with the entropy, surface tension with the area, etc.

5.1 Thermodynamic potentials

The second law leads to the result dQ = T dS, so that, for a gaseous system, the first law may
be written as

dU = T dS − p dV (5.1)

More generally, we have

dU = T dS − p dV − σ dA−M dB (5.2)

where σ is the surface tension, A is the area, M is the magnetization, B is the magnetic field,
etc.

Returning to the case of a gaseous system, we now define a number of quantities related
to U . These are called thermodynamic potentials and are useful when considering different
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processes. We have already seen that the enthalpy H is useful for considering processes at
constant pressure. This follows from

dH = d(U + pV ) = dQ+ V dp (5.3)

so that for processes at constant pressure, the inflow or outflow of heat may be seen as changing
the enthalpy.

The Helmholtz free energy is defined by

F = U − T S (5.4)

Taking differentials and comparing with the formula for dU , we get

dF = −S dT − p dV (5.5)

The Gibbs free energy G is defined by

G = F + p V = H − T S = U − T S + p V (5.6)

Evidently,

dG = −S dT + V dp (5.7)

Notice that by construction, H, F and G are functions of the state of the system. They may
be expressed as functions of p and V , for example. They are obviously extensive quantities.

So far we have considered the system characterized by the pressure and volume. If there
are a number of particles, say, N which make up the system, we can also consider the N -
dependence of various quantities. Thus we can think of the internal energy U as a function of
S, V and N , so that

dU =

(
∂U

∂S

)

V,N

dS +

(
∂U

∂V

)

S,N

dV +

(
∂U

∂N

)

S,V

dN

≡ T dS − p dV + µdN (5.8)

The quantity µ which is defined by

µ =

(
∂U

∂N

)

S,V

(5.9)

is called the chemical potential. It is obviously an intensive variable. The corresponding
equations for H, F and G are

dH = T dS + V dp+ µdN

dF = −S dT − p dV + µdN

dG = −S dT + V dp+ µdN (5.10)
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Thus the chemical potential µ may also be defined as

µ =

(
∂H

∂N

)

S,p

=

(
∂F

∂N

)

T,V

=

(
∂G

∂N

)

T,p

(5.11)

Since U is an extensive quantity and so are S and V , the internal energy has the general
functional form

U = N u(S/N, V/N) (5.12)

where u depends only on S/N and V/N which are intensive variables. In a similar way, we
can write

H = N h(S/N, p)

F = N f(T, V/N)

G = N g(T, p) (5.13)

The last equation is of particular interest. Taking its variation, we find

dG = N

(
∂g

∂T

)

p

dT +N

(
∂g

∂p

)

T

dT + g dN (5.14)

Comparing with (5.10), we get

S = −N
(
∂g

∂T

)

p

, V = N

(
∂g

∂p

)

T

, µ = g (5.15)

The quantity g is identical to the chemical potential, so that we may write

G = µN (5.16)

We may rewrite the other two relations as

S = −N
(
∂µ

∂T

)

p

, V = N

(
∂µ

∂p

)

T

(5.17)

Further, using G = µN , we can rewrite the equation for dG as

N dµ+ S dT − V dp = 0 (5.18)

This essentially combines the previous two relations and is known as the Gibbs-Duhem relation.
It is important in that it provides a relation among the intensive variables of a thermodynamic
system.
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5.2 Thermodynamic equilibrium

The second law of thermodynamics implies that entropy does not decrease in any natural
process. The final equilibrium state will thus be the state of maximum possible entropy. After
attaining this maximum possible value, the entropy will remain constant. The criterion for
equilibrium may thus be written as

δ S = 0 (5.19)

We can take S to be a function of U , V and N . The system, starting in an arbitrary state,
adjusts U , V and N among its different parts and constitutes itself in such a way as to maximize
entropy. Consider the system subdivided into various smaller subsystems, say, indexed by
i = 1, .., n. The thermodynamic quantities for each such unit will be indicated by a subscript
i. For an isolated system, the total internal energy, the total volume and the total number of
particles will be fixed, so that the the changes in the subsystems must be constrained as

∑

i

δ Ui = 0,
∑

i

δ Vi = 0,
∑

i

δ Ni = 0 (5.20)

Since S is extensive, S =
∑

i Si where Si = Si(Ui, Vi, Ni). We can now maximize entropy
subject to the constraints (5.20) by considering the maximization of

S =
∑

i

Si − λ1 (
∑

i

Ui − U)− λ2 (
∑

I

Vi − V )− λ3 (
∑

i

Ni −N) (5.21)

where the Lagrange multipliers λ1, λ2, λ3 enforce the required constraints. The variables Ui,
Vi and Ni can now be freely varied. Thus, for the condition of equilibrium, we get

δS =
∑

i

[(
∂S

∂Ui

)
− λ1

]
δUi +

[(
∂S

∂Vi

)
− λ2

]
δVi +

[(
∂S

∂Ni

)
− λ3

]
δNi

= 0 (5.22)

Since the variations are now independent, this gives, for equilibrium,
(
∂S

∂Ui

)
= λ1,

(
∂S

∂Vi

)
= λ2,

(
∂S

∂Ni

)
= λ3 (5.23)

This can be rewritten as

1

Ti
= λ1,

pi
Ti

= λ2,
µi
Ti

= λ3 (5.24)

where we used

dS =
dU

T
+
p

T
dV − µ

T
dN (5.25)

Equation (5.24) tells us that, for equilibrium, the temperature of all subsystems must be the
same, the pressure in different subsystems must be the same and the chemical potential for
different subsystems must be the same.
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Reaction equilibrium

Suppose we have a number of constituents A1, A2, · · · , B1, B2, · · · , at constant tempera-
ture and pressure which undergo a reaction of the form

νA1 A1 + νA2 A2 + · · ·� νB1 B1 + νB2 B2 + · · · (5.26)

The entropy of the system is of the form

S =
∑

k

Sk(Nk) (5.27)

where the summation covers all A’s and B’s. Since the temperature and pressure are constant,
reaction equilibrium is obtained when the Nk change so as to maximize the entropy. This gives

δS =
1

T

∑

k

µk δNk = 0 (5.28)

The quantities δNk are not independent, but are restricted by the reaction. When the reaction
happens, νA1 of A1-particles must be destroyed, νA2 of A2-particles must be destroyed, etc.,
while νB1 of B1 particles are produced, etc. Thus we can write

δNA1 = −νA1 δN0, δNA2 = −νA2 δN0, · · · , δNB1 = νB1 δN0, δNB2 = νB2 δN0, · · · , etc.

(5.29)

where δN0 is arbitrary. The condition of equilibrium thus reduces to

−
∑

A

νAiµAi +
∑

B

νBiµBi = 0 (5.30)

With the understanding that the ν ’s for the reactants will carry a minus sign while those for
the products have a plus sign, we can rewrite this as

∑

k

νk µk = 0 (5.31)

This condition of reaction equilibrium can be applied to chemical reactions, ionization and
dissociation processes, nuclear reactions, etc.

5.3 Phase transitions

If we have a single constituent, for thermodynamic equilibrium, we should have equality of T ,
p and µ for different subparts of the system. If we have different phases of the system, such as
gas, liquid, or solid, in equilibrium, we have

T1 = T2 = T3 = · · · = T

p1 = p2 = p3 = · · · = p

µ1 = µ2 = µ3 = · · · (5.32)
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where the subscripts refer to various phases.
We will consider the equilibrium of two phases in some more detail. In this case, we have

µ1(p, T ) = µ2(p, T ) (5.33)

If equilibrium is also obtained for a state defined by (p+ dp, T + dT ), then we have

µ1(p+ dp, T + dT ) = µ2(p+ dp, T + dT ) (5.34)

These two equations yield

∆µ1 = ∆µ2, ∆µ = µ(p+ dp, T + dT )− µ(p, T ) (5.35)

This equation will tell us how p should change when T is altered (or vice versa) so as to
preserve equilibrium. Expanding to first order in the variations, we find

−s1 dT + v1 dp = −s2 dT + v2 dp (5.36)

where we have used
∂µ

∂T
= − S

N
≡ s, ∂µ

∂p
=
V

N
≡ v (5.37)

Equation (5.36) reduces to

dp

dT
=
s1 − s2

v1 − v2
=

L

T (v1 − v2)
(5.38)

where L = T (s1 − s2) is the latent heat of the transition. This equation is known as the
Clausius-Clapeyron equation. It can be used to study the variation of saturated vapor pressure
with temperature (or, conversely, the variation of boiling point with pressure). As an example,
consider the variation of boiling point with pressure, when a liquid boils to form gaseous
vapor. In this case, we can take v1 = vg � v2 = vl. Further, if we assume, for the sake of
the argument, that the gaseous phase obeys the ideal gas law, vg = k T/p, then the Clausius-
Clapeyron equation (5.38) becomes

dp

dT
≈ p L

k T 2
(5.39)

Integrating this from one value of T to another,

log(p/p0) =
L

k

(
1

T0
− 1

T

)
(5.40)

Thus for p > p0, T must be larger than T0; this explains the increase of boiling point with
pressure.

If (∂µ/∂T ) and (∂µ/∂p) are continuous at the transition, s1 = s2 and v1 = v2. In this case
we have to expand µ to second order in the variations. Such a transition is called a second
order phase transition. In general, if the first (n− 1) derivatives of µ are continuous, and the
n-th derivatives are discontinuous at the transition, the transition is said to be of the n-th order.
Clausius-Clapeyron equation, as we have written it, applies to first order phase transitions.
These have a latent heat of transition.
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6.1 Maxwell relations

For a system with one constituent with fixed number of particles, from the first and second
laws, and from (5.10), we have the basic relations

dU = T dS − p dV
dH = T dS + V dp

dF = −S dT − p dV
dG = −S dT + V dp (6.1)

The quantities on the left are all perfect differentials. For a general differential dR of the form

dR = Xdx+ Y dy (6.2)

to be a perfect differential, the necessary and sufficient condition is
(
∂X

∂y

)

x

=

(
∂Y

∂x

)

y

(6.3)

Applying this to the four differentials in (6.1), we get
(
∂T

∂V

)

S

= −
(
∂p

∂S

)

V(
∂T

∂p

)

S

=

(
∂V

∂S

)

p(
∂S

∂V

)

T

=

(
∂p

∂T

)

V(
∂S

∂p

)

T

= −
(
∂V

∂T

)

p

(6.4)

These four relations are called the Maxwell relations.



42 Chapter 6. Thermodynamic relations and processes

A Mathematical Result

Let X, Y , Z be three variables, of which only two are independent. Taking Z to be a
function of X and Y , we can write

dZ =

(
∂Z

∂X

)

Y

dX +

(
∂Z

∂Y

)

X

dY (6.5)

If now we take X and Z as the independent variables, we can write

dY =

(
∂Y

∂X

)

Z

dX +

(
∂Y

∂Z

)

X

dZ (6.6)

Upon substituting this result into (6.5), we get

dZ =

[(
∂Z

∂X

)

Y

+

(
∂Z

∂Y

)

X

(
∂Y

∂X

)

Z

]
dX +

(
∂Z

∂Y

)

X

(
∂Y

∂Z

)

X

dZ (6.7)

Since we are considering X and Z as independent variables now, this equation immediately
yields the relations

(
∂Z

∂Y

)

X

(
∂Y

∂Z

)

X

= 1

(
∂Z

∂X

)

Y

+

(
∂Z

∂Y

)

X

(
∂Y

∂X

)

Z

= 0 (6.8)

These relations can be rewritten as
(
∂Z

∂Y

)

X

=
1(

∂Y
∂Z

)
X(

∂X

∂Z

)

Y

(
∂Z

∂Y

)

X

(
∂Y

∂X

)

Z

= −1 (6.9)

6.2 Other relations

The TdS equations

The entropy S is a function of the state of the system. We can take it to be a function of
any two of the three variables (p, T, V ). Taking S to be a function of p and T , we write

T dS = T

(
∂S

∂T

)

p

dT + T

(
∂S

∂p

)

T

dp (6.10)

For the first term on the right hand side, we can use

T

(
∂S

∂T

)

p

=

(
∂Q

∂T

)

p

= Cp (6.11)
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where Cp is the specific heat at constant pressure. Further, using the last of the Maxwell
relations, we can now write (6.10) as

T dS = Cp dT − T
(
∂V

∂T

)

p

dp (6.12)

The coefficient of volumetric expansion (due to heating) is defined by

α =
1

V

(
∂V

∂T

)

p

(6.13)

Equation (6.12) can thus be rewritten as

T dS = Cp dT − αT V dp (6.14)

If we take S to be a function of V and T ,

T dS = T

(
∂S

∂T

)

V

dT + T

(
∂S

∂V

)

T

dV (6.15)

Again the first term on the right hand side can be expressed in terms of Cv, the specific heat at
constant volume, using

T

(
∂S

∂T

)

V

= Cv (6.16)

Further using the Maxwell relations, we get

T dS = Cv dT + T

(
∂p

∂T

)

V

dV (6.17)

Equations (6.12) (or (6.14)) and (6.17) are known as the TdS equations.

Equations for specific heats

Equating the two expressions for TdS, we get

(Cp − Cv) dT = T

[(
∂p

∂T

)

V

dV +

(
∂V

∂T

)

p

dp

]
(6.18)

By the equation of state, we can write p as a function of V and T , so that

dp =

(
∂p

∂T

)

V

dT +

(
∂p

∂V

)

T

dV (6.19)

Using this in (6.18), we find

(Cp − Cv) dT = T

[(
∂p

∂T

)

V

+

(
∂V

∂T

)

p

(
∂p

∂V

)

T

]
dV + T

(
∂V

∂T

)

p

(
∂p

∂T

)

V

dT (6.20)
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However, using (6.9), taking X = V , Y = p and Z = T , we have
(
∂p

∂T

)

V

+

(
∂V

∂T

)

p

(
∂p

∂V

)

T

= 0 (6.21)

Thus the coefficient of dV in (6.20) vanishes and we can simplify it as

Cp − Cv = T

(
∂V

∂T

)

p

(
∂p

∂T

)

V

= −T
[(

∂V

∂T

)

p

]2 (
∂p

∂V

)

T

(6.22)

where we have used (6.21) again. We have already defined the coefficient of volumetric
expansion α. The isothermal compressibility κT is defined by

1

κT
= −V

(
∂p

∂V

)

T

(6.23)

In terms of these we can express Cp − Cv as

Cp − Cv = V
α2 T

κT
(6.24)

This equation is very useful in calculating Cv from measurements of Cp and α and κT . Further,
for all substances, κT > 0. Thus we see from this equation that Cp ≥ Cv. (The result κT > 0

can be proved in statistical mechanics.)

In the TdS equations, if dT , dV and dp are related adiabatically, dS = 0 and we get

Cp = T

(
∂V

∂T

)

p

(
∂p

∂T

)

S

, Cv = −T
(
∂p

∂T

)

V

(
∂V

∂T

)

S

(6.25)

This gives

Cp
Cv

= −
(
∂V

∂T

)

p

(
∂p

∂T

)

S

[(
∂p

∂T

)

V

(
∂V

∂T

)

S

]−1

(6.26)

We have the following relations among the terms involved in this expression,
(
∂p

∂T

)

S

=

(
∂V

∂T

)

S

(
∂p

∂V

)

S

= −
(
∂V

∂T

)

S

1

V κS(
∂V

∂T

)

p

=

(
∂p

∂T

)

V

(
∂T

∂p

)

V

(
∂V

∂T

)

p

= −
(
∂p

∂T

)

V

1(
∂p
∂V

)
T

=

(
∂p

∂T

)

V

V κT (6.27)

Using these we find

Cp
Cv

=
κT
κS

(6.28)
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Going back to the Maxwell relations and using the expressions for TdS, we find

dU = CvdT +

[
T

(
∂p

∂T

)

V

− p
]
dV

dH = CpdT +

[
V − T

(
∂V

∂T

)

p

]
dp (6.29)

these immediately yield the relations

Cv =

(
∂U

∂T

)

V

, Cp =

(
∂H

∂T

)

p(
∂U

∂V

)

T

= T

(
∂p

∂T

)

V

− p
(
∂H

∂p

)

T

= V − T
(
∂V

∂T

)

p

(6.30)

Gibbs-Helmholtz relation

Since the Helmholtz free energy is defined as F = U − TS,

dF = dU − TdS − SdT = −S dT − p dV (6.31)

This gives immediately

S = −
(
∂F

∂T

)

V

, p = −
(
∂F

∂V

)

T

(6.32)

Using this equation for entropy, we find

U = F + T S = F − T
(
∂F

∂T

)

V

(6.33)

This is known as the Gibbs-Helmholtz relation. If F is known as a function of T and V , we can
use these to obtain S, p and U . Thus all thermodynamic variables can be obtained from F as a
function of T and V .

6.3 Joule-Kelvin expansion

The expansion of a gas through a small opening or a porous plug with the pressure on either
side being maintained is called Joule-Kelvin expansion. (It is sometimes referred to as the
Joule-Thomson expansion, since Thomson was Lord Kelvin’s original name.) The pressures are
maintained by the flow of gases, but for the theoretical discussion we may think of them as
being maintained by pistons which move in or out to keep the pressure the same. The values
of the pressures on the two sides of the plug are not the same. The gas undergoes a decrease in
volume on one side as the molecules move through the opening to the other side. The volume
on the other side increases as molecules move in. The whole system is adiabatically sealed, so
that the net flow of heat in or out is zero.
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Since dQ = 0, we can write, from the first law,

dU + p dV = 0 (6.34)

Consider the gas on one side starting with volume V1 going down to zero while on the other
side the volume increases from zero to V2. Integrating (6.34), we find

∫ 0

p1,V1,U1

(dU + pdV ) +

∫ p2,V2,U2

0
(dU + pdV ) = 0 (6.35)

This yields the relation

U1 + p1 V1 = U2 + p2 V2 (6.36)

Thus the enthalpy on either side of the opening is the same. It is isenthalpic expansion. The
change in the temperature of the gas is given by

∆T =

∫ p2

p1

dp

(
∂T

∂p

)

H

=

∫ p2

p1

dp µJK (6.37)

The quantity

µJK =

(
∂T

∂p

)

H

(6.38)

is called the Joule-Kelvin coefficient. From the variation of H we have

dH = Cp dT +

[
V − T

(
∂V

∂T

)

p

]
dp (6.39)

so that, considering an isenthalpic process we get

µJK =
1

Cp

[
T

(
∂V

∂T

)

p

− V
]

(6.40)

This gives a convenient formula for µJK. Depending on whether this coefficient is positive
or negative, there will be heating or cooling of the gas upon expansion by this process. By
choosing a range of pressures for which µJK is negative, this process can be used for cooling
and eventual liquifaction of gases.
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Dynamics of particles is given by Newton’s laws or, if we include quantum effects, the quantum
mechanics of point-particles. Thus, if we have a large number of particles such as molecules
or atoms which constitute a macroscopic system, then, in principle, the dynamics is deter-
mined. Classically, we just have to work out solutions to Newton’s laws. But for systems with
large numbers of particles, such as the Avogadro number which may be necessary in some
cases, this is a wholly impractical task. We do not have general solutions for the three-body
problem in mechanics, let alone for 1023 particles. What we can attempt to do is a statistical
approach, where one focuses on certain averages of interest, which can be calculated with
some simplifying assumptions. This is the province of Statistical Mechanics.

If we have N particles, in principle, we can calculate the future of the system if we are
given the initial data, namely, the initial positions and velocities or momenta. Thus we need
6N input numbers. Already, as a practical matter, this is impossible, since N ∼ 1023 and we
do not, in fact cannot, measure the initial positions and momenta for all the molecules in a
gas at any time. So generally we can make the assumption that a probabilistic treatment is
possible. The number of molecules is so large that we can take the initial data to be a set
of random numbers, distributed according to some probability distribution. This is the basic
working hypothesis of statistical mechanics. To get some feeling for how large numbers lead to
simplification, we start with the binomial distribution.

7.1 The binomial distribution

This is exemplified by the tossing of a coin. For a fair coin, we expect that if we toss it a very
large number of times, then roughly half the time we will get heads and half the time we will
get tails. We can say that the probability of getting heads is 1

2 and the probability of getting
tails is 1− 1

2 = 1
2 . Thus the two possibilities have equal a priori probabilities.

Now consider the simultaneous tossing of N coins. What are the probabilities? For example,
if N = 2, the possibilities are HH, HT , TH and TT . There are two ways we can get one
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head and one tail, so the probabilities are 1
4 , 1

2 and 1
4 for two heads, one head and no heads

respectively. The probability for one head (and one tail) is higher because there are many (two
in this case) ways to get that result. So we can ask: How many ways can we get n1 heads (and
(N − n1) tails)? This is given by the number of ways we can choose n1 out of N , to which we
can assign the heads. In other words, it is given by

W (n1, n2) =
N !

n1! (N − n1)!
=

N !

n1!n2!
, n1 + n2 = N (7.1)

The probability for any arrangement n1, n2 will be given by

p(n1, n2) =
W (n1, n2)∑

n′1,n
′
2
W (n′1, n

′
2)

=
W (n1, n2)

2N
(7.2)

where we have used the binomial theorem to write the denominator as 2N . This probability
as a function of x = n1/N for large values of N , n1 is shown in Fig. 7.1. Notice that already
for N = 8, the distribution is sharply peaked around the middle value of n1 = 4. This
becomes more and more pronounced as N becomes large. We can check the place where
the maximum occurs by noting that the values n1/N and (n1 + 1)/N are very close to each
other, infinitesimally different for N →∞, so that x = n1/N may be taken to be continuous as
N →∞. Further, for large numbers, we can use the Stirling formula

logN ! ≈ N logN −N (7.3)
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Figure 7.1: The binomial distribution showing W (n1, n2) as a function of n1 = the number of
heads for N = 8
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Then we get

log p = logW (n1, n2)−N log 2

≈ N logN −N − (n1 log n1 − n1)− (N − n1) log(N − n1) + (N − n1)−N log 2

≈ −N [x log x+ (1− x) log(1− x)]−N log 2 (7.4)

This has a maximum at x = x∗ = 1
2 . Expanding log p around this value, we get

log p ≈ −2N (x− x∗)2 +O((x− x∗)3), or p ≈ exp
(
−2N (x− x∗)2

)
(7.5)

We see that the distribution is peaked around x∗ with a width given by ∆x2 ∼ (1/4N). The
probability of deviation from the mean value is very very small as N →∞. This means that
many quantities can be approximated by their mean values or values at the maximum of the
distribution.

We have considered equal a priori probabilities. If we did not have equal probabilties
then the result will be different. For example, suppose we had a coin with a probability of q,
0 < q < 1 for heads and probability (1− q) for tails. Then the probability for N coins would
go like

p(n1, n2) = qn1(1− q)n2 W (n1, n2) (7.6)

(Note that q = 1
2 reproduces (7.2).) The maximum is now at x = x∗ = q. The standard

deviation from the maximum value is unchanged.
Here we considered coins for each of which there are only two outcomes, head or tail. If

we have a die with 6 outcomes possible, we must consider splitting N into n1, n2, · · · , n6.
Thus we can first choose n1 out of N in N !/(n1!(N − n1)!) ways, then choose n2 out of the
remaining N − n1 in (N − n1)!/(n2!(N − n1 − n2)!) ways and so on, so that the number of
ways we can get a particular assignment {n1, n2, · · · , n6} is

W ({ni}) =
N !

n1!(N − n1)!

(N − n1)!

n2!(N − n1 − n2)!
· · · = N !

n1!n2! · · ·n6!
,

∑

i

ni = N (7.7)

More generally, the number of ways we can distribute N particles into K boxes is

W ({ni}) = N !
K∏

i

1

ni!
,

K∑

i=1

ni = N (7.8)

Basically, this gives the multinomial distribution.

7.2 Maxwell-Boltzmann statistics

Now we can see how all this applies to the particles in a gas. The analog of heads or tails
would be the momenta and other numbers which characterize the particle properties. Thus
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we can consider N particles distributed into different cells, each of the cells standing for a
collection of observables or quantum numbers which can characterize the particle. The number
of ways in which N particles can be distributed into these cells, say K of them, would be given
by (7.8). The question is then about a priori probabilities. The basic assumption which is made
is that there is nothing to prefer one set of values of observables over another, so we assume
equal a priori probabilities. This is a key assumption of statistical mechanics. So we want to
find the distribution of particles into different possible values of momenta or other observables
by maximizing the probability

p({ni}) = CN !

K∏

i

1

ni!
(7.9)

Here C is a normalization constant given by C =
∑
{ni}W , the analog of 2N in (7.2). Now

the maximization has to be done obviously keeping in mind that
∑

i ni = N , since we have
a total of N particles. But this is not the only condition. For example, energy is a conserved
quantity and if we have a system with a certain energy U , no matter how we distribute the
particles into different choices of momenta and so on, the energy should be the same. Thus
the maximization of probability should be done subject to this condition. Any other conserved
quantity should also be preserved. Thus our condition for the equilibrium distribution should
read

δnip({ni}) = 0, subject to
∑

i

niO(α)
i = fixed (7.10)

where O(α) (for various values of α) give the conserved quantities, the total particle number
and energy being two such observables.

The maximization of probability seems very much like what is given by the second law of
thermodynamics, wherein equilibrium is characterized by maximization of entropy. In fact
this suggests that we can define entropy in terms of probability or W , so that the condition
of maximization of probability is the same as the condition of maximization of entropy. This
identification was made by Boltzmann who defined entropy corresponding to a distribution
{ni} of particles among various values of momenta and other observables by

S = k logW ({ni}) (7.11)

where k is the Boltzmann constant. For two completely independent systems A, B, we need
S = SA+SB, while W = WAWB. Thus the relation should be in terms of logW . This equation
is one of the most important formulae in physics. It is true even for quantum statistics, where
the counting of the number of ways of distributing particles is different from what is given by
(7.8). We will calculate entropy using this and show that it agrees with the thermodynamic
properties expected of entropy. We can restate Boltzmann’s hypothesis as

p({ni}) = CW ({ni}) = C eS/k (7.12)
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With this identification, we can write

S = k log

[
N !
∏

i

1

ni!

]

≈ k

[
N logN −N −

∑

i

(ni log ni − ni)
]

(7.13)

We will consider a simple case where the single particle energy values are εi (where i may be
interpreted as momentum label) and we have only two conserved quantities to keep fixed, the
particle number and the energy. To carry out the variation subject to the conditions we want to
impose, we can use Lagrange multipliers. We add terms λ(

∑
i ni −N)− β(

∑
i niεi − U), and

vary the parameters (or multipliers) β, λ to get the two conditions

∑

i

ni = N,
∑

i

niεi = U (7.14)

Since these are anyway obtained as variational conditions, we can vary ni freely without
worrying about the ocnstraints, when we try to maximize the entropy. Usually we use µ instead
of λ, where λ = βµ, so we will use this way of writing the Lagrange multiplier. The equilibrium
condition now becomes

δ

[
S

k
− β(

∑

i

niεi − U) + λ(
∑

i

ni −N)

]
= 0 (7.15)

This simplifies to

∑

i

δni (log ni + βεi − βµ) = 0 (7.16)

Since ni are not constrained, this means that the quantity in brackets should vanish, giving the
solution

ni = e−β(εi−µ) (7.17)

This is the value at which the probability and entropy are a maximum. It is known as the
Maxwell-Boltzmann distribution. As in the case of the binomial distribution, the variation
around this value is very very small for large values of ni, so that observable values can be
obtained by using just the solution (7.17). We still have the conditions (7.14) obtained as
maximization conditions (for variation of β, λ), which means that

∑

i

e−β(εi−µ) = N

∑

i

εi e
−β(εi−µ) = U (7.18)
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The first of these conditions will determine µ in terms of N and the second will determine β in
terms of the total energy U .

In order to complete the calculation, we need to identify the summation over the index i.
This should cover all possible states of each particle. For a free particle, this would include
all momenta and all possible positions. This means that we can replace the summation by an
integration over d3p d3x. Further the single-particle energy is given by

ε =
p2

2m
(7.19)

Since
∫
d3x d3p exp

(
−βp

2

2m

)
= V

(
2πm

β

) 3
2

(7.20)

we find from (7.18)

β =
3N

2U

βµ = log

[
N

V

(
β

2πm

) 3
2

]
= log

[
N

V

(
3N

4πmU

) 3
2

]
(7.21)

The value of the entropy at the maximum can now be expressed as

S = k

[
5

2
N −N logN +N log V − 3

2
N log

(
3N

4πmU

)]
(7.22)

From this, we find the relations
(
∂S

∂U

)

V,N

= k
3N

2U
= k β (7.23)

(
∂S

∂N

)

V,U

= − log

[
N

V

(
3N

4πmU

) 3
2

]
= −k βµ (7.24)

(
∂S

∂V

)

U,N

= k
N

V
(7.25)

Comparing these with

dU = T dS − p dV + µdN (7.26)

which is the same as (5.8), we identify

β =
1

k T
(7.27)

Further, µ is the chemical potential and U is the internal energy. The last relation in (7.25)
tells us that

p =
N k T

V
(7.28)
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which is the ideal gas equation of state.
Once we have the identification (7.27), we can also express the chemical potential and

internal energy as functions of the temperature:

µ = k T log

[
N

V

(
1

2πmkT

) 3
2

]

U =
3

2
N k T (7.29)

The last relation also gives the specific heats for a monatomic ideal gas as

Cv =
3

2
Nk, Cp =

5

2
Nk (7.30)

These specific heats do not vanish as T → 0, so clearly we are not consistent with the third law
of thermodynamics. This is because of the classical statistics we have used. The third law is a
consequence of quantum dynamics. So, apart from the third law, we see that with Boltzmann’s
identification of entropy as S = k logW , we get all the expected thermodynamic relations and
explicit formulae for the thermodynamic quantities.

We have not addressed the normalization of the entropy carefully so far. There are two
factors of importance. In arriving at (7.22), we omitted the N ! in W , using (W/N !) in
Boltzmann’s formula rather than W itself. This division by N ! is called the Gibbs factor and
helps to avoid a paradox about the entropy of mixing, as explained below. Further, the number
of states cannot be just given by d3x d3p since this is, among other reasons, a dimensionful
quantity. The correct prescription comes from quantum mechanics which gives the semiclassical
formula for the number of states as

Number of states =
d3x d3p

(2π~)3
(7.31)

where ~ is Planck’s constant. Including this factor, the entropy can be expressed as

S = N k

[
5

2
+ log

(
V

N

)
+

3

2
log

(
U

N

)
+

3

2
log

(
4πm

3(2π~)2

)]
(7.32)

This is known as the Sackur-Tetrode formula for the entropy of a classical ideal gas.

Gibbs paradox

Our expression for entropy has omitted the factor N !. The original formula for the entropy
in terms of W includes the factor of N ! in W . This corresponds to an additional factor of
N logN − N in the formula (7.32). The question of whether we should keep it or not was
considered immaterial since the entropy contained an additive undetermined term anyway.
However, Gibbs pointed out a paradox that arises with such a result. Consider two ideal gases
at the same temperature, originally with volumes V1 and V2 and number of particles N1 and N2.
Assume they are mixed together, this creates some additional entropy which can be calculated
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as S−S1−S2. Since U = 3
2NkT , if we use the formula (7.32) without the factors due to 1/N !

(which means with an additional N logN −N), we find

S − S1 − S2 = k [N log V −N1 log V1 −N2 log V2] (7.33)

(We have also ignored the constants depending on m for now.) This entropy of mixing can be
tested experimentally and is indeed correct for monatomic nearly ideal gases. The paradox
arises when we think of making the gases more and more similar, taking a limit when they are
identical. In this case, we should not get any entropy of mixing, but the above formula gives

S − S1 − S2 = k [N1 log(V/V1) +N2 log(V/V2)] (7.34)

(In this limit, the constants depending on m are the same, which is why we did not have to
worry about it in posing this question.) This is the paradox. Gibbs suggested dividing out the
factor of N !, which leads to the formula (7.32). If we use that formula, there is no change
for identical gases because the specific volume V/N is the same before and after mixing. For
dissimilar gases, the formula of mixing is still obtained. The Gibbs factor of N ! arises naturally
in quantum statistics.

Equipartition

The formula for the energy of a single particle is given by

ε =
p2

2m
=
p2

1 + p2
2 + p2

3

2m
(7.35)

If we consider the integral in (7.20) for each direction of p, we have

∫
dx dp exp

(
−βp

2
1

2m

)
= L1

(
2πm

β

)1
2

(7.36)

The corresponding contribution to the internal energy is 1
2kT , so that for the three degrees of

freedom we get 3
2kT , per particle. We have considered the translational degrees of freedom

corresponding tot he movement of the particle in 3-dimensional space. For more complicated
molecules, one has to include rotational and vibrational degrees of freedom. In general, in
classical statistical mechanics, we will find that for each degree of freedom we get 1

2kT . This is
known as the equipartition theorem. The specific heat is thus given by

Cv =
1

2
k × number of degrees of freedom (7.37)

Quantum mechanically, equipartition does not hold, at least in this simple form, which is as it
should be, since we know the specific heats must go to zero as T → 0.
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7.3 The Maxwell distribution for velocities

The most probable distribution of velocities of particles in a gas is given by (7.17) with
ε = p2/2m = 1

2mv
2. Thus we expect the distribution function for velocities to be

f(v) d3v = C exp

(
−mv

2

2kT

)
d3v (7.38)

This is known as the Maxwell distribution. Maxwell arrived at this by an ingenious argument
many years before the derivation we gave in the last section was worked out. He considered
the probability of a particle having velocity components (v1, v2, v3). If the probability of a
particle having the x-component of velocity between v1 and v1 + dv1 is f(v1)dv1, then the
probability for (v1, v2, v3) would be

Probability of (v1, v2, v3) = f(v1) f(v2) f(v3) dv1 dv2 dv3 (7.39)

Since the dynamics along the three dimensions are independent, the probability should be the
product of the individual ones. Further, there is nothing to single out any particular Cartesian
component, they are all equivalent, so the function f should be the same for each direction.
This leads to (7.39). Finally, we have rotational invariance in a free gas with no external
potentials, so the probability should be a function only of the speed v =

√
v2

1 + v2
2 + v2

3. Thus
we need a function f(v) such that f(v1) f(v2) f(v3) depends only on v. The only solution is for
f(v) to be of the form

f(v1) ∝ exp
(
−α v2

1

)
(7.40)

for some constant α. The distribution of velocities is thus

f d3v = C exp
(
−α v2

)
d3v (7.41)

Since the total probability
∫
fd3v must be one, we can identify the constant C as (α/π)

3
2 .

We now consider particles colliding with the wall of the container, say the face at x = L1,
as shown in Fig. 7.2. The momentum imparted to the wall in an elastic collision is ∆p1 = 2mv1.
At any given instant roughly half of the molecules will have a component v1 towards the wall.
All of them in a volume A × v1 (where A is the area of the face) will reach the wall in one
second, so that the force on the wall due to collisions is

F =
1

2

(
N

V

)
A× v1 × (2mv1) =

(
N

V

)
Amv2

1 (7.42)

Averaging over v2
1 using (7.41), we get the pressure as

p =
〈F 〉
A

=

(
N

V

)
m 〈v2

1〉 =

(
N m

2αV

)
(7.43)
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L1x −→

Figure 7.2: A typical collision with the wall of the container at x = L1. The velocity component
v1 before and after collision is shown by the dotted line.

Comparing with the ideal gas law, we can identify α as m/2kT . Thus the distribution of
velocities is

f(v) d3v =
( m

2πkT

) 3
2

exp

(
−mv

2

2kT

)
d3v

=

(
1

2πmkT

) 3
2

exp
(
− ε

kT

)
d3p (7.44)

This is in agreement with (7.17).

Adapting Maxwell’s argument to a relativistic gas

Maxwell’s argument leading to (7.44) is so simple and elegant that it is tempting to see
if there are other situations to which such a symmetry-based reasoning might be applied.
The most obvious case would be a gas of free particles for which relativistic effects are taken
into account. In this case, ε =

√
p2 +m2 and it is clear that e−βε cannot be obtained from a

product of the form f(p1)f(p2)f(p3). So, at first glance, Maxwell’s reasoning seems to fail. But
this is not quite so, as the following line of reasoning will show.

As a first step, notice that the distribution (7.44) is for a gas which has no overall drift
motion. This is seen by noting that

〈vi〉 =

∫
d3p

pi
m

(
1

2πmkT

) 3
2

exp
(
− ε

kT

)
= 0 (7.45)

We can include an overall velocity ~u by changing the distribution to

f(p) =

(
1

2πmkT

) 3
2

exp

(
−(~p−m~u)2

2mkT

)
(7.46)

It is easily verified that 〈vi〉 = ui. It is important to include the overall motion in the reasoning
since the symmetry is the full set of Lorentz transformations in the relativistic case and they
include velocity-transformations.
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Secondly, we note that in the relativistic case where we have the 4-momentum pµ, µ =

0, 1, 2, 3 and what is needed to sum over all states is not the integration over all pµ, rather we
must integrate with the invariant measure

dµ = d4p δ(p2 −m2) Θ(p0) (7.47)

where Θ is the step function,

Θ(x) =

{
1 for x > 0

0 for x < 0
(7.48)

Further the δ-function can be expanded as

δ(p2 −m2) = δ(p2
0 − ~p 2 −m2) =

1

2p0

[
δ(p0 −

√
~p 2 +m2) + δ(p0 +

√
~p 2 +m2)

]
(7.49)

The integration over p0 is trivial because of these equations and we find that

∫
dµ f(pµ) =

∫
d3p

2
√
~p 2 +m2

f(
√
~p 2 +m2, ~p) (7.50)

Now we seek a function which can be written in the form f(p0)f(p1)f(p2)f(p3) involving
the four components of pµ and integrate it with the measure (7.47). The function f must also
involve the drift velocity in general. In the relativistic case, this is the 4-velocity Uµ, whose
components are

U0 =
1√

1− ~u2
, Ui =

ui√
1− ~u2

(7.51)

The solution is again an exponential

f(p) = C exp (−β pµUµ) = C exp
(
−β(p0U0 − ~p · ~U)

)
(7.52)

With the measure (7.47), we find

∫
dµ f(p) B(p) = C

∫
d3p

2εp
exp

(
−β(εp U0 − ~p · ~U)

)
B(εp, ~p) (7.53)

for any observable B(p) and where εp =
√
p2 +m2. At this stage, if we wish to, we can

consider a gas with no overall motion, setting ~u = 0, to get

〈B〉 = C

∫
d3p

2εp
exp (−β εp) B(εp, ~p) (7.54)

This brings us back to a form similar to (7.17), even for the relativistic case.
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7.4 The Gibbsian ensembles

The distribution which was obtained in (7.17) gives the most probable number of particles
with momentum p as np = exp (−β(εp − µ)). This was obtained by considering the number of
ways in which free particles can be distributed among possible momentum values subject to
the constraints of fixed total number of particles and total energy. We want to consider some
generalizations of this now. First of all, one can ask whether a similar formula holds if we
have an external potential. The barometric formula (2.13) has a similar form since mgh is the
potential energy of a molecule or atom in that context. So, for external potentials one can
make a similar argument.

Interatomic or intermolecular forces are not so straightforward. In principle, if we have
intermolecular forces, single particle energy values are not easily identified. Further, in some
cases, one may even have new molecules formed by combinations or bound states of old ones.
Should they be counted as one particle or two or more? So one needs to understand the
distribution from a more general perspective. The idea is to consider the physical system of
interest as part of a larger system, with exchange of energy with the larger system. This certainly
is closer to what is really obtained in most situations. When we study or do experiments with
a gas at some given temperature, it is maintained at this temperature by being part of a larger
system with which it can exchange energy. Likewise, one could also consider a case where
exchange of particles is possible. The important point is that, if equilibrium is being maintained,
the exchange of energy or particles with a larger system will not change the distribution in the
system under study significantly. Imagine high energy particles get scattered into the volume
of gas under study from the environment. This can raise the temperature slightly. But there
will be roughly equal number of particles of similar energy being scattered out of the volume
under study as well. Thus while we will have fluctuations in energy and particle number, these
will be very small compared to the average values, in the limit of large numbers of particles.
So this approach should be a good way to analyze systems statistically.

Arguing along these lines one can define three standard ensembles for statistical mechanics:
the micro-canonical, the canonical and the grand canonical ensembles. The canonical ensemble
is the case where we consider the system under study (of fixed volume V ) as one of a large
number of similar systems which are all in equilibrium with larger systems with free exchange
of energy possible. For the grand canonical ensemble, we also allow free exchange of particles,
so that only the average value of the number of particles in the system under study is fixed.
The micro-canonical ensemble is the case where we consider a system with fixed energy and
fixed number of particles. (One could also consider fixing the values of other conserved
quantities, either at the average level (for grand canonical case) or as rigidly fixed values (for
the micro-canonical case).)

We still need a formula for the probability for a given distribution of particles in various
states. In accordance with the assumption of equal a priori probabilities, we expect the
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probability to be proportional to the number of states N available to the system subject to the
constraints on the conserved quantities. In classical mechanics, the set of possible trajectories
for a system of particles is given by the phase space since the latter constitutes the set of possible
initial data. Thus the number of states for a system of N particles would be proportional to the
volume of the subspace of the phase space defined by the conserved quantities. In quantum
mechanics, the number of states would be given in terms of the dimension of the Hilbert space.
The semiclassical formula for the counting of states is then

dN =

N∏

i=1

d3xi d
3pi

(2π~)3
(7.55)

In other words, a cell of volume (2π~)3N in phase space corresponds to a state in the quantum
theory. (This holds for large numbers of states; in other words, it is semiclassical.) This gives a
more precise meaning to the counting of states via the phase volume. In the microcanonical
ensemble, the total number of states with total energy between E and E + δE would be

N =

∫ H=E+δE

H=E

N∏

i=1

d3xi d
3pi

(2π~)3
≡W (E) (7.56)

where H({x}, {p}) is the Hamiltonian of the N -particle system. The entropy is then defined by
Boltzmann’s formula as S(E) = k logW (E). For a Hamiltonian H =

∑
i p

2
i /2m, this can be

explicitly calculated and leads to the formulae we have already obtained. However, as explained
earlier, this is not easy to do explicitly when the particles are interacting. Nevertheless, the key
idea is that the required phase volume is proportional to the exponential of the entropy,

Probability ∝ exp

(
S

k

)
(7.57)

This idea can be carried over to the canonical and grand canonical ensembles.
In the canonical ensemble, we consider the system of interest as part of a much larger

system, with, say, N +M particles. The total number of available states is then

dN =

N+M∏

i=1

d3xi d
3pi

(2π~)3
(7.58)

The idea is then to consider integrating over the M particles to obtain the phase volume for
the remaining, viewed as a subsystem. We refer to this subsystem of interest as system 1 while
the M particles which are integrated out will be called system 2. If the total energy is E, we
take the system 1 to have energy E1, with system 2 having energy E − E1. Of course, E1 is
not fixed, but can vary as there can be some amount of exchange of energy between the two
systems. Integrating out the system 2 leads to

dN =

N∏

i=1

d3xi d
3pi

(2π~)3
W (E − E1) =

N∏

i=1

d3xi d
3pi

(2π~)3
eS(E−E1)/k (7.59)
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We then expand S(E) as

S(E − E1) = S(E)− E1

(
∂S

∂E

)

V,N

+ · · ·

= S(E)− 1

T
E1 + · · ·

= S(E)− HN

T
+ · · · (7.60)

where have used the thermodynamic formula for the temperature. The temperature is the
same for system 1 and the larger system (system 1 + system 2) of which it is a part. HN is the
Hamiltonian of the N particles in system 1. This shows that, as far as the system under study
is concerned, we can take the probability as

Probability = C
N∏

i=1

d3xi d
3pi

(2π~)3
exp

(
−HN (x, p)

T

)
(7.61)

Here C is a proportionality factor which can be set by the normalization requirement that the
total probability (after integration over all remaining variables) is 1. (The factor eS(E)/k from
(7.60) can be absorbed into the normalization as it is a constant independent of the phase
space variables for the particles in system 1. Also, the subscript 1 referring to the system under
study is now redundant and has been removed.)

There are higher powers in the Taylor expansion in (7.60) which have been neglected. The
idea is that these are very small as E1 is small compared to the energy of the total system. In
doing the integration over the remaining phase space variables, in principle, one could have
regions with HN comparable to E, and the neglect of terms of order E2

1 may not seem justified.
However, the formula (7.61) in terms of the energy is sharply peaked around a certain average
value with fluctuations being very small, so that the regions with E1 comparable to E will have
exponentially vanishing probability. This is the ultimate justification for neglecting the higher
terms in the expansion (7.60). We can a posteriori verify this by calculating the mean square
fluctuation in the energy value which is given by the probability distribution (7.61). This will
be taken up shortly.

Turning to the grand canonical case, when we allow exchange of particles as well, we get

S(E − E1, (N +M)−N) = S(E,N +M)− E1

(
∂S

∂U

)

V,N+M

−N
(
∂S

∂N

)

U,V

+ · · ·

= S(E,N +M)− 1

T
E1 +

µ

T
N · · ·

= S(E,N +M)− 1

T
(HN − µN) + · · · (7.62)

By a similar reasoning as in the case of the canonical ensemble, we find, for the grand canonical
ensemble,

Probability ≡ dpN = C

N∏

i=1

d3xid
3pi

(2π~)3
exp

(
−H(x, p)− µN

kT

)
(7.63)
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More generally, let us denote by Oα an additively conserved quantum number or observable
other than energy. The general formula for the probability distribution is then

dpN = C
N∏

i=1

d3xid
3pi

(2π~)3
exp

(
−(H(x, p)−∑α µαOα)

kT

)
(7.64)

Even though we write the expression for N particles, it should be kept in mind that averages
involve a summation over N as well. Thus the average of some observable B(x, p) is given by

〈B〉 =

∞∑

N=0

∫
dpN BN (x, p) (7.65)

Since the normalization factor C is fixed by the requirement that the total probability is 1,
it is convenient to define the “partition function". In the canonical case, it is given by

QN =

∫
1

N !

N∏

i=1

[
d3xid

3pi
(2π~)3

]
exp

(
−H(x, p)

kT

)
(7.66)

We have introduced an extra factor of 1/N !. This is the Gibbs factor needed for resolving the
Gibbs paradox; it is natural in the quantum counting of states. Effectively, because the particles
are identical, permutation of particles should not be counted as a new configuration, so the
phase volume must be divided by N ! to get the “correct" counting of states. We will see that
even this is not entirely adequate when full quantum effects are taken into account. In the
grand canonical case, the partition function is defined by

Z =
∑

N

∫
1

N !

N∏

i=1

[
d3xid

3pi
(2π~)3

]
exp

(
−(HN (x, p)−∑α µαOα)

kT

)
(7.67)

Using the partition functions in place of 1/C, and including the Gibbs factor, we find the
probability of a given configuration as

dpN =
1

QN

1

N !

N∏

i=1

[
d3xid

3pi
(2π~)3

]
exp

(
−HN (x, p)

kT

)
(7.68)

while for the grand canonical case we have

dpN =
1

Z

1

N !

N∏

i=1

[
d3xid

3pi
(2π~)3

]
exp

(
−(HN (x, p)−∑α µαOα)

kT

)
(7.69)

The partition function contains information about the thermodynamic quantities. Notice
that, in particular,

1

β

∂

∂µα
logZ = 〈Oα〉

− ∂

∂β
logZ = 〈H −

∑

α

µαOα〉 = U −
∑

α

µα〈Oα〉 (7.70)
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We can also define the average value of the entropy (not the entropy of the configuration
corresponding to particular way of distributing particles among states, but the average over
the distribution) as

S̄ = k

[
logZ + β(U −

∑

α

µα〈Oα〉)
]

(7.71)

While the averages U = 〈H〉 and 〈Oα〉 do not depend on the factors of N ! and (2π~)3N , the
entropy does. This is why we chose the normalization factors in (7.66) to be what they are.

Consider the case when we have only one conserved quantity, the particle number, in
addition to the energy. In this case, (7.71) can be written as

µN = U − T S + kT logZ (7.72)

Comparing this with the definition of the Gibbs free energy in (5.6) and its expression in terms
of µ in (5.16), we find that we can identify

p V = kT logZ (7.73)

This gives the equation of state in terms of the partition function.
These equations (7.67), (7.70 - 7.73) are very powerful. Almost all of the thermodynamics

we have discussed before is contained in them. Further, they can be used to calculate various
quantities, including corrections due to interactions among particles, etc. As an example, we
can consider the calculation of corrections to the equation of state in terms of the intermolecular
potential.

7.5 Equation of state

The equation of state, as given by (7.73), requires the computation of the grand canonical
partition function. We will consider the case where the only conserved quantities are the
Hamiltonian and the number of particles. The grand canonical partition function can then be
written as

Z =

∞∑

N=0

zN QN = 1 +

∞∑

N=1

zN QN z = eβµ (7.74)

where QN is the canonical partition for a fixed number of particles, given in (7.66). The
variable z = eβµ is called the fugacity. The easiest way to proceed to the equation of state is to
consider an expansion of logZ in powers of z. This is known as the cumulant expansion and,
explicitly, it takes the form

log

(
1 +

∞∑

N=1

zN QN

)
=

∞∑

n=1

zn an (7.75)
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where the first few coefficients are easily worked out as

a1 = Q1

a2 = Q2 −
1

2
Q2

1

a3 = Q3 −Q2Q1 +
1

3
Q3

1 (7.76)

The Hamiltonian, for N particles, has the form

HN =
∑

i

p2
i

2m
+
∑

i<j

V (xi, xj) + · · · (7.77)

where we have included a general two-particle interaction and the ellipsis stands for possible
3-particle and higher interactions. For N = 1 we just have the first term. The p-integrations
factorize and, if V (xi, xj) = 0, we get QN = QN1 /N !. All cumulants an vanish except for a1.
We can explicitly obtain

a1 = Q1 =

∫
d3xd3p

(2π~)3
exp

(
−βp

2

2m

)
= V

(
m

2πβ~2

) 3
2

(7.78)

For Q2, we find

Q2 =
1

2!

Q2
1

V 2

∫
d3x1d

3x2 e
−βV (x1,x2)

=
Q2

1

2V

∫
d3x e−βV (x) (7.79)

where, in the second line, we have taken the potential to depend only on the difference ~x1−~x2

and carried out the integration over the center of mass coordinate. Thus

a2 = −Q
2
1

2V

∫
d3x

(
1− e−βV (x)

)
(7.80)

Using the cumulant expansion to this order, we find logZ ≈ zQ1 + z2a2 and the average
number of particles in the volume V is given by

N̄ =
1

β

∂

∂µ
logZ ≈ z Q1 + 2z2 a2 (7.81)

which can be solved for z as

z Q1 ≈ N̄ − 2 a2
N̄2

Q2
1

+ · · · (7.82)

If we ignore the a2-term, this relation is the same as what we found in (7.21), with the addition
of the (2π~)3 correction,

βµ = log

[
N̄

V

(
2π~2

mkT

) 3
2

]
(7.83)
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Using (7.82) (with the a2-term) back in logZ and the expression (7.80) for a2, we get

pV

N̄kT
≈

[
1 +

N̄

V
B2 + · · ·

]

B2 =
1

2

∫
d3x

(
1− e−βV (x)

)
(7.84)

These formulae show explicitly the first correction to the ideal gas equation of state. The
quantity B2 is a function of temperature; it is called the second virial coefficient and can be
calculated, once a potential is known, by carrying out the integration. Even for complicated
potentials it can be done, at least, numerically. As a simple example, consider a hard sphere
approximation to the interatomic potential,

V (r) =

{
∞ r < r0

0 r > r0

(7.85)

In this case the integral is easily done to obtain B2 = (2πr3
0/3) This is independent of the

temperature. One can consider more realistic potentials for better approximations to the
equation of state.

The van der Waals equation, which we considered earlier, is, at best, a model for the
equation of state incorporating some features of the interatomic forces. Here we have a more
systematic way to calculate with realistic interatomic potentials. Nevertheless, there is a point
of comparison which is interesting. If we expand the van der Waals equation in the form
(7.84), it has B2 = b− (a/kT ); the term b is independent of the temperature. Comparing with
the hard sphere repulsion at short distances, we see how something like the excluded volume
effect can arise.

We have considered the first corrections due to the interatomic forces. More generally, the
equation of state takes the form

pV

N̄kT
=

[
1 +

∞∑

n=2

(
N̄

V

)n−1

Bn

]
(7.86)

This is known as the virial expansion, with Bn referred to as the n-th virial coefficient. These
are in general functions of the temperature; they can be calculated by continuing the cumulant
expansion to higher order and doing the integrations needed for QN . In practice such a
calculation becomes more and more difficult as N increases. This virial expansion (7.86) is
in powers of the density N̄

V and integrations involving powers of e−βVint , where Vint is the
potential energy of the interaction. Thus for low densities and interaction strengths small
compared to kT , truncation of the series at some finite order is a good approximation. So only
a few of the virial coefficients are usually calculated.

It is useful to calculate corrections to some of the other quantities as well. From the
identification of N̄ in (7.81) and from (7.70), we can find the internal energy as

U =
3

2
N̄kT +

N̄2

2V

∫
d3x V (x) e−βV (x) + · · · (7.87)
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In a similar way, the entropy is found to be

S̄ = N̄ k

[
5

2
+ log

(
V

N̄

)
+

3

2
log

(
mkT

2π~2

)

+
N̄

2V

∫
d3x

(
β V (x)e−βV (x) − 1 + e−βV (x)

)]
(7.88)

Since the number of pairs of particles is ≈ N2/2, the correction to the internal energy is easily
understood as an average of the potential energy. Also the first set of terms in the entropy
reproduces the Sackur-Tetrode formula (7.32) for an ideal gas.

7.6 Fluctuations

We will now calculate the fluctuations in the values of energy and the number of particles as
given by the canonical and grand canonical ensembles. First consider N . From the definition,
we have

1

β

∂Z

∂µ
= Z 〈N〉 = Z N̄

1

β2

∂2Z

∂µ2
= Z 〈N2〉 (7.89)

If we calculate N̄ from the partition function as a function of β and µ, we can differentiate it
with respect to µ to get

1

β

∂N̄

∂µ
= − 1

Z2 β2

(
∂Z

∂µ

)2

+
1

β2

∂2Z

∂µ2
= 〈N2〉 − 〈N〉2 = ∆N2 (7.90)

The Gibbs free energy is given by G = µN̄ and it also obeys

dG = −SdT + V dp+ µdN̄ (7.91)

These follow from (5.16 and (5.10). Since T is fixed in the differentiations we are considering,
this gives

∂µ

∂N̄
=
V

N̄

∂p

∂N̄
(7.92)

The equation of state gives p as a function of the number density ρ ≡ N̄/V , at fixed temperature.
Thus

∂p

∂N̄
=

1

V

∂p

∂ρ
(7.93)

Using this in (7.92), we get

1

β

∂N̄

∂µ
= N̄

kT

(∂p/∂ρ)
(7.94)



66 Chapter 7. Classical Statistical Mechanics

From (7.90), we now see that the mean square fluctuation in the number is given by

∆N2

N̄2
=

1

N̄

kT

(∂p/∂ρ)
(7.95)

This goes to zero as N̄ becomes large, in the thermodynamic limit. An exception could occur if
(∂p/∂ρ) becomes very small. This can happen at a second order phase transition point. The
result is that fluctuations in numbers become very large at the transition. The theoretical
treatment of such a situation needs more specialized techniques.

We now turn to energy fluctuations in the canonical ensemble. For this we consider N to
be fixed and write

∂U

∂β
=

∂

∂β

[
− 1

QN

∂QN
∂β

]
=

[
1

QN

∂QN
∂β

]2

−
[

1

QN

∂2QN
∂β2

]

= 〈H〉2 − 〈H2〉 ≡ −∆U2 (7.96)

The derivative of U = 〈H〉 with respect to T gives the specific heat, so we find

∆U2 = k CvT
2,

∆U2

U2
=
k CvT

2

U2
∼ 1

N
(7.97)

Once again, the fluctuations are small compared to the average value as N becomes large.

7.7 Internal degrees of freedom

Many particles, such as atoms, molecules have internal degrees of freedom. This can be due to
atomic energy levels, due to vibrational and rotational states for molecules, etc. Very often
one has to consider mixtures of particles where they can be in different internal states as
well. For example, in a sodium lamp where the atoms are at a high temperature, some of the
atoms are in an electronic excited state while some are in the ground state. Of course, the
translational degrees of freedom are important as well. In principle, at the classical level, the
internal dynamics has its own phase space and by including it in the integration measure for
the partition function, we can have a purely classical statistical mechanics of such systems.
However, this can be grossly inadequate. Even though in many situations, the translational
degrees of freedom can be treated classically, it is necessary to take account of the discreteness
of states and energy levels for the internal degrees of freedom. The question is: How do we do
this?

The simplest strategy is to consider the particles in different internal states as different
species of particles. For example, consider a gas of, say, argon atoms which can be in the
ground state (call them A) and in an excited state (call them A∗). The partition function would
thus be

Z =
∑

NA,NA∗

zNAA z
NA∗
A∗ QNA,NA∗ (7.98)
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If we ignore interatomic forces, considering a gas of free particles, QN = (Q1)N/N !, so that

Z = exp
(
zAQ1A + zA∗ Q1A∗

)
(7.99)

The single particle partition function which we have used so far is of the form

Q1 =

∫
d3x d3p

(2π~)3
exp

(
−β p

2

2m

)
(7.100)

This is no longer good enough since A and A∗ have difference in energies for the internal
degrees of freedom and this is not reflected in using just p2/2m. Because of the equivalence of
mass and energy, this means that mA and mA∗ are different. From the relativistic formula

Ep =
√
m2c4 + c2p2 ≈ mc2 +

p2

2m
+ · · · (7.101)

we see that this difference is taken account of if we include the rest energy in Q1. (Here c is
the speed of light in vacuum.) Thus we should use the modified formula

Q1 =

∫
d3x d3p

(2π~)3
exp

(
−β
[
mc2 +

p2

2m

])

= e−βmc
2
V

(
mkT

2π~2

) 3
2

(7.102)

even for nonrelativistic calculations. If there are degenerate internal states, the mass would
be the same, so in logZ we could get a multiplicity factor. To see how this arises, consider a
gas of particles each of which can have g internal states of the same energy (or mass). Such
a situation is realized, for example, by a particle of spin s with g = 2s + 1. If we treat each
internal state as a separate species of particle, the partition function would be

Z =
∑

{Ni}

zN1
1 zN2

2 · · · z
Ng
g QN1, N2,···Ng (7.103)

Each of the µi will specify the average number in the distribution for each internal state.
However, in many cases, we do not specify the numbers for each state, only the total average
number is macroscopically fixed for the gas. Thus all zi are the same giving a single factor zN ,
N =

∑
Ni, in (7.103). Correspondingly, if we have no interparticle interactions, we get

Z = exp
(
z
∑

Qi

)
= exp (z g Q1) (7.104)

where we used the fact that all masses are the same. We see the degeneracy factor g explicitly.

7.8 Examples

7.8.1 Osmotic pressure

An example of the use of the idea of the partition function in a very simple way is provided by
the osmotic pressure. Here one considers a vessel partitioned into two regions, say, I and II,
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semipermeable membrane

solvent solvent
+ solute

I II

Figure 7.3: Illustrating the set-up for calculating osmotic pressure

with a solvent (labeled A) on one side and a solution of the solvent plus a solute (labeled B)
on the other side. The separation is via a semipermeable membrane which allows the solvent
molecules to pass through either way, but does not allow the solute molecules to pass through.
Thus the solute molecules stay in region II, as the Fig. 7.3. When such a situation is set up, the
solvent molecules pass back and forth and eventually achieve equilibrium with the average
number of solvent molecules on each side not changing any further. What is observed is that
the pressure in the solution pII is higher than the pressure pI in the solvent in region I. Once
equilibrium is achieved, there is no further change of volume or temperature either, so we can
write the equilibrium condition for the solvent as

µ
(I)
A = µ

(II)
A (7.105)

Correspondingly, we have z(I)
A = z

(II)
A , for the fugacities. The partition function has the form

Z =
∑

NA,NB

zNAA zNBB QNA,NB

=
∑

NA

zNAA QNA,0 +
∑

NA

zNAA zB QNA,1 + · · ·

= ZA


1 +

1

ZA

∑

NA

zNAA zB QNA,1 + · · ·


 (7.106)

Here ZA is the partition function for just the solvent. For simplicity, let us take the volumes of
the two regions to be the same. Then we may write

logZA =
pI V

kT
(7.107)

even though this occurs in the formula for the full partition function in region II, since zA is
the same for regions I and II. Going back to Z, we expand log in powers of zB, keeping only
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the lowest order term, which is adequate for dilute solutions. Thus

logZ ≈ logZA + zB


 1

ZA

∑

NA

zNAA QNA,1


 (7.108)

The derivative of the partition function with respect to µB is related to NB, as in (7.70), so
that


 1

ZA

∑

NA

zNAA QNA,1


 = NB (7.109)

Further, logZ is given by pIIV/kT . Using these results, (7.108) gives

pII = pI +
NB

V
kT = pI + nB kT (7.110)

where nB is the number density of the solute. The pressure difference pII − pI is called the
osmotic pressure.

7.8.2 Equilibrium of a chemical reaction

Here we consider a general chemical reaction of the form

νAA + νBB � νCC + νDD (7.111)

If the substances A, B, C, D can be approximated as ideal gases, the partition function is
given by

logZ = zAQ1A + zB Q1B + zC Q1C + zDQ1D (7.112)

For the individual chemical potentials, we can use the general formula (7.83) but with the
correction due to the βmc2 factor as in (7.102), since we have different species of particles
here. Thus

βµ = log n+ β mc2 − log

(
mkT

2π~2

) 3
2

(7.113)

The condition of equilibrium of the reaction is given as νAµA + νBµB − νCµC − νDµD = 0.
Using (7.113), this becomes

log

(
nνAA nνBB
nνCC nνDD

)
= −βc2 (νAmA + νBmB − νCmC − νDmD) + νAfA + νBfB − νCfC − νDfD

f = log

(
mkT

2π~2

) 3
2

(7.114)

The total pressure of the mixture of the substances is given from pV = kT logZ as

p = (nA + nB + nC + nD) kT (7.115)
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So if we define the concentrations,

xi =
ni∑
j nj

, i = A,B,C,D, (7.116)

then we can rewrite (7.114) as

xνAA xνBB
xνCC xνDD

pνA+νB−νC−νD = exp (−β ε+ νAφA + νBφB − νCφC − νDφD) ≡ K

ε = (νAmA + νBmB − νCmC − νDmD)c2

φ = f + log kT (7.117)

With our interpretation of the masses as rest energy, we see that ε is the heat of reaction, i.e.,
the total energy released by the reaction. ε is positive for an exothermic reaction and negative
for an endothermic reaction. K, in (7.117), is known as the reaction constant and is a function
only of the temperature (and the masses of the molecules involved, but these are fixed once a
reaction is chosen). The condition (7.117) on the concentrations of the reactants is called the
law of mass action.

7.8.3 Ionization equilibrium

Another interesting example is provided by ionization equilibrium, which is of interest in
plasmas and in astrophysical contexts. Consider the ionization reaction of an atom X

X � X+ + e− (7.118)

There is a certain amount of energy εI needed to ionize the atom X. Treating the particles
involved as different species with possible internal states, we can use (7.104) to write

logZ = zX gX Q1X + ze geQ1e + zX+ gX+ Q1X+ (7.119)

By differentiation with respect to µ, we find, for each species,

z =
n

g
eβmc

2

(
2π~2

mkT

) 3
2

(7.120)

The condition for equilibrium µX − µX+ − µe = 0 is the same as (zX/zX+ze) = 1. Using
(7.120), this becomes

1 =
nX
gX

gX+

nX+

ge
ne
eβ(mX−mX+−me)c2

(
mX+me

mX

) 3
2
(
kT

2π~2

) 3
2

(7.121)

The mass of the atomX is almost equal to the mass ofX+ and the electron; the difference is the
binding energy of the electron inX. This is the ionization energy εI , (mX−mX+−me)c

2 = −εI .
Using this, (7.121) can be rewritten as

(
nX+ ne
nX

)
=

(
gX+ ge
gX

)
e−βεI

(
mX+me

mX

) 3
2
(
kT

2π~2

) 3
2

(7.122)
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This is known as Saha’s equation for ionization equilibrium. It relates the number density of
the ionized atom to that of the neutral atom. (While the mass difference is important for the
exponent, it is generally a good approximation to take mX ≈ mX+ in the factor (mX+/mX)

3
2 .

So it is often omitted.) The degeneracy for the electron states, namely ge, is due to the spin
degrees of freedom, so ge = 2. The degeneracies gX and gX+ will depend on the atom and the
energy levels involved.

The number densities can be related to the pressure by the equation of state; they are also
important in determining the intensities of spectral lines. Thus by observation of spectral lines
from the photospheres of stars, one can estimate the pressures involved.





8. Quantum Statistical Mechanics

One of the important lessons of quantum mechanics is that there is no a priori meaning to
qualities of any system, no independent reality, aside from what can be defined operationally
in terms of observations. Thus we cannot speak of this electron (or photon, or any other
particle) versus that electron (or photon, or any other particle). We can only say that there is
one particle with a certain set of values for observables and there is another, perhaps with a
different set of values for observables. This basic identity of particles affects the counting of
states and hence leads to distributions different from the Maxwell-Boltzmann distribution we
have discussed. This is the essential refinement due to quantum statistics.

There are two kinds of particles from the point of view of statistics, bosons and fermions.
The corresponding statistical distributions are called the Bose-Einstein distribution and the
Fermi-Dirac distribution. Bosons have the property that one can have any number of particles
in a given quantum state, while fermions obey the Pauli exclusion principle which allows a
maximum of only one particle per quantum state. Any species of particles can be put into one
of these two categories. The natural question is, of course, how do we know which category a
given species belongs to; is there an a priori way to know this? The answer to this question
is yes, and it constitutes one of the deep theorems in quantum field theory, the so-called
spin-statistics theorem. The essence of the theorem, although this is not the precise statement,
is given as follows.

Theorem 8.0.1 — Spin-Statistics Theorem. Identical particles with integer values for spin (or
intrinsic angular momentum) are bosons, they obey Bose-Einstein statistics.

Identical particles with spin (or intrinsic angular momentum) = (n + 1
2), where n is an

integer, obey the Pauli exclusion principle and hence they are fermions and obey Fermi-Dirac
statistics.

Thus, among familiar examples of particles, photons (which have spin = 1), phonons (quan-
tized version of elastic vibrations in a solid), atoms of He4, etc. are bosons, while the electron
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(spin = 1
2), proton (also spin-1

2), atoms of He3, etc. are fermions. In all cases, particles of the
same species are identical.

8.1 Bose-Einstein distribution

We will now consider the derivation of the distribution function for free bosons carrying out the
counting of states along the lines of what we did for the Maxwell-Boltzmann distribution. Let
us start by considering how we obtained the binomial distribution. We considered a number of
particles and how they can be distributed among, say, K boxes. As the simplest case of this,
consider two particles and two boxes. The ways in which we can distribute them are as shown
below. The boxes may correspond to different values of momenta, say ~p1 and ~p2, which have

1 2 1 2

2 1

1 2

the same energy. There is one way to get the first or last arrangement, with both particles in
one box; this corresponds to

W (2, 0) =
2!

2!0!
=

2!

0!2!
= W (0, 2) (8.1)

There are two ways to get the arrangement of one particle in each box, corresponding to

W (1, 1) =
2!

1!1!
(8.2)

The generalization of this counting is what led us to the Maxwell-Boltzmann statistics. But if
particles are identical with no intrinsic attributes distinguishing the particles we have labeled 1

and 2, this result is incorrect. The possible arrangements are just

• • • • • •

Counting the arrangement of one particle per box twice is incorrect; the correct counting
should give W (2, 0) = W (0, 2) = 1 and W (1, 1) = 1, giving a total of 3 distinct arrangements
or states. To generalize this, we first consider n particles to be distributed in 2 boxes. The
possible arrangements are n in box 1, 0 in box 2; n− 1 in box 1, 1 in box 2; · · · ; 0 in box 1, n
in box 2, giving n+ 1 distinct arrangements or states in all. If we have n particles and 3 boxes,
we can take n− k particles in the first two boxes (with n− k+ 1 possible states) and k particles
in the third box. But k can be anything from zero to n, so that the total number of states is

n∑

k=0

(n− k + 1) =
(n+ 2)(n+ 1)

2
=

(n+ 3− 1)!

n! (3− 1)!
(8.3)
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We may arrive at this in another way as well. Represent the particles as dots and use 3− 1 = 2

partitions to separate them into three groups. Any arrangement then looks like

• • · · · • | • • · · · • | • • • · · · •

Clearly any permutation of the n+ 2 entities (dots or partitions) gives an acceptable arrange-
ment. There are (n+ 2)! such permutations. However, permutations of the two partitions does
not change the arrangement, neither does the permutations of the dots among themselves.
Thus the number of distinct arrangements or states is

(n+ 2)!

n! 2!
=

(n+ 2)(n+ 1)

2
(8.4)

Generalizing this argument, for g boxes and n particles, the number of distinct arrangements
is given by

W =
(n+ g − 1)!

n! (g − 1)!
(8.5)

We now consider N particles, with n1 of them having energy ε1 each, n2 of them with
energy ε2 each, etc. Further, let g1 be the number of states with energy ε1, g2 the number of
states with energy ε2, etc. The degeneracy gα may be due to different values of momentum
(e.g., different directions of ~p with the same energy ε = p2/2m) or other quantum numbers,
such as spin. The total number of distinct arrangements for this configuration is

W ({nα}) =
∏

α

(nα + gα − 1)!

nα! (gα − 1)!
(8.6)

The corresponding entropy is k logW and we must maximize this subject to
∑

α nα = N and∑
α nα εα = U . With the Stirling formula for the factorials, the function to be extremized is

thus
S

k
− βU + βµN =

∑

α

[
(nα + gα − 1) log(nα + gα − 1)− (nα + gα − 1)− nα log nα + nα

−βεαnα + βµnα

]
+ terms independent of nα (8.7)

The extremization condition is

log

[
nα + gα − 1

nα

]
= β(εα − µ) (8.8)

with the solution

nα =
gα

eβ(εα−µ) − 1
(8.9)

where we have approximated gα − 1 ≈ gα, since the use of the Stirling formula needs large
numbers. As the occupation number per state, we can take the result as

n =
1

eβ(ε−µ) − 1
(8.10)
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with the degeneracy factors arising from the summation over states of the same energy. This is
the Bose-Einstein distribution. For a free particle, the number of states in terms of the momenta
can be taken as the single-particle dN , which, from (7.55), is

dN =
d3x d3p

(2π~)3
(8.11)

Thus the normalization conditions on the Bose-Einstein distribution are

∑∫
d3x d3p

(2π~)3

1

eβ(ε−µ) − 1
= N

∑∫
d3x d3p

(2π~)3

ε

eβ(ε−µ) − 1
= U (8.12)

The remaining sum in this formula is over the internal states of the particle, such as spin states.
It is also useful to write down the partition function Z. Notice that we may write the

occupation number n in (8.10) as

n =
1

β

∂

∂µ

[
− log

(
1− e−β(ε−µ)

)]
(8.13)

This result holds for each state for which we are calculating n. But recall that the total number
N should be given by

N =
1

β

∂

∂µ
logZ (8.14)

Therefore, we expect the partition function to be given by

logZ = −
∑

log
(

1− e−β(ε−µ)
)

Z =
∏ 1

1− e−β(ε−µ)
(8.15)

For each state with fixed quantum numbers, we can write

1

1− e−β(ε−µ)
= 1 + e−β(ε−µ) + e−2β(ε−µ) + e−3β(ε−µ) + · · ·

=
∑

n

e−nβ(ε−µ) (8.16)

This shows that the partition function is the sum over states of possible occupation numbers of
the Boltzmann factor e−β(ε−µ). This is obtained in a clearer way in the full quantum theory
where

Z = Tr(e−β(Ĥ−µN̂)) (8.17)

where Ĥ and N̂ are the Hamiltonian operator and the number operator, respectively, and Tr

denotes the trace over a complete set of states of the system.
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8.2 Fermi-Dirac distribution

The counting of distinct arrangements for fermions is even simpler than for the Bose-Einstein
case, since each state can have an occupation number of either zero or 1. Thus consider g states
with n particles to be distributed among them. There are n states which are singly occupied
and these can be chosen in g!/(n!(g − n)!) ways. The total number of distinct arrangements is
thus given by

W ({nα}) =
∏

α

gα!

nα! (gα − nα)!
(8.18)

The function to be maximized to identify the equilibrium distribution is therefore given by

S

k
− βU + βµN = −nα log nα − (gα − nα) log(gα − nα)− β(εα − µ)nα + constant (8.19)

The extremization condition reads

log

[
(gα − nα)

nα

]
= β(εα − µ) (8.20)

with the solution

nα =
gα

eβ(εα−µ) + 1
(8.21)

So, for fermions in equilibrium, we can take the occupation number to be given by

n =
1

eβ(ε−µ) + 1
(8.22)

with the degeneracy factor arising from summation over states of the same energy. This is the
Fermi-Dirac distribution. The normalization conditions are again,

∑∫
d3x d3p

(2π~)3

1

eβ(ε−µ) + 1
= N

∑∫
d3x d3p

(2π~)3

ε

eβ(ε−µ) + 1
= U (8.23)

As in the case of the Bose-Einstein distribution, we can write down the partition function
for free fermions as

logZ =
∑

log(1 + e−β(ε−µ))

Z =
∏

(1 + e−β(ε−µ)) (8.24)

Notice that, here too, the partition function for each state is
∑

n e
−nβ(ε−µ); it is just that, in the

present case, n can only be zero or 1.
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8.3 Applications of the Bose-Einstein distribution

We shall now consider some simple applications of quantum statistics, focusing in this section
on the Bose-Einstein distribution.

8.3.1 The Planck distribution for black body radiation

Any material body at a finite nonzero temperature emits electromagnetic radiation, or photons
in the language of the quantum theory. The detailed features of this radiation will depend on
the nature of the source, its atomic composition, emissivity, etc. However, if the source has a
sufficiently complex structure, the spectrum of radiation is essentially universal. We want to
derive this universal distribution, which is also known as the Planck distribution.

Since a black body absorbs all radiation falling on it, treating all wavelengths the same, a
black body may be taken as a perfect absorber. (Black bodies in reality do this only for a small
part of the spectrum, but here we are considering the idealized case.) By the same token, black
bodies are also perfect emitters and hence the formula for the universal thermal radiation is
called the black body radiation formula.

The black body radiation formula was obtained by Max Planck by fitting to the observed
spectrum. He also spelled out some of the theoretical assumptions needed to derive such a
result and this was, as is well known, the beginning of the quantum theory. Planck’s derivation
of this formula is fairly simple once certain assumptions, radical for his time, are made; from
the modern point of view it is even simpler. Photons are particles of zero rest mass, the energy
and momentum of a photon are given as

ε = ~ω, ~p = ~~k (8.25)

where the frequency of the radiation ω and the wave number ~k are related to each other in the
usual way, ω = c |~k|. Further photons are spin-1 particles, so we know that they are bosons.
Because they are massless, they have only two polarization states, even though they have spin
equal to 1. (For a massive particle we should expect (2 s + 1) = 3 polarization states for a
spin-1 particle.) We can apply the Bose-Einstein distribution (8.10) directly, with one caveat.
The number of photons is not a well defined concept. Since long wavelength photons carry
very little energy, the number of photons for a state of given energy could have an ambiguity
of a large number of soft or long wavelength photons. This is also seen more theoretically;
there is no conservation law in electromagnetic theory beyond the usual ones of energy and
momentum. This means that we should not have a chemical potential which is used to fix the
number of photons. Thus the Bose-Einstein distribution simplifies to

n =
1

eβε − 1
(8.26)

We now consider a box of volume V in which we have photons in thermal equilibrium with
material particles such as atoms and molecules. The distribution of the internal energy as a
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Figure 8.1: The Planck distribution as a function of frequency for three sample values of
temperature, with T3 > T2 > T1; units are arbitrary.

function of momentum is given by

dU = 2
d3x d3p

(2π~)3

ε

eβε − 1
(8.27)

where the factor of 2 is from the two polarization states. Using (8.25), for the energy density,
we find

d u = 2
d3k

(2π)3

~ω
e~ω/kT − 1

(8.28)

This is Planck’s radiation formula. If we use ω = c |~k| and carry out the integration over angular
directions of ~k, it reduces to

d u =
~

π2c3

dω ω3

e~ω/kT − 1
(8.29)

This distribution function vanishes at ω = 0 and as ω →∞. It peaks at a certain value which is
a function of the temperature. In Fig. 8.1, we show the distribution for some sample values of
temperature. Note that the value of ω at the maximum increases with temperature; in addition,
the total amount of radiation (corresponding to the area under the curve) also increases with
temperature.

If we integrate (8.29) over all frequencies, the total energy density comes out to be

u =
π2

15 (~c)3
(kT )4 (8.30)

where we have used the result
∫ ∞

0
dx

x3

ex − 1
= 3! ζ(4) =

π4

15
(8.31)
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Rate of radiation from a black body

We can convert the formula for the energy density to the intensity of the radiation by consid-
ering the conservation of energy in electrodynamics. The energy density of the electromagnetic
field is given by

u =
1

2
(E2 +B2) (8.32)

Using the Maxwell equations in free space, we find

∂u

∂t
= EiĖi +BiḂi = c [Ei(∇×B)i −Bi(∇× E)i]

= −c∇ · ( ~E × ~B) = −∇ · ~P (8.33)

~P = c( ~E × ~B)

Integrating over a volume V , we find

∂

∂t

∫
d3x u = −

∮

∂V

~P · d~S (8.34)

Thus the energy flux per unit area or the intensity is given by the Poynting vector ~P = c( ~E× ~B).
For electromagnetic waves, |E| = |B|, ~E and ~B are orthogonal to each other and both are
orthogonal to ~k, the wave vector which gives the direction of propagation, i.e., the direction of
propagation of the photon. In this case we find

u = E2, ~P = cu k̂ (8.35)

Using the Planck formula (8.28), the magnitude of the intensity of blackbody radiation is given
by

d I = 2c
d3k

(2π)3

~ω
e~ω/kT − 1

(8.36)

We have considered radiation in a box of volume V in equilibrium. To get the rate of
radiation per unit area of a blackbody, note that, because of equilibrium, the radiation rate
from the body must equal the energy flux falling on area under consideration (which is all
taken to be absorbed since it is a blackbody); thus emission rate equals absorption rate as
expected for equilibrium. The flux is given by

~P · d~S = ~P · n̂ dS = c u k̂ · n̂ dS = c u cos θ dS (8.37)

where n̂ is the normal to the surface and θ is the angle between k̂ and n̂. Further, in the equi-
librium situation, there are photons going to and away from the surface under consideration,
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so we must only consider positive values of k̂ · n̂ = cos θ, or 0 ≤ θ ≤ π/2. Thus the radiation
rate over all wavelengths per unit area of the emitter is given by

R = 2c

∫
d3k

(2π)3

~ω cos θ

e~ω/kT − 1

= 2c

∫
dk k2

4π2

~ω
e~ω/kT − 1

∫ π/2

0
dθ sin θ cos θ

=
~

4π2c2

∫ ∞

0
dω

ω3

e~ω/kT − 1

= σ T 4 (8.38)

σ =
π2k4

60 ~3c2

This result is known as the Stefan-Boltzmann law.

Radiation pressure

Another interesting result concerning thermal radiation is the pressure of radiation. For
this, it is convenient to use one of the relations in (6.30), namely,

(
∂U

∂V

)

T

= T

(
∂p

∂T

)

V

− p (8.39)

From (8.30), we have

U = V
π2

15 (~c)3
k4 T 4 (8.40)

Equations (8.39) and (8.40) immediately lead to

p =
π2

45 (~c)3
k4 T 4 =

1

3
u (8.41)

Radiation pressure is significant and important in astrophysics. Stars can be viewed as a gas
or fluid held together by gravity. The gas has pressure and the pressure gradient between the
interior of the star and the exterior region tends to create a radial outflow of the material. This
is counteracted by gravity which tends to contract or collapse the material. The hydrostatic
balance in the star is thus between gravity and pressure gradients. The normal fluid pressure
is not adequate to prevent collapse. The radiation produced by nuclear fusion in the interior
creates an outward pressure and this is a significant component in the hydrostatic equilibrium
of the star. Without this pressure a normal star would rapidly collapse.

Maximum of Planck distribution

We have seen that the Planck distribution has a maximum at a certain value of ω. It is
interesting to consider the wavelength λ∗ at which the distribution has a maximum. This
can be done in terms of frequency or wavelength, but we will use the wavelength here as
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this is more appropriate for the application we consider later. (The peak for frequency and
wavelength occur at different places since these variables are not linearly related, but rather
are reciprocally related.) Using dω = −(2πc)dλ/λ2, we can write down the Planck distribution
(8.36) in terms of the wavelength λ as

d I =
2(2π~)

c2

1

λ5 (e~ω/kT − 1)
dλ dΩ (8.42)

(The minus sign in dω only serves to show that when the intensity increases with frequency,
it should decrease with λ and vice versa. So we have dropped the minus sign. Ω is the solid
angle for the angular directions.) Extremization with respect to λ gives the condition

(x− 5) ex + 5 = 0 (8.43)

where x = β~ω. The solution of this transcendental equation is

λ∗ ≈
(2π~)c

k

1

4.96511

1

T
(8.44)

This relation is extremely useful in determining the temperature of the outer layer of stars,
called the photosphere, from which we receive radiation. By spectroscopically resolving the
radiation and working out the distribution as a function of wavelength, we can see where the
maximum is, and this gives, via (8.44), the temperature of the photosphere. Notice that higher
temperatures correspond to smaller wavelengths; thus blue stars are hotter than red stars. For
the Sun, the temperature of the photosphere is about 5777K, corresponding to a wavelength
λ∗ ≈ 502nm. Thus the maximum for radiation from the Sun is in the visible region, around
the color green.

Another case of the importance in which the radiation pressure and the λ∗ we calculated
are important is in the early history of the universe. Shortly after the Big Bang, the universe
was in a very hot phase with all particles having an average energy so high that their masses
could be neglected. The radiation pressure from all these particles, including the photon, is an
important ingredient in solving the Einstein equations for gravity to work out how the universe
was expanding. As the universe cooled by expansion, the unstable massive particles decayed
away, since there was not enough average energy in collisions to sustain the reverse process.
Photons continued to dominate the evolution of the universe. This phase of the universe is
referred to as the radiation dominated era.

Later, the universe cooled enough for electrons and nuclei to combine to form neutral
atoms, a phase known as the recombination era. Once this happened, since neutral particles
couple only weakly (through dipole and higher multipole moments) to radiation, the existing
radiation decoupled and continued to cool down independently of matter. This is the matter
dominated era in which we now live. The radiation obeyed the Planck spectrum at the time
of recombination, and apart from cooling would continue to do so in the expanding universe.
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Thus the existence of this background relic radiation is evidence for the Big Bang theory.
This cosmic microwave background radiation was predicted to be a consequence of the Big
Bang theory, by Gamow, Dicke and others in the 1940s. The temperature was estimated in
calculations by Alpher and Herman and by Gamow in the 1940s and 1950s. The radiation was
observed by Penzias and Wilson in 1964. The temperature of this background can be measured
in the same way as for stars, by comparing the maximum of the distribution with the formula
(8.44). It is found to be approximately 2.7K. (Actually this has been measured with great
accuracy by now, the latest value being 2.72548± 0.00057K.) The corresponding λ∗ is in the
microwave region, which is why this is called the cosmic microwave background.

8.3.2 Bose-Einstein condensation

We will now work out some features of an ideal gas of bosons with a conserved particle number;
in this case we do have a chemical potential. There are many atoms which are bosons and,
if we can neglect the interatomic forces as a first approximation, this discussion can apply to
gases made of such atoms. The partition function Z for a gas of bosons was given in (8.15).
Since logZ is related to pressure as in (7.73), this gives immediately

pV

kT
= logZ = −

∫
d3x d3p

(2π~)3
log
(

1− e−β(ε−µ)
)

= V

(
mkT

2π~2

) 3
2
[
z +

z2

25/2
+

z3

35/2
+ · · ·

]

= V

(
mkT

2π~2

) 3
2

Li 5
2
(z) (8.45)

where z = eβµ is the fugacity and Lis(z) denotes the polylogarithm defined by

Lis(z) =
∞∑

n=1

zn

ns
(8.46)

The total number of particles N is given by the normalization condition (8.12) and works out
to

N

V
=

(
mkT

2π~2

) 3
2
[
z +

z2

23/2
+

z3

33/2
+ · · ·

]

=

(
mkT

2π~2

) 3
2

Li 3
2
(z) =

1

λ3
Li 3

2
(z) (8.47)

We have defined the thermal wavelength λ by

λ =

√
2π~2

mkT
(8.48)

Apart from some numerical factors of order 1, this is the de Broglie wavelength for a particle
of energy kT .
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If we eliminate z in favor of N/V from this equation and use it in (8.45), we get the
equation of state for the ideal gas of bosons. For high temperatures, this can be done by
keeping the terms up to order z2 in the polylogarithms. This gives

p =
N

V
kT

[
1− N

V

λ3

25/2
+ · · ·

]
(8.49)

This equation shows that even the perfect gas of bosons does not follow the classical ideal gas
law. In fact, we may read off the second virial coefficient as

B2 = − λ3

25/2
(8.50)

The thermal wavelength is small for large T , so this correction is small at high temperatures,
which is why the ideal gas was a good approximation for many of the early experiments in
thermal physics. If we compare this with the second virial coeficient of a classical gas with
interatomic potential V (x) as given in (7.84), namely,

B2 =
1

2

∫
d3x

(
1− e−βV (x)

)
, (8.51)

we see that we can mimic (8.50) by an attractive (V (x) < 0) interatomic potential. Thus
bosons exhibit a tendency to cluster together.

We can now consider what happens when we lower the temperature. It is useful to calculate
a typical value of λ. Putting in the constants,

λ ≈
√(

300

T

)(mp

m

)
× 6.3× 10−10 meters (8.52)

(mp is the mass of the proton ≈ the mass of the hydrogen atom.) Thus for hydrogen at room
temperature, λ is of atomic size. Since V/N is approximately the free volume available to a
molecule, we find from (8.47) that z must be very small under normal conditions. The function
Li 3

2
(z) starts from zero at z = 0 and rises to about 2.61238 at z = 1, see Fig. 8.2. Beyond that,

even though the function can be defined by analytic continuation, it is imaginary. In fact there
is a branch cut from z = 1 to∞. Thus for z < 1, we can solve (8.47) for z in terms of N/V . As
the temperature is lowered, λ decreases and eventually we get to the point where z = 1. This
happens at a temperature

Tc =
1

k

(
N

V 2.61238

) 2
3
(

2π~2

m

)
(8.53)

If we lower the temperature further, it becomes impossible to satisfy (8.47). We can see the
problem at z = 1 more clearly by considering the partition function, where we separate the
contribution due to the zero energy state,

Z =
1

1− z
∏

p6=0

1

1− ze−βεp (8.54)
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We see that the partition function has a singularity at z = 1. This is indicative of a phase
transition. The system avoids the singularity by having a large number of particles making a
transition to the state of zero energy and momentum. Recall that the factor 1/(1− z) may be
viewed as

∑
n z

n, as a sum over different possible occupation numbers for the ground state.
The idea here is that, instead of various possible occupation numbers for the ground state,
what happens below Tc is that there is a certain occupation number for the ground state, say,
N0, so that the partition function should read

Z = zN0
∏

p 6=0

1

1− ze−βεp (8.55)

Thus, rather than having different probabilities for the occupation numbers for the ground
state, with correspondingly different probabilities as given by the Boltzmann factor, we have
a single multiparticle quantum state, with occupation number N0, for the ground state. The
normalization condition (8.47) is then changed to

N

V
=
N0

V
+

1

λ3
Li 3

2
(z) (8.56)

Below Tc, this equation is satisfied, with z = 1, and with N0 compensating for the second term
on the right hand side as λ increases. This means that a macroscopically large number of
particles have to be in the ground state. This is known as Bose-Einstein condensation. In terms
of Tc, we can rewrite (8.56) as

N0

V
=
N

V

[
1−

(
T

Tc

) 3
2

]
(8.57)

which gives the fraction of particles which are in the ground state.
Since z = 1 for temperatures below Tc, we have µ = 0. This is then reminiscent of the case

of photons where we do not have a conserved particle number. The proper treatment of this
condensation effect requires quantum field theory, using the concept of spontaneous symmetry
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Figure 8.2: The polylogarithm Li 3
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Figure 8.3: Qualitative behavior of the specific heat of a gas of bosons

breaking. In such a description, it will be seen that the particle number is still a conserved
operator but that the condensed state cannot be an eigenstate of the particle number.

There are many other properties of the condensation phenomenon we can calculate. Here
we will focus on just the specific heat. The internal energy for the gas is given by

U =

∫
d3xd3p

(2π~)3

ε

eβ(ε−µ) − 1

= V
3

2
kT

1

λ3
Li 5

2
(z) (8.58)

At high temperatures, z is small and Li5/2(z) ≈ z and (8.47) gives z/λ3 = N/V . Thus
U = 3

2NkT in agreement with the classical ideal gas. This gives Cv = (3/2)Nk.
For low temperatures below Tc, z = 1 and we can set Li5/2(z) = Li5/2(1) ≈ 1.3415. The

specific heat becomes

Cv = V k
15

4

Li 5
2
(1)

λ3
= N k

15

4

Li 5
2
(1)

Li 3
2
(1)

(
T

Tc

) 3
2

≈ 1.926N k

(
T

Tc

) 3
2

(8.59)

We see that the specific heat goes to zero at absolute zero, in agreement with the third law of
thermodynamics. It rises to a value which is somewhat above 3/2 at T = Tc. Above Tc, we
must solve for z in terms of N and substitute back into the formula for U . But qualitatively, we
can see that the specific heat has to decrease for T > Tc reaching the ideal gas value of 3/2 at
very high temperatures. A plot of the specific heat is shown in Fig. 8.3.

There are many examples of Bose-Einstein condensation by now. The formula for the
thermal wavelength (8.52) shows that smaller atomic masses will have larger λ and one may
expect them to undergo condensation at higher temperatures. While molecular hydrogen
(which is a boson) may seem to be the best candidate, it turns to a solid at around 14K. The
best candidate is thus liquid Helium. The atoms of the isotope He4 are bosons. Helium becomes
a liquid below 4.2K and it has a density of about 125 kg/m3 (under normal atmospheric
pressure) and if this value is used in the formula (8.53), we find Tc to be about 3K. What is
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remarkable is that liquid Helium undergoes a phase change at 2.17K. Below this temperature,
it becomes a superfluid, exhibiting essentially zero viscosity. (He3 atoms are fermions, there is
superfluidity here too, at a much lower temperature, and the mechanism is very different.)
This transition can be considered as an example of Bose-Einstein condensation. Helium is not
an ideal gas of bosons, interatomic forces (particularly a short range repulsion) are important
and this may explain the discrepancy in the value of Tc. The specific heat of liquid He4 is shown
in Fig. 8.4. There is a clear transition point, with the specific heat showing a discontinuity
in addition to the peaking at this point. Because of the similarity of the graph to the Greek
letter λ, this is often referred to as the λ-transition. The graph is very similar, in a broad
qualitative sense, to the behavior we found for Bose-Einstein condensation in Fig. 8.3; however,
the Bose-Einstein condensation in the noninteracting gas is a first order transition, while
the λ-transition is a second order transition, so there are differences with the Bose-Einstein
condensation of perfect gas of bosons.

The treatment of superfluid Helium along the lines we have used for a perfect gas is very
inadequate. A more sophisticated treatment has to take account of interatomic forces and
incorporate the idea of spontaneous symmetry breaking. By now, there is a fairly comprehensive
theory of liquid Helium.

Recently, Bose-Einstein condensation has been achieved in many other atomic systems such
as a gas of Rb87atoms, Na23 atoms, and a number of others, mostly alkaline and alkaline earth
elements.

8.3.3 Specific heats of solids

We now turn to the specific heats of solids, along the lines of work done by Einstein and Debye.
In a solid, atoms are not free to move around and hence we do not have the usual translational
degrees of freedom. Hence the natural question which arises is: When a solid is heated, what
are the degrees of freedom in which the energy which is supplied can be stored? As a first
approximation, atoms in a solid may be taken to be at the sites of a regular lattice. Interatomic
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forces keep each atom at its site, but some oscillation around the lattice site is possible. This is
the dynamics behind the elasticity of the material. These oscillations, called lattice vibrations,
constitute the degrees of freedom which can be excited by the supplied energy and are thus
the primary agents for the specific heat capacity of solids. In a conductor, translational motion
of electrons is also possible. There is thus an electronic contribution to the specific heat as well.
This will be taken up later; here we concentrate on the contribution from the lattice vibrations.
In an amorphous solid, a regular lattice structure is not obtained throughout the solid, but
domains with regular structure exist, and so, the elastic modes of interest are still present.

Turning to the details of the lattice vibrations, for N atoms on a lattice, we expect 3N

modes, since each atom can oscillate along any of the three dimensions. Since the atoms are
like beads on an elastic string, the oscillations can be transferred from one atom to the next and
so we get traveling waves. We may characterize these by a frequency ω and a wave number ~k.
The dispersion relation between ω and ~k can be obtained by solving the equations of motion
for N coupled particles. There are distinct modes corresponding to different ω-k relations; the
typical qualitative behavior is shown in Fig. 8.5. There are three acoustic modes for which
ω ≈ cs|~k|, for low |~k|, cs being the speed of sound in the material. The three polarizations
correspond to oscillations in the three possible directions. The long wavelength part of these
modes can also be obtained by solving for elastic waves (in terms of the elastic moduli) in
the continuum approximation to the lattice. They are basically sound waves, hence the name
acoustic modes. The highest value for |~k| is limited by the fact that we do not really have a
continuum; the shortest wavelength is of the order of the lattice spacing.

There are also the so-called optical modes for which ω 6= 0 for any ~k. The minimal energy
needed to excite these is typically in the range of 30-60meV or so; in terms of a photon
energy this corresponds to the infrared and visible optical frequencies, hence the name. Since
1 eV ≈ 104K, the optical modes are not important for the specific heat at low temperatures.

Just as electromagnetic waves, upon quantization, can be viewed as particles, the photons,
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the elastic waves in the solid can be described as particles in the quantum theory. These
particles are called phonons and obey the expected energy and momentum relations

E = ~ω, ~p = ~~k (8.60)

The relation between ω and ~k may be approximated for the two cases rather well by

ω ≈
{
cs |~k| (Acoustic)

ω0 (Optical)
(8.61)

where ω0 is a constant independent of ~k. If there are several optical modes, the corresponding
ω0’s may be different. Here we consider just one for simplicity. The polarizations correspond
to the three Cartesian axes and hence they transform as vectors under rotations; i.e., they have
spin = 1 and hence are bosons. The thermodynamics of these can now be worked out easily.

First consider the acoustic modes. The total internal energy due to these modes is

U = 3

∫
d3x d3k

(2π)3

~ω
eβ~ω − 1

(8.62)

The factor of 3 is for the three polarizations. For most of the region of integration which
contributes significantly, we are considering modes of wavelengths long compared to the lattice
spacing and so we can assume isotropy and carry out the angular integration. For high k, the
specific crystal structure and anisotropy will matter, but the corresponding ω’s are high and the
e−β~ω factor will diminish their contributions to the integral. Thus

U = V
3~

2π2 c3
s

∫ ωD

0
dω

ω3

eβ~ω − 1
(8.63)

Here ωD is the Debye frequency which is the highest frequency possible for the acoustic modes.
The value of this frequency will depend on the solid under consideration. We also define a
Debye temperature TD by ~ωD = kTD. We then find

U = 3

(
V

2π2~3c3
s

)
(kT )4

∫ TD/T

0
du

u3

eu − 1
(8.64)

For low temperatures TD/T is so large that one can effectively replace it by ∞ in a first
approximation to the integral. For high T � TD, we can expand the integrand in powers of u
to carry out the integration. This way we find

∫ TD/T

0
du

u3

eu − 1
=





π4

15 + O(e−TD/T ) T � TD

1
3

(
TD
T

)3
− 1

8

(
TD
T

)4
+ · · · T � TD

(8.65)

The internal energy for T � TD is thus

U =

(
V

2π2~3c3
s

)
π4(kT )4

5
+ O(e−TD/T ) (8.66)
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The specific heat at low temperatures is thus given by

Cv ≈
(

V

2π2~3c3
s

)
4 k

5
π4(kT )3 (8.67)

We can relate this to the total number of atoms in the material as follows. Recall that the total
number of vibrational modes for N atoms is 3N . Thus

3

∫ ωD d3x d3k

(2π)3
+ Total number of optical modes = 3N (8.68)

If we ignore the optical modes, we get
(

V

2π2c3
s

)
=

3N

ω3
D

(8.69)

This formula will hold even with optical modes if N is interpreted as the number of unit cells
rather than the number of atoms. In terms of N , we get, for T � TD,

U =
3Nkπ4

5

T 4

T 3
D

+O(e−TD/T )

Cv =
12Nkπ4

5

T 3

T 3
D

+O(e−TD/T ) (8.70)

The expression for Cv in (8.67) or (8.70) is the famous T 3 law for specific heats of solids
at low temperatures derived by Debye in 1912. There is a universality to it. The derivation
relies only on having modes with ω ∼ k at low k. There are always three such modes for any
elastic solid. These are the sound waves in the solid. (The existence of these modes can also
be understood from the point of view of spontaneous symmetry breaking, but that is another
matter.) The power 3 is of course related to the fact that we have three spatial dimensions. So
any elastic solid will exhibit this behavior for the contribution from the lattice vibrations. As
we shall see shortly, the optical modes will not alter this result. Some sample values of the
Debye temperature are given in Table 8.1. This will give an idea of when the low temperature
approximation is applicable.

Table 8.1: Some sample Debye temperatures

Solid TD in K Solid TD in K

Gold 170 Aluminum 428
Silver 215 Iron 470

Platinum 240 Silicon 645
Copper 343.5 Carbon 2230
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For T � TD, we find

U =

(
V

2π2c3
s

)[
kT (~ωD)3 − 3

8
(~ωD)4 +O(TD/T )

]

= 3N

[
kT − 3

8
~ωD +O(TD/T )

]
(8.71)

The specific heat is then given by

Cv = k

(
V

2π2c3
s

)
(~ωD)3 +O(1/T 2) = 3Nk +O(1/T 2) (8.72)

Turning to the optical modes, we note that the frequency ω is almost independent of k,
for the whole range of k. So it is a good approximation to consider just one frequency ω0, for
each optical mode. Let Nopt be the total number of degrees of freedom in the optical mode of
frequency ω0. Then the corresponding internal energy is given by

Uopt = Nopt
~ω0

eβ~ω0 − 1
(8.73)

The specific heat contribution is given by

(Cv)opt = Nk
(β~ω0)2

(eβ~ω0 − 1)(1− e−β~ω0)

≈ Nk

[
1− 1

12

(
~ω0

kT

)2

+ · · ·
]

for T � ~ω0

≈ Nk

(
~ω0

kT

)2

exp(−~ω0/kT ) for T � ~ω0 (8.74)

These results were derived by Einstein a few years before Debye’s work.
Both contributions to the specific heat, the acoustic contribution given by Debye’s T 3-law

and the optical contribution given in (8.74), vanish as T → 0. This is in accordance with the
third law of thermodynamics. We see once again how the quantum statistics leads to the third
law. Further, the optical contribution is exponentially small at low temperatures. Thus the
inclusion of the optical modes cannot invalidate Debye’s T 3-law. Notice that even if we include
the slight variation of ω with k, the low temperature value will be as given in (8.74) if ω0 is
interpreted as the the lowest possible value of ω.

8.4 Applications of the Fermi-Dirac distribution

We now consider some applications of the Fermi-Dirac distribution (8.22). It is useful to start
by examining the behavior of this function as the temperature goes to zero. This is given by

n −→
{

1 ε < µ

0 ε > µ
(8.75)
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Thus all states below a certain value, which is the zero-temperature value of the chemical
potential, are filled with one fermion each. All states above this value are empty. This is a
highly quantum state. The value of ε for the highest filled state is called the Fermi level. Given
the behavior (8.75) it is easy to calculate the Fermi level in terms of the number of particles.
Let pF correspond to the magnitude of the momentum of the highest filled level. Then

N = gs

∫ pF d3x d3p

(2π~)3
= gs V

p3
F

6π2~3
(8.76)

where gs is the number of polarizations for spin, gs = 2s+ 1. Denoting N/V = n̄, the Fermi
level is thus given by

εF =
p2

F

2m
=

~2

2m

(
6π2n̄

gs

)2/3

(8.77)

The ground state energy is given by

U = gs

∫ pF d3x d3p

(2π~)3

p2

2m

= V gs
p5

F

20π2m~3
=

3

10

~2

m

(
6π2

gs

)2/3
N5/3

V 2/3
(8.78)

= V
3

5
εF n̄ (8.79)

The pressure is then easily calculated as

p =
~2

5m

(
6π2

gs

)2/3

n̄5/3 (8.80)

(Since εF depends on n̄, it is easier to use (8.78) for this.) The multiparticle state here is said
to be highly degenerate as particles try to go to the single quantum state of the lowest energy
possible subject to the constraints of the exclusion principle. The pressure (8.80) is referred
to as the degeneracy pressure. Since fermions try to exclude each other, it is as if there is
some repulsion between them and this is the reason for this pressure. It is entirely quantum
mechanical in origin, due to the needed correlation between the electrons. As we will see, it
plays an important role in astrophysics.

The Fermi energy εF determines what temperatures can be considered as high or low. For
electrons in a metal, εF is of the order of eV , corresponding to temperatures around 104K.
Thus, for most of the physics considerations, electrons in a metal are at low temperatures.
For atomic gases, the Fermi level is much smaller due to the 1/m factor in (8.77), and room
temperature is high compared to εF. We will first consider the high temperature case, where
we expect small deviations from the classical physics.
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The expression for N , given by the normalization condition (8.23) is

n̄ =
N

V
= gs

∫
d3k

(2π)3

1

eβ(ε−µ) + 1
= gs

∫
d3k

(2π)3

ze−βε

1 + ze−βε

= gs
4

λ3
√
π

∫ ∞

0
duu2e−u

2
[
z − z2e−u

2
+ z3e−2u2 + · · ·

]

=
gs
λ3

(
−Li 3

2
(−z)

)
(8.81)

where λ is the thermal wavelength, defined as before, by λ =
√

2π~2/mkT . The partition
function Z, from (8.24), is given by

logZ = gs

∫
d3x d3p

(2π~)3
log
(

1 + e−β(ε−µ)
)

(8.82)

This being pV/kT , the equation of state is given by

p

kT
=

gs
V

∫
d3x d3p

(2π~)3
log
(

1 + e−β(ε−µ)
)

=
gs
λ3

(
−Li 5

2
(−z)

)
(8.83)

At low densities and high temperatures, we see from the power series expansion of the
polylogarithms that it is consistent to take z to be small. Keeping terms up to the quadratic
order in z, we get

z ≈ n̄λ3

gs
+

1

23/2

(
n̄λ3

gs

)2

+ · · ·

p

kT
= n̄

[
1 + n̄

λ3

gs 25/2
+ · · ·

]
(8.84)

So, as in the bosonic case, we are not far from the ideal gas law. The correction may be
identified in terms of the second virial coefficient as

B2 =
λ3

gs 25/2
(8.85)

This is positive; so, unlike the bosonic case, we would need a repulsive potential between
classical particles to mimic this effect via the classical expression (8.51) for B2.

8.4.1 Electrons in a metal

Consider a two-state system in quantum mechanics and, to begin with, we take the states to be
degenerate. Thus the Hamiltonian is just a diagonal 2× 2 matrix,

H0 =

(
E0 0

0 E0

)
(8.86)
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If we consider a perturbation to this system such that the Hamiltonian becomes

H = H0 + V = H0 +

(
0 v

v 0

)
=

(
E0 v

v E0

)
(8.87)

then the degeneracy between the two eigenstates of H0 is lifted and we have two eigenstates
with eigenvalues

E± = E0 ± v (8.88)

Now consider a system with N states, with the Hamiltonian as an N × N matrix. Starting
with all states degenerate, a perturbation would split the levels by an amount depending on
the perturbing term. We would still have N eigenstates, of different energies which will be
close to each other if the perturbation is not large. As N becomes very large, the eigenvalues
will be almost continuous; we get a band of states as the new eigenstates. This is basically
what happens in a solid. Consider N atoms on a lattice. The electronic states, for each
atom by itself, is identical to the electronic states of any other atom by itself. Thus we have
a Hamiltonian with a very large degeneracy for any of the atomic levels. The interatomic
forces act as a perturbation to these levels. The result is that, instead of each atomic level,
the solid has a band of energy levels corresponding to each unperturbed single-atom state.
Since typically N ∼ the Avogadro number, it is a very good approximation to treat the band
as having continuous energy eigenvalues between two fixed values. There are gaps between
different bands, reflecting the energy gaps in the single-atom case. Thus the structure of
electronic states in a solid is a series of well-separated bands with the energy levels within each
band so close together as to be practically continuous. Many of these eigenstates will have
wave functions localized around individual nuclei. These correspond to the original single-
atom energy states which are not perturbed very much by the neighboring atoms. Typically,
inner shell electrons in a multi-electron atom would reside in such states. However, for the
outer shell electrons, the perturbations can be significant enough that they can hop from one
atomic nucleus to a neighbor, to another neighbor and so on, giving essentially free electrons
subject to a periodic potential due to the nuclei. In fact, for the calculation of these bands,
it is a better approximation to start from free electrons in a periodic potential rather than
perturbing individual atomic states. These nonlocalized bands are crucial for the electrical
conductivity. The actual calculation of the band structure of a solid is a formidable problem,
but for understanding many physical phenomena, we only need the general structure.

Consider now a solid with the electronic states being a set of bands. We then consider
filling in these bands with the available electrons. Assume that the number of electrons is such
that a certain number of bands are completely filled, at zero temperature. Such a material is
an insulator, because if an electric field is applied, then the electrons cannot respond to the
field because of the exclusion principle, as there are no unoccupied states of nearby energy.
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Table 8.2: Some sample Fermi levels

Metal εF in eV Metal εF in eV

Gold 5.53 Aluminum 11.7
Silver 5.49 Iron 11.1

Copper 7.00 Zinc 9.47

The only available unoccupied states are in the next higher band separated by an energy gap.
As a result the electrical conductivity is zero. If the field is strong enough to overcome the gap,
then, of course, there can be conduction; this amounts to a dielectric breakdown.

However, when all the available electrons have been assigned to states, if there is a band of
nonlocalized states which is not entirely filled, it would mean that there are unoccupied states
very close to the occupied ones. Electrons can move into these when an electric field is applied,
even if the amount of energy given by the potential is very small. This will lead to nonzero
electrical conductivity. This is the case for conductors; they have bands which are not fully
filled. Such bands are called conducting bands, while the filled ones are called valence bands.

The nonlocalized states of the conducting band can be labeled by the electron momentum
~k with energy ε(k). The latter is, in general, not a simple function like ~2k2/2m, because of
interactions with the lattice of atoms and between electrons. In general it is not isotropic
either but will depend on the crystalline symmetry of the lattice. But for most metals, we can
approximate it by the simple form

ε =
~2k2

2m∗
(8.89)

The effect of interactions can be absorbed into an effective electron mass m∗. (Showing that
this can actually be done is a fairly complicated task; it goes by the name of fermi liquid
theory, originally guessed, with supporting arguments, by Landau and proved to some extent
by Migdal, Luttinger and others. We will not consider it here.) At zero temperature, when we
have a partially filled band, the highest occupied energy level within the band is the Fermi
level εF. The value of εF can be calculated from (8.77), knowing n̄, the number of electrons
(not bound to sites); this is shown in Table 8.2. Since 1 eV is of the order 104K in terms of
temperature, we see that, for phenomena at normal temperatures, we must consider the low
temperature regime of the Fermi-Dirac distribution. The fugacity z = eβµ is very large and we
need a large fugacity asymptotic expansion for various averages. This is done using a method
due to Sommerfeld.
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Consider the expression for n̄ from (8.81), which we can write as

n̄ = gs

∫
d3k

(2π)3

1

eβ(ε−µ) + 1

=
gs
λ3

4√
π

∫ ∞

0
du

u2

eu2−βµ + 1
=
gs
λ3

2√
π

∫ ∞

0
dw

√
w

ew−βµ + 1
(8.90)

where u = k
√
~2/2mkT and w = u2. The idea is to change the variable of integration to

w − βµ. The lower limit of integration will then be −βµ, which may be replaced by −∞ as a
first approximation. But in doing so, we need to ensure that the integrand vanishes at −∞.
For this one needs to do a partial integration first. Explicitly, we rewrite (8.90) as

n̄λ3

gs
=

4

3
√
π

∫ ∞

−βµ
dw

(w + βµ)3/2

(ew + 1)(e−w + 1)

=
4

3
√
π

∫ ∞

−∞
dw

(w + βµ)3/2

(ew + 1)(e−w + 1)
+ O(e−βµ) (8.91)

In the first line we have done a partial integration of the expression from (8.90); in the second
line we replaced the lower limit by −∞. The discrepancy in doing this is at least of order
e−βµ due to the e−w in the denominator of the integrand. This is why we needed a partial
integration. We can now expand (w + βµ)3/2 in powers of w; the contribution from large
values of |w| will be small because the denominator ensures the integrand is sharply peaked
around w = 0. Odd powers of w give zero since integrand would be odd under w → −w. Thus
∫ ∞

−∞
dw

(w + βµ)3/2

(ew + 1)(e−w + 1)
=

∫ ∞

−∞

dw

(ew + 1)(e−w + 1)

[
(βµ)3/2 + +

3

8
(βµ)−1/2w2 + · · ·

]

= (βµ)3/2 + (βµ)−1/2 π
2

8
+ · · · (8.92)

This gives us the equation for µ as

n̄λ3 3
√
π

4 gs
= (βµ)3/2 +

π2

8
(βµ)−1/2 + · · · (8.93)

By writing µ = µ0 + µ1 + · · · , we can solve this to first order as

βµ ≈ βεF
[

1− π2

12

(
kT

εF

)2

+ · · ·
]

(8.94)

where we have used the expression for εF in terms of n̄. As expected, the value of µ at zero
temperature is εF. Turning to the internal energy, by a similar procedure, we find

U

V
= gskT

4

5
√
π

∫ ∞

−∞
dw

(w + βµ)5/2

(ew + 1)(e−w + 1)
+O(e−βµ)

= gskT
4

5
√
π

[
(βµ)5/2 +

5π2

8
(βµ)1/2 + · · ·

]
(8.95)
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Using the result (8.94) for µ, this becomes

U

V
=

3

5
εF n̄

[
1 +

5π2

12

(
kT

εF

)2

+ · · ·
]

(8.96)

The most interesting result of this calculation is that there is an electronic contribution to the
specific heat which, at low temperatures, is given by

Cv = Nk
π2

2

kT

εF
+O(T 3) (8.97)

As expected from the third law, this too vanishes as T → 0.

8.4.2 White dwarf stars

A gas of fermions which is degenerate is also important in many other physical phenomena,
including astrophysics. Here we will briefly consider its role in white dwarf stars.

The absolute magnitude of a star which is proportional to its luminosity or total output
of energy per unit time is related to its spectral characteristic , which is in turn related to the
temperature of its photosphere. Thus a plot of luminosity versus spectral classification, known
as a Hertsprung-Russell diagram, is a useful guide to classifying stars. Generally, bluer stars or
hotter stars have a higher luminosity compared to stars in the red part of the spectrum. They
roughly fall into a fairly well defined curve. Stars in this category are called main sequence
stars. Our own star, the Sun, is a main sequence star. There are two main exceptions, white
dwarfs which tend to have low luminosity even though they are white and red giants which
have a higher luminosity than expected for the red part of the spectrum. White dwarfs have
lower luminosity because they have basically run of hydrogen for fusion and usually are not
massive enough to pass the threshold for fusion of higher nuclei. They are thus mostly made
of helium. The radiation is primarily from gravitational contraction. (Red giants are rather
low mass stars which have exhausted the hydrogen in their cores. But then the cores contract,
hydrogen from outer layers get pulled in somewhat and compressed enough to sustain fusion
outside the core. Because the star has a large radius, the total output is very high even though
the photosphere is not very hot, only around 4000K.)

Returning to white dwarfs, what keeps them from completely collapsing is the degeneracy
pressure due to electrons. The stars are hot enough for most of the helium to be ionized and
so there is a gas of electrons. The Fermi level is around 20MeV or so, while the temperature
in the core is of the order of 107K ∼ 103 eV . Thus the electron gas is degenerate and the
pressure due to this is important in maintaining equilibrium. Electron mass being ∼ 0.5MeV ,
the gas is relativistic. If we use the extreme relativistic formula, the energy-momentum relation
is

ε ∼ c |~p| (8.98)
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Calculating the Fermi level and energy density, we find

N

V
≡ n̄ = gs

∫ kF

0

d3k

(2π)3
= gs

k3
F

6π2

U

V
= gs~c

∫ kF

0

d3k

(2π)3
k =

gs~c
8π2

(
6π2n̄

gs

)4/3

≡ K n̄4/3

p =
K

3
n̄4/3 (8.99)

For the condition for hydrostatic equilibrium, consider a spherical shell of material in the
star, of thickness dr at a radius r from the center. If the density (which is a function of the
radius) is ρ(r), then the mass of this shell is ρ 4πr2dr. The attractive force pulling this towards
the center is −(Gmρ/r2) 4πr2dr, where m(r) is the mass enclosed inside the sphere of radius
r. The pressure difference between the inside and outside of the shell under consideration is
p(r)− p(r + dr), with an outward force (dp/dr)4πr2dr Thus equilibrium requires

dp

dr
= −Gmρ

r2
(8.100)

Further, the mass enclosed can be written as

m(r) =

∫ r

0
dr 4πr2 ρ (8.101)

These two equations, along with the equation of state, gives a second order equation for ρ(r).
The radius R of the star is defined by p(R) = 0.

What contributes to the pressure? This is the key issue in solving these equations. For a
main sequence star which is still burning hydrogen, the kinetic pressure (due to the random
movements of the material particles) and the radiation pressure contribute. For a white dwarf,
it is basically the degeneracy pressure. Thus we must solve these equations, using the pressure
from (8.99). The result is then striking. If the mass of the star is beyond a certain value, then
the electron degeneracy pressure is not enough to counterbalance it, and hence the star cannot
continue as a white dwarf. This upper limit on the mass of a white dwarf is approximately 1.4

times the mass of the Sun. This limit is known as the Chandrasekhar limit.
What happens to white dwarfs with higher masses? They can collapse and ignite other

fusion processes, usually resulting in a supernova. They could end up as a neutron star, where
the electrons, despite the degeneracy pressure, have been squeezed to a point where they
combine with the protons and we get a star made of neutrons. This (very dense) star is
held up by neutron degeneracy pressure. (The remnant from the Crab Nebula supernova
explosion is such a neutron star.) There is an upper limit to the mass of neutron stars as
well, by reasoning very similar to what led to the Chandrasekhar limit; this is known as the
Tolman-Oppenheimer-Volkov limit. What happens for higher masses? They may become quark
stars, and for even higher masses, beyond the stability limit of quark stars, they may completely
collapse to form a black hole.
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8.4.3 Diamagnetism and paramagnetism

Diamagnetism and paramagnetism refer to the response of a material system to an external
magnetic field Bi. To quantify this, we look at the internal energy Uof the material, considered
as a function of the magnetic field. The magnetization Mi of the material is then defined by

Mi =
1

V

(
− ∂U
∂Bi

)

S,V,N

(8.102)

The magnetization is the average magnetic dipole moment (per unit volume) which the
material develops in response to the field and, in general, is itself a function of the field Bi. For
ferromagnetic materials, the magnetization can be nonzero even when we turn off the external
field, but for other materials, for small values of the field, we can expect a series expansion in
powers of Bi, so that

Mi = χij Bj +O(B2) (8.103)

χij is the magnetic susceptibility of the material. In cases where the linear approximation
(8.103) is not adequate, we define

χij =

(
∂Mi

∂Bj

)
= − 1

V

(
∂2U

∂Bi ∂Bj

)

S,V,N

(8.104)

In general χij is a tensor, but for materials which are isotropic to a good approximation, we
can take χij = χ δij , defining a scalar susceptibility χ. Materials for which χ < 0 are said to be
diamagnetic while materials for which χ > 0 are said to be paramagnetic. The field ~H, which
appears in the Maxwell equation which has the free current ~J as the source, is related to the
field ~B by ~H = ~B(1− χ) = ~B/µ; µ is the magnetic permeability.

Regarding magnetization and susceptibility, there is a theorem which is very simple but
deep in its implications. It is originally due to Niels Bohr and later rediscovered by H.J. van
Leeuwen. The theorem can be rephrased as follows.

Theorem 8.4.1 — Bohr-van Leeuwen theorem. The equilibrium partition function of a system
of charged particles obeying classical statistics in an external magnetic field is independent
of the magnetic field.

It is very easy to prove this theorem. Consider the Hamiltonian of a system of N charged
particles in an external magnetic field. It is given by

H =

N∑

α=1

(pαi − qαAi(xαi) )2

2mα
+ V (x) (8.105)

where α refers to the particle, i = 1, 2, 3, as usual, and V is the potential energy. It could
include the electrostatic potential energy for the particles as well as the contribution from
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any other source. Ai(xαi) is the vector potential which is evaluated at the position of the α-th
particle. The classical canonical partition function is given by

QN =
1

N !

∫ ∏

α

d3xα d
3pα

(2π~)3
e−βH (8.106)

The strategy is to change the variables of integration to

Παi = pαi − qαAi(xαi) (8.107)

The Hamiltonian becomes

H =
N∑

α=1

Παi Παi

2mα
+ V (x) (8.108)

Although this eliminates the external potential Ai from the Hamiltonian, we have to be careful
about the Jacobian of the transformation. But in this case, we can see that the Jacobian is 1.
For the phase space variables of one particle, we find

(
dΠi

dxi

)
=

[
δij −q ∂Ai∂xj

0 δij

] (
dpj

dxj

)
(8.109)

The determinant of the matrix in this equation is easily verified to be the identity and the
argument generalizes to N particles. Hence

QN =
1

N !

∫ ∏

α

d3xα d
3Πα

(2π~)3
e−βH({Π,x}) (8.110)

We see that Ai has disappeared from the integral, proving the theorem. Notice that any mutual
binding of the particles via electrostatic interactions, which is contained in V (x), does not
change this conclusion. The argument extends to the grand canonical partition since it is∑

n z
nQN .

R For the cognoscenti, what we are saying is that one can describe the dynamics of charged
particles in a magnetic field in two ways. We can use the Hamiltonian (8.105) with the
symplectic form ω = dpi∧dxi or one can use the Hamiltonian (8.108) with the symplectic
form Ω = dΠi ∧dxi + q

∂Aj

∂xi
dxi ∧dxj . The equations of motion will be identical. But in the

second form, the Hamiltonian does not involve the vector potential. The phase volume
defined by Ω is also independent of Ai. Thus the partition function is independent of Ai.

This theorem shows that the explanation for diamagnetism and paramagnetism must come
from the quantum theory. We will consider these briefly, starting with diamagnetism. The
full treatment for an actual material has to take account of the proper wave functions of the
charged particles involved, for both the localized states and the extended states. We will



8.4 Applications of the Fermi-Dirac distribution 101

consider a gas of charged particles, each of charge e and mass m, for simplicity. We take the
magnetic field to be along the third axis. The energy eigenstates of a charged particle in an
external uniform magnetic field are the so-called Landau levels, and these are labeled by p, k, λ.
The energy eigenvalues are

Ek,p =
p2

2m
+ ~ω (k + 1

2), k = 0, 1, · · · (8.111)

where ω = eB/m. p is the momentum along the third axis and k labels the Landau level. Each
of these levels has a degeneracy equal to

Degeneracy =
eB

(2π~)
×Area of sample (8.112)

The states with the same energy eigenvalue are labeled by λ. The particles are fermions
(electrons) and hence the occupation number of each state can be zero or one. Thus the
partition function Z is given by

logZ =
∑

λ,k,p

log
(

1 + e−βEk,p+βµ
)

=

∫
d2x

eB

(2π~)

dp dx3

(2π~)

∑

k

log
(

1 + z e−βEk,p
)

(8.113)

where z is the fugacity as usual. For high temperatures, we can consider a small z-expansion.
Retaining only the leading term,

logZ = V
eB

(2π~)2
(2πmkT )

1
2 z

e−x/2

1− e−x + · · · , x =
~ω
kT

(8.114)

For high temperatures, we can also use a small x-expansion,

e−x/2

1− e−x ≈
1

x

(
1− x2

24
+ · · ·

)
(8.115)

This leads to

logZ = V

(
2πmkT

(2π~)2

) 3
2

z

(
1− x2

24
+ · · ·

)
(8.116)

The definition (8.102) is equivalent to dU = TdS−pdV +µdN−MV dB. From pV = kT logZ,
we have G− F = µN − F = kT logZ, so that

d(kT logZ) = dG− dF = Ndµ+ SdT + pdV +MV dB (8.117)

which shows that

M =
kT

V

(
∂ logZ

∂B

)

T,V,µ

=
kT

V

(
∂ logZ

∂B

)

T,V,z

(8.118)
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Using (8.102), (8.118), we see that

M =

(
2πmkT

(2π~)2

) 3
2

z

[
− 1

12

(
e~
m

)2 B

kT
+ · · ·

]
(8.119)

Further, the average particle number is given by

N ≡ z
(
∂ logZ

∂z

)

T,V,B

= V

(
2πmkT

(2π~)2

) 3
2

z

(
1− x2

24
+ · · ·

)
(8.120)

Using this to eliminate z, we find from (8.119),

M =
N

V

[
− 1

12

(
e~
m

)2 B

kT
+ · · ·

](
1− x2

24

)−1

≈ N

V

[
− 1

12

(
e~
m

)2 B

kT

]
(8.121)

The diamagnetic susceptibility is thus

χ ≈ −N
V

(
e~
m

)2 1

12 kT
(8.122)

Although the quantum mechanical formula for the energy levels is important in this derivation,
we have not really used the Fermi-Dirac distribution, since only the high temperature case
was considered. At low temperatures, the Fermi-Dirac distribution will be important. The
problem also becomes closely tied in with the quantum Hall effect, which is somewhat outside
the scope of what we want to discuss here. So we will not consider the low temperature case
for diamagnetism here. Instead we shall turn to a discussion of paramagnetism.

Paramagnetism can arise for the spin magnetic moment of the electron. Thus this is also
very much a quantum effect. The Hamiltonian for a charged point particle including the
spin-magnetic field coupling is

H =
(p− eA)2

2m
− e

2m
γ ~S · ~B (8.123)

Here ~S is the spin vector and γ is the gyromagnetic ratio. For the electron ~S = ~
2~σ, ~σ being

the Pauli matrices, and γ is very close to 2; we will take γ = 2. Since we want to show how a
positive χ can arise from the spin magnetic moment, we will, for this argument, ignore the
vector potential A in the first term of the Hamiltonian. The energy eigenvalues are thus

Ep,± =
p2

2m
∓ µ0B, µ0 =

e~
2m

(8.124)

The partition function Z is thus given by

logZ =

∫
d3xd3p

(2π~)3

[
log

(
1 + z+e

−βp
2

2m

)
+ log

(
1 + z−e

−βp
2

2m

)]
(8.125)
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where z± = exp(βµ±) with

µ± = µ± µ0B (8.126)

From logZ, we get

M =
1

V
(kT )

(
∂ logZ

∂B

)

z

= µ0(n+ − n−)

n± =

∫
d3p

(2π~)3

1

eβ( p
2

2m
−µ±) + 1

(8.127)

By taking z(∂ logZ/∂z), we see that the number density of electrons for both spin states
together is n = n+ + n−. For high temperatures, we can approximate the integral in (8.127)
by

n± ≈
∫

d3p

(2π~)3
e−β

p2

2m eβµ± =

[
2πmkT

(2π~)2

] 3
2

eβµ± (8.128)

Using this, the magnetization becomes,

M = µ0 n tanh

(
µ0B

kT

)

≈ µ2
0n

kT
B, for µ0B � kT (8.129)

The susceptibility at high temperatures is thus given as

χ =
µ2

0 n

kT
(8.130)

Turning to low temperatures, notice that we have already obtained the required expansion
for the integral in (8.127); this is what we have done following (8.90), so we can use the
formula (8.94) for µ, along with (8.77) for the Fermi level in terms of n̄, applied in the present
case to µ± separately. Thus

µ± = εF(n±)

[
1− π2

12

(
kT

εF(n±)

)2

+ · · ·
]

εF(n±) =
~2

2m
(6π2n±)

2
3 (8.131)

Defining ∆ = n+ − n−, we can write

εF(n±) = εF(n)
]
n=(1±∆/n)

, εF =
~2

2m
(3π2n)

2
3 (8.132)

The fact that µ+ − µ− = 2µ0B from (8.126) now can be written as

2µ0B = εF

[
(1 + ∆/n)

2
3 − (1−∆/n)

2
3

]
− π2

12

(
kT

εF

)2
[

1

(1 + ∆/n)
2
3

− 1

(1−∆/n)
2
3

]
+ · · ·
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(8.133)

After solving this for ∆/n , we can get the magnetization as M = µ0∆ or χ = µ0∆/B. Since
∆ = 0 for B = 0, to linear order in the magnetic field, we find

∆

n
=

3

2

µ0B

εF

[
1− π2

12

(
kT

εF

)2

+ · · ·
]

(8.134)

The susceptibility at low temperatures is then

χ =
3

2

µ2
0 n

εF

[
1− π2

12

(
kT

εF

)2

+ · · ·
]

(8.135)

The susceptibility from spin magnetic moment shows paramagnetic bahavior both at high and
low temperatures, as seen from (8.130) and (8.135).



9. The Carathéodory principle

The formulation of the second law from thermodynamics used the concept of heat engines,
at least indirectly. But the law is very general and one could ask whether there is another
formulation which does not invoke heat engines, but leads to the notion of absolute temperature
and the principle that entropy cannot spontaneously decrease. Such a version of the second
law is obtained in an axiomatization of thermodynamics due to C. Carathéodory.

9.1 Mathematical Preliminaries

We will start with a theorem on differential forms which is needed to formulate Carathéodory’s
version of the second law.

Before proving Carathéodory’s theorem, we will need the following result.

Theorem 9.1.1 — Integrating factor theorem. Let A = Aidx
i denote a differential one-form.

If A ∧ dA = 0, then at least locally, one can find an integrating factor for A; i.e., there exist
functions τ and φ such that A = τ dφ.

The proof of this result is most easily done inductively in the dimension of the space. First
we consider the two-dimensional case, so that i = 1, 2. In this case the condition A ∧ dA = 0 is
vacuous. Write A = A1dx

1 +A2dx
2. We make a coordinate transformation to λ, φ where

dx1

dλ
= −f(x1, x2)A2

dx2

dλ
= f(x1, x2)A1 (9.1)

where f(x1, x2) is an arbitrary function which can be chosen in any convenient way. This
equation shows that

A1
∂x1

∂λ
+A2

∂x2

∂λ
= 0 (9.2)



106 Chapter 9. The Carathéodory principle

Equations (9.1) define a set of nonintersecting trajectories, λ being the parameter along the
trajectory. We choose φ as the coordinate on transverse sections of the flow generated by (9.1).
Making the coordinate transformation from x1, x2 to λ, φ, we can now write the one-form A as

A =

(
A1
∂x1

∂λ
+A2

∂x2

∂λ

)
dλ+

(
A1
∂x1

∂φ
+A2

∂x2

∂φ

)
dφ

= τ dφ (9.3)

τ = Ai
∂xi

∂φ

This proves the theorem for two dimensions. In three dimensions, we have

A = A1dx
1 +A2dx

2 +A3dx
3 (9.4)

The strategy is to start by determining τ , φ for the A1, A2 subsystem. We choose the new
coordinates as λ, φ, x3 and impose (9.1). Solving these, we will find x1 and x2 as functions of
λ and x3. The trajectories will also depend on the staring points which may be taken as points
on the transverse section and hence labeled by φ. Thus we get

x1 = x1(λ, φ, x3), x2 = x2(λ, φ, x3) (9.5)

The one-form A in (9.4) now becomes

A =

(
A1
∂x1

∂λ
+A2

∂x2

∂λ

)
dλ+

(
A1
∂x1

∂φ
+A2

∂x2

∂φ

)
dφ

+A3dx
3 +

(
A1
∂x1

∂x3
+A2

∂x2

∂x3

)
dx3

= τ dφ+ Ã3dx
3 (9.6)

Ã3 = A3 +

(
A1
∂x1

∂x3
+A2

∂x2

∂x3

)

We now consider imposing the equations A ∧ dA = 0,

A ∧ dA =
[
Ã3(∂λAφ − ∂φAλ) +Aλ(∂φÃ3 − ∂3Aφ) +Aφ(∂3Aλ − ∂λÃ3)

]
dx3 ∧ dλ ∧ dφ

= 0 (9.7)

Since Aλ = 0 and Aφ = τ from (9.6), this equation becomes

Ã3
∂τ

∂λ
− τ ∂Ã3

∂λ
= 0 (9.8)

Writing Ã3 = τ h, this becomes

τ2 ∂h

∂λ
= 0 (9.9)

Since τ is not identically zero for us, we get ∂h/∂λ = 0 and, going back to (9.6), we can write

A = τ
[
dφ+ h(φ, x3) dx3

]
(9.10)
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The quantity in the square brackets is a one-form on the two-dimensional space defined by
φ, x3. For this we can use the two-dimensional result and write it as τ̃ dφ̃, so that

A = ττ
[
dφ+ h(φ, x3) dx3

]
= τ τ̃dφ̃ ≡ T dφ̃ (9.11)

T = τ τ̃ . This proves the theorem for the three-dimensional case.
The extension to four dimensions follows a similar pattern. The solutions to (9.1) become

x1 = x1(λ, φ, x3, x4), x2 = x2(λ, φ, x3, x4) (9.12)

so that we can bring A to the form

A =

(
A1
∂x1

∂φ
+A2

∂x2

∂φ

)
dφ+

(
A3 +A1

∂x1

∂x3
+A2

∂x2

∂x3

)
dx3

+

(
A4 +A1

∂x1

∂x4
+A2

∂x2

∂x4

)
dx4

= τ dφ+ Ã3dx
3 + Ã4dx

4 (9.13)

We now turn to imposing the condition A ∧ dA = 0. In local coordinates this becomes

Aα(∂µAν − ∂νAµ) +Aµ(∂νAα − ∂αAν) +Aν(∂αAµ − ∂µAα) = 0 (9.14)

There are four independent conditions here corresponding to (α, µ, ν) = (1, 2, 3), (4, 1, 2),

(3, 4, 1), (3, 2, 4). Using Aλ = 0 and Aφ = τ , these four equations become

Ã3
∂τ

∂λ
− τ ∂Ã3

∂λ
= 0 (9.15)

Ã4
∂τ

∂λ
− τ ∂Ã4

∂λ
= 0 (9.16)

Ã4
∂Ã3

∂λ
− Ã3

∂Ã4

∂λ
= 0 (9.17)

Ã3
∂Ã4

∂φ
− Ã4

∂Ã3

∂φ
+ τ

∂Ã3

∂x4
− Ã3

∂τ

∂x4
+ Ã4

∂τ

∂x3
− τ ∂Ã4

∂x3
= 0 (9.18)

Again, we introduce h and g by Ã3 = τ h, Ã4 = τ g. Then equations (9.15) and (9.16) become

∂h

∂λ
= 0,

∂g

∂λ
= 0 (9.19)

Equation (9.17) is then identically satisfied. The last equation, namely, (9.18), simplifies to

h
∂g

∂φ
− g ∂h

∂φ
+

∂h

∂x4
− ∂g

∂x3
= 0 (9.20)

Using these results (9.13) becomes

A = τ
[
dφ+ hdx3 + gdx4

]
(9.21)
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The quantity in the square brackets is a one-form on the three-dimensional space of φ, x3, x4

and we can use the previous result for an integrating factor for this. The condition for the
existence of an integrating factor for dφ + hdx3 + gdx4 is precisely (9.20). Thus if we have
(9.20), we can write dφ+ hdx3 + gdx4 as tds for some functions t and s, so that finally A takes
the form A = T dS. Thus the theorem is proved for four dimensions. The procedure can be
extended to higher dimensions recursively, establishing the theorem for all dimensions.

Now we turn to the basic theorem needed for the Carathéodory formulation. Consider an
n-dimensional manifold M with a one-form A on it. A solution curve to A is defined by A = 0

along the curve. Explicitly, the curve may be taken as given by a set of function xi = ξi(t)

where t is the parameter along the curve and

Ai
dxi

dt
= Ai ξ̇

i = 0 (9.22)

In other words, the tangent vector to the curve is orthogonal to Ai. The curve therefore
lies on an (n − 1)-dimensional surface. Two points, say, P and P ′ on M are said to be A-
accessible if there is a solution curve which contains P and P ′. Carathéodory’s theorem is the
following:

Theorem 9.1.2 — Carathéodory’s theorem. If in the neighborhood of a point P there are
A-inaccessible points, then A admits an integrating factor; i.e., A = T dS where T and S
are well defined functions in the neighborhood.

The proof of the theorem involves a reductio ad absurdum argument which constructs paths
connecting P to any other point in the neighborhood. (This proof is due to H.A. Buchdahl,
Proc. Camb. Phil. Soc. 76, 529 (1979).) For this, define

Cijk = Ai(∂jAk − ∂kAj) +Ak(∂iAj − ∂jAi) +Aj(∂kAi − ∂iAk) (9.23)

Now consider a point P ′ near P . We have a displacement vector εηi for the coordinates of P ′

(from P ). ηi can in general have a component along Ai and some components orthogonal to
Ai.The idea is to solve for these from the equation A = 0. Let ξi(t) be a path which begins
and ends at P , i.e., ξi(0) = ξi(1) = 0, 0 ≤ t ≤ 1, and which is orthogonal to Ai. Thus it is
a solution curve. Any closed curve starting at P and lying in the (n − 1)-dimensional space
orthogonal to Ai can be chosen. Consider now a nearby path given by xi(t) = ξi(t) + εηi(t).
This will also be a solution curve if AI(ξ + εη)(ξ̇ + εη̇)i = 0. Expanding to first order in ε, this
is equivalent to

Aiη̇
i + ξ̇i

(
∂Ai
∂xj

)
ηj = 0 (9.24)

where we also used Aiξ̇
i = 0. We may choose ξ̇i to be of the form ξ̇i = f ijAj where f ij is

antisymmetric, to be consistent with Aiξ̇i = 0. We can find quantities f ij such that this is true;
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in any case, it is sufficient to show one path which makes P ′ accessible. So we may consider
ξ̇i’s of this form. Thus (9.24) becomes

Aiη̇
i + ηj (∂jAi)f

ikAk = 0 (9.25)

This is one equation for the n components of the displacement ηi. We can choose the n − 1

components of ηi which are orthogonal to Ai as we like and view this equation as determining
the remaining component, the one along Ai. So we rewrite this equation as an equation for
Aiη

i as follows.

d

dt
(Aiη

i) = Ȧiη
i +Aiη̇

i

= (∂jAi)ξ̇
jηi − ηj(∂jAi)f ikAk

= −ηif jk(∂iAj − ∂jAi)Ak
= −1

2
ηif jk [Ak(∂iAj − ∂jAi) +Aj(∂kAi − ∂iAk) +Ai(∂jAk − ∂kAj)]

+
1

2
(A · η)f jk(∂jAk − ∂kAj)

= −1

2
ηif jkCkij +

1

2
(A · η)f ij(∂iAj − ∂jAi) (9.26)

This can be rewritten as

d

dt
(A · η)− F (A · η) = −1

2
(Ckijη

if jk) (9.27)

where F = 1
2f

ij(∂iAj − ∂jAi). The important point is that we can choose f ij , along with a
coordinate transformation if needed, such that Ckijf jk has no component along Ai. For this,
notice that

Cijkf
jkAi =

[
A2Fij −AiAkFkj +AjAkFki

]
f ij (9.28)

where Fij = ∂iAj − ∂jAi. There are 1
2n(n − 1) components for f ij , for which we have one

equation if we set Cijkf jkAi to zero. We can always find a solution; in fact, there are many
solutions. Making this choice, Cijkf jk has no component along Ai, so the components of η
on the right hand side of (9.27) are orthogonal to Ai. As mentioned earlier, there is a lot of
freedom in how these components of η are chosen. Once they are chosen, we can integrate
(9.27) to get A · η, the component along Ai. Integrating (9.27), we get

A · η(1) =

∫ 1

0
dt exp

(∫ 1

t
dt′F (t′)

) (
1
2Cijkη

if jk
)

(9.29)

We have chosen η(0) = 0. It is important that the right hand side of (9.27) does not involve
A · η for us to be able to integrate like this. We choose all components of ηi orthogonal to Ai
to be such that

ε ηi = coordinates of P ′ orthogonal to Ai (9.30)
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We then choose f jk, if needed by scaling it, such that A · η(1) in (9.30) gives Ai(xP ′ − xP )i.
We have thus shown that we can always access P ′ along a solution curve. The only case where
the argument would fail is when Cijk = 0. In this case, A · η(1) as calculated is zero and we
have no guarantee of matching the component of the displacement of P ′ along the direction
of Ai. Thus if there are inaccessible points in the neighborhood of P , then we must have
Cijk = 0. In this case, by the previous theorem, A admits an integrating factor and we can
write A = T dS for some functions T and S in the neighborhood of P . This completes the
proof of the Carathéodory theorem.

9.2 Carathéodory statement of the second law

The statement of the second law due to Carathéodory is:

Carathéodory Principle: In the neighborhood of any equilibrium state of a physical
system with any number of thermodynamic coordinates, there exist states which
are inaccessible by adiabatic processes.

The adiabatic processes can be quite general, not necessarily quasi-static. It is easy to see
that this leads immediately to the notion of absolute temperature and entropy. This has been
discussed in a concise and elegant manner in Chandrasekhar’s book on stellar structure. We
briefly repeat his argument for completeness. For simplicity, consider a gas characterized by
pressure p and volume V , and (empirical) temperature t, only two of which are adequate to
specify the thermodynamic state, the third being given by an equation of state. Since these are
the only variables, dQ has an integrating factor and we may write

dQ = τ dσ (9.31)

where σ and τ will be functions of the variables p, V , t. The power of Carathéodory’s
formulation becomes clear when we consider two such systems brought into thermal contact
and come to equilibrium. We then have a common temperature t and the thermodynamic
variables can now be taken as V1, V2, t (or t and one variable from each of (p1, V1), (p2, V2)).
We also have dQ = dQ1 + dQ2. The number of variables is now three; nevertheless, the
Carathéodory principle tells us that we can write

τ dσ = τ1 dσ1 + τ2 dσ2 (9.32)

We now choose t, σ1, σ2 as the independent variables. Equation (9.32) then leads to

∂σ

∂σ1
=
τ1

τ
,

∂σ

∂σ2
=
τ2

τ
,

∂σ

∂t
= 0 (9.33)

The last of these equations tells us that σ is only a function of σ1 and σ2, σ = σ(σ1, σ2). Further,
since σ is a well-defined function of the various variables, derivatives on σ commute and so

∂

∂t

∂σ

∂σ1
− ∂

∂σ1

∂σ

∂t
= 0 (9.34)
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with a similar relation for derivatives with respect to σ2 as well. Thus we have the result

∂

∂t

(τ1

τ

)
= 0,

∂

∂t

(τ2

τ

)
= 0 (9.35)

Equivalently, we can write

1

τ1

∂τ1

∂t
=

1

τ2

∂τ2

∂t
=

1

τ

∂τ

∂t
(9.36)

This shows that the combination (1/τ)(∂τ/∂t) is independent of the system and is a universal
function of the common variable t. Taking this function as g(t) and integrating, we get

τ = Σ(σ1, σ2)C exp

(∫ t

t0

dt g(t)

)

τ1 = Σ1(σ1)C exp

(∫ t

t0

dt g(t)

)

τ2 = Σ2(σ2)C exp

(∫ t

t0

dt g(t)

)
(9.37)

The τ ’s are determined up to a function of the σ’s; we take this arbitrariness as C Σ, where C is
a constant and Σ is a function of the σ’s involved. We can now define the absolute temperature
as

T ≡ C exp

(∫ t

t0

dt g(t)

)
(9.38)

Notice that, in the case under consideration, T1 = T2 = T as expected for equilibrium. This
gives dQ1 = TΣ1dσ1, etc. The relation dQ = dQ1 + dQ2 now reduces to

Σ dσ = Σ1 dσ1 + Σ2 dσ2 (9.39)

In the two-dimensional space with coordinates σ1, σ2, the vector (Σ1,Σ2) has vanishing curl,
i.e., ∂1Σ2 − ∂2Σ1 = 0, since Σ1 only depends on σ1 and similarly for Σ2. Thus (9.39) shows
that Σdσ is a perfect differential. This means that there exists a function S such that Σdσ = dS;
this also means that Σ can depend on σ1 and σ2 only through the combination σ(σ1, σ2). Thus
finally we have

dQ = T dS (9.40)

In this way, the Carathéodory principle leads to the definition of entropy S.
One can also see how this leads to the principle of increase of entropy. For this, consider

a system with n thermodynamic variables. The entropy will be a function of these. We can
alternatively choose n− 1 of the given variables and the entropy S to characterize states of
the system. Now we ask the question: Given a state A, can we find a path which takes us via
adiabatic processes to another state C? It is useful to visualize this in a diagram, with S as
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Figure 9.1: Illustrating the Carathéodory principle and increase of entropy

one of the axes, as in Fig. 9.1. We show one of the other axes, but there could be many. To
get to C, we can start from A and go along a quasi-static reversible adiabatic to B and then,
via some nonquasi-static process such as stirring, mixing, etc., get to C, keeping the system
in adiabatic isolation. This second process can be irreversible. The idea is that the first part
does not change the entropy, but brings the other variables to their desired final value. Then
we move to the required value of S by some irreversible process. As shown SC > SB = SA.
Suppose the second process can also decrease the entropy in some cases, so that we can go
from B to D by some similar process. Then we see that all states close to B are accessible.
Starting from any point, we can move along the surface of constant S to get to the desired
value of the variables, except for S and then jump to the required value of S by the second
process. This contradicts the Carathéodory principle. Thus, if we postulate this principle, then
we have to conclude that in all irreversible processes in adiabatic isolation the entropy has
to either decrease or increase; we cannot have it increase in some processes and decrease
in some.other processes. So S should be either a nondecreasing quantity or a nonincreasing
quantity. The choice of the sign of the absolute temperature, via the choice of the sign of the
constant C in (9.38), is related to which case we choose for entropy. The conventional choice,
of course, is to take T ≥ 0 and entropy to be nondecreasing. In other words

∆S ≥ 0 (9.41)

Thus effectively, we have obtained the version of the second law as given in Proposition 4 in
chapter 3.



10. Entropy and Information

The concept of entropy is one of the more difficult concepts in physics. Historically, it emerged
as a consequence of the second law of thermodynamics, as in (3.16). Later, Boltzmann gave
a general definition for it in terms of the number of ways of distributing a given number of
particles, as in (7.11). But a clearer understanding of entropy is related to its interpretation in
terms of information. We will briefly discuss this point of view here.

10.1 Information

We want to give a quantification of the idea of information. This is originally due to C. Shannon.
Consider a random variable x with probability distribution with p(x). For simplicity,

initially, we take x to be a discrete random variable, with N possible values x1, x2, · · · , xN ,
with pi ≡ p(xi) being the probability for xi. We may think of an experiment for which the
outcomes are the xi, and the probability for xi being pi in a trial run of the experiment. We
want to define a concept of information I(p) associated with p(x). The key idea is to note that
if an outcome has probability 1, the occurrence of that outcome carries no information, since it
was clear that it would definitely happen. If an outcome has a probability less than 1, then its
occurrence can carry information. If the probability is very small, and the outcome occurs, it
is unlikely to be a random event and so it makes sense to consider it as carrying information.
Based on this intuitive idea, we expect information to be a function of the probability. By
convention, we choose I(p) to be positive. Further from what we said, I(1) = 0. Now consider
two completely independent events, with probabilities p and p̃. The probability for both to
occur is p p̃, and will carry information I(p p̃). Since the occurrence of each event separately
carries information I(p) and I(p̃), we expect

I(p p̃) = I(p) + I(p̃) (10.1)

Finally, if the probability of some event is changed by a small amount, we expect the information
for the event to be changed by a small amount as well. This means that we would like I(p) to
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be a continuous and differentiable function of p. Thus we need a continuous and differentiable
function I(p) obeying the requirements I(p) ≥ 0, I(1) = 0 and I(p p̃) = I(p) + I(p̃). The only
function which obeys these conditions is given by

I(p) = − log p (10.2)

This is basically Shannon’s definition of information. The base used for this logarithm is
not specified by what has been said so far; it is a matter of choosing a unit for information.
Conventionally, for systems using binary codes, we use log2 p, while for most statistical systems
we use the natural logarithms.

Consider now the outcome xi which has a probability pi. The amount of information for xi
is − log pi. Suppose now that we do N trials of the experiment, where N is very large. Then
the number of times xi will be realized is N pi. Thus it makes sense to define an average or
expectation value for information as

S =
∑

i

pi I(pi) = −
∑

i

pi log pi (10.3)

This expected value for information is Shannon’s definition of entropy.
This definition of entropy requires some clarification. It stands for the amount of informa-

tion which can be coded using the available outcomes. This can be made clearer by considering
an example, say, of N tosses of a coin, or equivalently a stream of 0s and 1s, N units long.
Each outcome is then a string of 0s and 1s; we will refer to this as a word, since we may think
of it as the binary coding of a word.. We take these to be ordered so that permutations of 0s
and 1s in a given word will be counted as distinct. The total number of possibilities for this
is 2N , and each occurs with equal probability. Thus the amount of information in realizing a
particular outcome is I = N log 2, or N bits if we use logarithm to base 2. The entropy of the
distribution is

S =
∑ 1

2N
log 2N = N log 2 (10.4)

Now consider a situation where we specify or fix some of the words. For example, let us say
that all words start with 0, Then the probability of any word among this restricted set is now
1/2N−1, and entropy becomes S = (N − 1) log 2. Thus entropy has decreased because we have
made a choice; we have used some information. Thus entropy is the amount of information
which can be potentially coded using a probability distribution.

This definition of entropy is essentially the same as Boltzmann’s definition or what we have
used in arriving at various distribution functions for particles. For this consider the formula for
entropy which we used in chapter 7, equation (7.13),

S ≈ k
[
N logN −N −

∑

i

(ni log ni − ni)
]

(10.5)
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Here the ni is the occupation number for the state i. In limit of large N , ni/N may be
interpreted as the probability for the state i. Using the symbol pi for this, we can rewrite (10.5)
as

S

k
= −

∑

i

pi log pi (10.6)

showing that the entropy as defined by Boltzmann in statistical physics is the same as Shannon’s
information-theoretic definition. (In thermodynamics, we measure S in J/K; we can regard
Boltzmann’s constant k as a unit conversion factor. Thus S/k from thermodynamics is the
quantity to be compared to the Shannon definition.) The states in thermodynamics are specified
by the values of positions and momenta for the particles, so the outcomes are continuous. A
continuum generalization of (10.6) is then

S

k
= −

∫
dN p log p (10.7)

where dN is an appropriate measure, like the phase space measure in (7.55).
Normally, we maximize entropy subject to certain averages such as the average energy and

average number of particles being specified. This means that the observer has, by observations,
determined these values and hence the number of available states is restricted. Only those
states which are compatible with the given average energy and number of particles are allowed.
This constrains the probability distribution which maximizes the entropy. If we specify more
averages, then the maximal entropy is lower. The argument is similar to what was given
after (10.4), but we can see this more directly as well. Let Aα, α = 1, 2, · · · , n be a set of
observables. The maximization of entropy subject to specifying the average values of these is
given by maximizing

S

k
=

∫ [
−p log p−

n∑

α

λαAα p

]
+

n∑

α

λα〈Aα〉 (10.8)

Here 〈Aα〉 are the average values which have been specified and λα are Lagrange multipliers.
Variation with respect to the λs give the required constraint

〈Aα〉 =

∫
Aα p (10.9)

The distribution p which extremizes (10.8) is given by

p̄n =
1

Zn
e−

∑n
α λαAα , Zn =

∫
e−

∑n
α λαAα (10.10)

The corresponding entropy is given by

S̄n
k

= logZn +
n∑

α

λα〈Aα〉 (10.11)
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Now let us consider specifying n+ 1 averages. In this case, we have

p̄n+1 =
1

Zn+1
e−

∑n+1
α λαAα , Zn+1 =

∫
e−

∑n+1
α λαAα

S̄n+1

k
= logZn+1 +

n+1∑

α

λα〈Aα〉 (10.12)

This distribution reverts to p̄n, and likewise S̄n+1 → S̄n, if we set λn+1 to zero.
If we calculate 〈An+1〉 using the distribution p̄n and the answer comes out to be the

specified value, then there is no information in going to p̄n+1. Thus it is only if the distribution
which realizes the specified value 〈An+1〉 differs from p̄n that there is additional information
in the choice of 〈An+1〉. This happens if λn+1 6= 0. It is therefore useful to consider how S̄

changes with λα. We find, directly from (10.11),

∂S̄

∂λα
=

∑

β

λβ
∂

∂λα
〈Aβ〉 =

∑

β

λβ [−〈AαAβ〉+ 〈Aα〉 〈Aβ〉]

= −
∑

β

Mαβ λβ (10.13)

Mαβ = 〈AαAβ〉 − 〈Aα〉 〈Aβ〉

The change of the maximal entropy with the λs is given by a set of correlation functions
designated as Mαβ . We can easily see that this matrix is positive semi-definite. For this we use
the Schwarz inequality

[∫
B∗B

] [∫
C∗C

]
≥
[∫

B∗C

] [∫
C∗B

]
(10.14)

For any set of complex numbers γα, we take B = γαAα and C = 1. We then see from (10.14)
that γαγ∗βMαβ ≥ 0. (The integrals in (10.14) should be finite for the inequality to make
sense. We will assume that at least one of the λs, say corresponding to the Hamiltonian.
is always included so that the averages are finite.) Equation (10.13) then tells us that S̄
decreases as more and more λs pick up nonzero values. Thus we must interpret entropy as a
measure of the information in the states which are still freely available for coding after the
constraints imposed by the averages of the observables already measured. This also means
that the increase of entropy in a system left to itself means that the system tends towards
the probability distribution which is completely random except for specified values of the
conserved quantities. The averages of all other observables tend towards the values given
by such a random distribution. In such a state, the observer has minimum knowledge about
observables other than the conserved quantities.

10.2 Maxwell’s demon

There is a very interesting thought experiment due to Maxwell which is perhaps best phrased
as a potential violation of the second law of thermodynamics. The resolution of this problem
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highlights the role of entropy as information.
We consider a gas of particles in equilibrium in a box at some temperature T . The velocities

of the particles follow the Maxwell distribution (7.44),

f(v) d3v =
( m

2πkT

) 3
2

exp

(
−mv

2

2kT

)
d3v (10.15)

The mean square speed given by

〈v2〉 =
3kT

m
(10.16)

may be used as a measure of the temperature. Now we consider a partition which divides the
box into two parts. Further, we consider a small gate in the partition which can be opened
and closed and requires a very small amount of energy, which can be taken to be zero in an
idealized limit. Further, we assume there is a creature (“Maxwell’s demon") with a large brain
capacity to store a lot of data sitting next to this box. Now the demon is supposed to do the
following. Every time he sees a molecule of high speed coming towards the gate from the left
side, he opens the gate and lets it through to the right side. If he sees a slowly moving molecule
coming towards the gate from the right side, he opens it and lets the molecule through to the
left side. If he sees a slow moving molecule on the left side, or a fast moving one on the right
side, he does nothing. Now after a while, the mean square speed on the left will be smaller
than what it was originally, showing that the temperature on the left side is lower than T .
Correspondingly, the mean square speed on the right side is higher and so the temperature
there is larger than T . Effectively, heat is being transferred from a cold body (left side of the
box) to a hot body (the right side of the box). Since the demon imparts essentially zero energy
to the system via opening and closing the gate, this transfer is done with no other change, thus
seemingly providing a violation of the second law. This is the problem.

We can rephrase this in terms of entropy change. To illustrate the point, it is sufficient
to consider the simple case of N particles in the volume V forming an ideal gas with the
demon separating them into two groups of N/2 particles in volume V/2 each. If the initial
temperature is T and the final temperatures are T1 and T2, then the conservation of energy
gives T = 1

2(T1 + T2). Further, we can use the the Sackur-Tetrode formula (7.32) for the
entropies,

S = N k

[
5

2
+ log

(
V

N

)
+

3

2
log

(
U

N

)
+

3

2
log

(
4πm

3(2π~)2

)]
(10.17)

The change in entropy when the demon separates the molecules is then obtained as

∆S = S1 + S2 − S =
3N

2
log

(√
T1T2

T

)
(10.18)

Since
(
T1 + T2

2

)2

= T1T2 +

(
T1 − T2

2

)2

≥ T1T2 (10.19)
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we see that ∆S ≤ 0. Thus the process ends up decreasing the entropy in contradiction to the
second law.

The resolution of this problem is in the fact that the demon must have information about
the speeds of molecules to be able to let the fast ones to the right side and the slow ones to
the left side. This means that using the Sackur-Tetrode formula for the entropy of the gas in
the initial state is not right. We are starting off with a state of entropy (of gas and demon
combined) which is less than what is given by (10.17), once we include the information carried
by (or obtained via the observation of velocities by) the demon, since the specification of more
observables decreases the entropy as we have seen in the last section. While it is difficult to
estimate quantitatively this entropy, the expectation is that with this smaller value of S to begin
with, ∆S will come out to be positive and that there will be no contradiction with the second
law. Of course, this means that we are considering a generalization of the second law, namely
that the entropy of an isolated system does not decrease over time, provided all sources of
entropy in the information-theoretic sense are taken into account.

10.3 Entropy and gravity

There is something deep about the concept of entropy which is related to gravity. This is far
from being well understood, and is atopic of ongoing research, but there are good reasons
to think that the Einstein field equations for gravity may actually emerge as some some sort
of entropy maximization condition. A point of contact between gravity and entropy is for
spacetimes with a horizon, an example being a black hole. In an ultimate theory of quantum
gravity, spacetimes with a horizon may turn out to be nothing special, but for now, they may
be the only window to the connection between entropy and gravity. To see something of the
connection, we look at a spherical solution to the Einstein equations, corresponding to the
metric around a point (or spherical distribution of) mass. This is the Schwarzschild metric
given as

ds2 = c2dt2
(

1− 2GM

c2r

)
− dr2

(
1− 2GM

c2r

) − r2dθ2 − r2 sin2 θ dϕ2 (10.20)

We are writing this in the usual spherical coordinates (r, θ, ϕ) for the spatial dimensions. G is
Newton’s gravitational constant and c is the speed of light in vacuum. We can immediately see
that there are two singularities in this expression. The first is obviously at r = 0, similar to what
occurs in Newton’s theory for the gravitational potential, and the second is at r = 2GM/c2.
This second singularity is a two-sphere since it occurs at finite radius. Now, one can show
that r = 0 is a genuine singularity of the theory, in the sense that it cannot be removed by
a coordinate transformation. The singularity at r = 2GM/c2 is a coordinate singularity. It
is like the singularity at θ = 0, π when we use spherical coordinates and can be eliminated
by choosing a different set of coordinates. Nevertheless, the radius 2GM/c2 does have an
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important role. The propagation of light, in the ray optics approximation, is described by
ds = 0. As a result, one can see that nothing can escape from r < 2GM/c2 to larger values
of the radius, to be detected by observers far away. An observer far away who is watching
an object falling to the center will see the light coming from it being redshifted due to the
(1− 2GM/c2r) factor, eventually being redshifted to zero frequency as it crosses r = 2GM/c2;
the object fades out. For this reason, and because it is not a real singularity, we say that the
sphere at r = 2GM/c2 is a horizon. Because nothing can escape from inside the horizon, the
region inside is a black hole. The value 2GM/c2 is called the Schwarzschild radius.

Are there examples of black holes in nature? The metric (10.20) can be used to describe
the spacetime outside of a nearly spherical matter distribution such as a star or the Sun. For
the Sun, with a mass of about 2× 1030 kg, the Schwarzschild radius is about 1.4 km. The form
of the metric in (10.20) ceases to be valid once we pass inside the surface of the Sun, and
so there is no horizon physically realized for the Sun (and for most stars). (Outside of the
gravitating mass, one can use (10.20) which is how observable predictions of Einstein’s theory
such as the precession of the perihelion of Mercury are obtained.) But consider a star which is
more massive than the Chandrasekhar and Tolman-Oppenheimer-Volkov limits. If it is massive
enough to contract gravitationally overcoming even the quark degeneracy pressure, its radius
can shrink below its Schwarzschild radius and we can get an black hole. The belief is that
there is such a black hole at the center of our galaxy, and most other galaxies as well.

Returning to the physical properties of black holes, although classical theory tells us that
nothing can escape a black hole, a most interesting effect is that black holes radiate. This is a
quantum process. A full calculation of this process cannot be done without a quantum theory
of gravity (which we do not yet have). So, while the fact that black holes must radiate can be
argued in generality, the nature of the radiation can only be calculated in a semiclassical way.
The result of such a semiclassical calculation is that irrespective of the nature of the matter
which went into the formation of the black hole, the radiation which comes out is thermal,
following the Planck spectrum, corresponding to a certain temperature

TH =
~c3

8πkGM
(10.21)

Although related processes were understood by many scientists, the general argument for
radiation from black holes was due to Hawking and hence the radiation from any spacetime
horizon and the corresponding temperature are referred to as the Hawking radiation and
Hawking temperature, respectively.

Because there is a temperature associated with a black hole, we can think of it as a
thermodynamic system obeying

dU = T dS (10.22)

The internal energy can be taken as Mc2 following the Einstein mass-energy equivalence. We
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can then use (10.22) to calculate the entropy of a black hole as

SB−H =
c3

~
A

4G
(10.23)

(This formula for the entropy is known as the Bekenstein-Hawking formula.) Here A is the
area of the horizon, A = 4πR2

S, RS = 2GM/c2 being the Schwarzschild radius.
These results immediately bring up a number of puzzles.

1. A priori, there is nothing thermodynamic about the Schwarzschild metric or the radiation
process. The radiation can obtained from the quantized version of the Maxwell equations
in the background spacetime (10.20). So how do thermodynamic concepts arise in this
case?

2. One could envisage forming a black hole from a very ordered state of very low entropy.
Yet once the black hole forms, the entropy is given by (10.23). There is nothing wrong
with generating more entropy, but how did we lose the information coded into the
low entropy state? Further, the radiation coming out is thermal and hence carries no
information. So is there any way to understand what happened to it?
These questions can be sharpened further. First of all, we can see that the Schwarzschild
black hole can evaporate away by Hawking radiation in a finite time. This is because
the radiation follows the Planck spectrum and so we can use the Stefan-Boltzmann law
(8.38) to calculate the rate of energy loss. Then from

d(Mc2)

dt
= −σ T 4

HA (10.24)

we can obtain the evaporation time. Now, there is a problem with the radiation being
thermal. Time-evolution in the quantum theory is by unitary transformations and these
do not generate any entropy. So if we make a black hole from a very low entropy state
and then it evaporates into thermal radiation which is a high entropy state, how is this
compatible with unitary time-evolution? Do we need to modify quantum theory, or do
we need to modify the theory of gravity?

3. Usually, when we have nonzero entropy, we can understand that in terms of microscopic
counting of states. Are the number of states of a black hole proportional to SB−H? Is
there a quantitative way to show this?

4. The entropy is proportional to the area of the horizon. Usually, entropy is extensive
and the number of states is proportional to the volume (via things like d3xd3p/(2π~)3).
How can all the states needed for a system be realized in terms of a lower dimensional
surface?

There are some tentative answers to some of these questions. Although seemingly there is
a problem with unitary time-evolution, this may be because we cannot do a full calculation.
The semiclassical approximation breaks down for very small black holes. So we cannot reliably
calculate the late stages of black hole evaporation. Example calculations with black holes in
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lower dimensions can be done using string theory and this suggests that time-evolution is
indeed unitary and that information is recovered in the correlations in the radiation which
develop in later stages.

For most black hole solutions, there is no reliable counting of microstates which lead to the
formula (10.23). But there are some supersymmetric black holes in string theory for which
such a counting can be done using techniques special to string theory. For those cases, one does
indeed get the formula (10.23). This suggests that string theory could provide a consistent
quantum theory of black holes and, more generally, of spacetimes with horizons. It could also
be that the formula (10.23) has such universality (as many things in thermodynamics do)
that the microscopic theory may not matter and that if we learn to do the counting of states
correctly, any theory which has quantum gravity will lead to (10.23), with perhaps, calculable
additional corrections (which are subleading, i.e., less extensive than area).

The idea that a lower dimensional surface can encode enough information to reconstruct
dynamics in a higher dimensional space is similar to what happens in a hologram. So perhaps
to understand the entropy formula (10.23), one needs a holographic formulation of physical
laws. Such a formulation is realized, at least for a restricted class of theories, in the so-called
AdS/CFT correspondence (or holographic correspondence) and its later developments. The
original conjecture for this is due to J. Maldacena and states that string theory on an anti-de
Sitter(AdS) spacetime background in five dimensions (with an additional 5-sphere) is dual
to the maximally supersymmetric Yang-Mills gauge theory (which is a conformal field theory
(CFT)) on the boundary of the AdS space. One can, in principle, go back and forth, calculating
quantities in one using the other. Although still a conjecture, this does seem to hold for all
cases where calculations have been possible.

It is clear that this is far from a finished story. But from what has been said so far, there is
good reason to believe that research over the next few years will discover some deep connection
between gravity and entropy.
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White dwarf stars, 97
Work done, 10

Zeroth law, 11
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