










78 Chapter 8. Quantum Statistical Mechanics

8.3 Applications of the Bose-Einstein distribution

We shall now consider some simple applications of quantum statistics, focusing in this section
on the Bose-Einstein distribution.

8.3.1 The Planck distribution for black body radiation

Any material body at a finite nonzero temperature emits electromagnetic radiation, or photons
in the language of the quantum theory. The detailed features of this radiation will depend on
the nature of the source, its atomic composition, emissivity, etc. However, if the source has a
sufficiently complex structure, the spectrum of radiation is essentially universal. We want to
derive this universal distribution, which is also known as the Planck distribution.

Since a black body absorbs all radiation falling on it, treating all wavelengths the same, a
black body may be taken as a perfect absorber. (Black bodies in reality do this only for a small
part of the spectrum, but here we are considering the idealized case.) By the same token, black
bodies are also perfect emitters and hence the formula for the universal thermal radiation is
called the black body radiation formula.

The black body radiation formula was obtained by Max Planck by fitting to the observed
spectrum. He also spelled out some of the theoretical assumptions needed to derive such a
result and this was, as is well known, the beginning of the quantum theory. Planck’s derivation
of this formula is fairly simple once certain assumptions, radical for his time, are made; from
the modern point of view it is even simpler. Photons are particles of zero rest mass, the energy
and momentum of a photon are given as

ε = ~ω, ~p = ~~k (8.25)

where the frequency of the radiation ω and the wave number ~k are related to each other in the
usual way, ω = c |~k|. Further photons are spin-1 particles, so we know that they are bosons.
Because they are massless, they have only two polarization states, even though they have spin
equal to 1. (For a massive particle we should expect (2 s + 1) = 3 polarization states for a
spin-1 particle.) We can apply the Bose-Einstein distribution (8.10) directly, with one caveat.
The number of photons is not a well defined concept. Since long wavelength photons carry
very little energy, the number of photons for a state of given energy could have an ambiguity
of a large number of soft or long wavelength photons. This is also seen more theoretically;
there is no conservation law in electromagnetic theory beyond the usual ones of energy and
momentum. This means that we should not have a chemical potential which is used to fix the
number of photons. Thus the Bose-Einstein distribution simplifies to

n =
1

eβε − 1
(8.26)

We now consider a box of volume V in which we have photons in thermal equilibrium with
material particles such as atoms and molecules. The distribution of the internal energy as a
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Figure 8.1: The Planck distribution as a function of frequency for three sample values of
temperature, with T3 > T2 > T1; units are arbitrary.

function of momentum is given by

dU = 2
d3x d3p

(2π~)3

ε

eβε − 1
(8.27)

where the factor of 2 is from the two polarization states. Using (8.25), for the energy density,
we find

d u = 2
d3k

(2π)3

~ω
e~ω/kT − 1

(8.28)

This is Planck’s radiation formula. If we use ω = c |~k| and carry out the integration over angular
directions of ~k, it reduces to

d u =
~

π2c3

dω ω3

e~ω/kT − 1
(8.29)

This distribution function vanishes at ω = 0 and as ω →∞. It peaks at a certain value which is
a function of the temperature. In Fig. 8.1, we show the distribution for some sample values of
temperature. Note that the value of ω at the maximum increases with temperature; in addition,
the total amount of radiation (corresponding to the area under the curve) also increases with
temperature.

If we integrate (8.29) over all frequencies, the total energy density comes out to be

u =
π2

15 (~c)3
(kT )4 (8.30)

where we have used the result
∫ ∞

0
dx

x3

ex − 1
= 3! ζ(4) =

π4

15
(8.31)
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Rate of radiation from a black body

We can convert the formula for the energy density to the intensity of the radiation by consid-
ering the conservation of energy in electrodynamics. The energy density of the electromagnetic
field is given by

u =
1

2
(E2 +B2) (8.32)

Using the Maxwell equations in free space, we find

∂u

∂t
= EiĖi +BiḂi = c [Ei(∇×B)i −Bi(∇× E)i]

= −c∇ · ( ~E × ~B) = −∇ · ~P (8.33)

~P = c( ~E × ~B)

Integrating over a volume V , we find

∂

∂t

∫
d3x u = −

∮

∂V

~P · d~S (8.34)

Thus the energy flux per unit area or the intensity is given by the Poynting vector ~P = c( ~E× ~B).
For electromagnetic waves, |E| = |B|, ~E and ~B are orthogonal to each other and both are
orthogonal to ~k, the wave vector which gives the direction of propagation, i.e., the direction of
propagation of the photon. In this case we find

u = E2, ~P = cu k̂ (8.35)

Using the Planck formula (8.28), the magnitude of the intensity of blackbody radiation is given
by

d I = 2c
d3k

(2π)3

~ω
e~ω/kT − 1

(8.36)

We have considered radiation in a box of volume V in equilibrium. To get the rate of
radiation per unit area of a blackbody, note that, because of equilibrium, the radiation rate
from the body must equal the energy flux falling on area under consideration (which is all
taken to be absorbed since it is a blackbody); thus emission rate equals absorption rate as
expected for equilibrium. The flux is given by

~P · d~S = ~P · n̂ dS = c u k̂ · n̂ dS = c u cos θ dS (8.37)

where n̂ is the normal to the surface and θ is the angle between k̂ and n̂. Further, in the equi-
librium situation, there are photons going to and away from the surface under consideration,
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so we must only consider positive values of k̂ · n̂ = cos θ, or 0 ≤ θ ≤ π/2. Thus the radiation
rate over all wavelengths per unit area of the emitter is given by

R = 2c

∫
d3k

(2π)3

~ω cos θ

e~ω/kT − 1

= 2c

∫
dk k2

4π2

~ω
e~ω/kT − 1

∫ π/2

0
dθ sin θ cos θ

=
~

4π2c2

∫ ∞

0
dω

ω3

e~ω/kT − 1

= σ T 4 (8.38)

σ =
π2k4

60 ~3c2

This result is known as the Stefan-Boltzmann law.

Radiation pressure

Another interesting result concerning thermal radiation is the pressure of radiation. For
this, it is convenient to use one of the relations in (6.30), namely,

(
∂U

∂V

)

T

= T

(
∂p

∂T

)

V

− p (8.39)

From (8.30), we have

U = V
π2

15 (~c)3
k4 T 4 (8.40)

Equations (8.39) and (8.40) immediately lead to

p =
π2

45 (~c)3
k4 T 4 =

1

3
u (8.41)

Radiation pressure is significant and important in astrophysics. Stars can be viewed as a gas
or fluid held together by gravity. The gas has pressure and the pressure gradient between the
interior of the star and the exterior region tends to create a radial outflow of the material. This
is counteracted by gravity which tends to contract or collapse the material. The hydrostatic
balance in the star is thus between gravity and pressure gradients. The normal fluid pressure
is not adequate to prevent collapse. The radiation produced by nuclear fusion in the interior
creates an outward pressure and this is a significant component in the hydrostatic equilibrium
of the star. Without this pressure a normal star would rapidly collapse.

Maximum of Planck distribution

We have seen that the Planck distribution has a maximum at a certain value of ω. It is
interesting to consider the wavelength λ∗ at which the distribution has a maximum. This
can be done in terms of frequency or wavelength, but we will use the wavelength here as
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this is more appropriate for the application we consider later. (The peak for frequency and
wavelength occur at different places since these variables are not linearly related, but rather
are reciprocally related.) Using dω = −(2πc)dλ/λ2, we can write down the Planck distribution
(8.36) in terms of the wavelength λ as

d I =
2(2π~)

c2

1

λ5 (e~ω/kT − 1)
dλ dΩ (8.42)

(The minus sign in dω only serves to show that when the intensity increases with frequency,
it should decrease with λ and vice versa. So we have dropped the minus sign. Ω is the solid
angle for the angular directions.) Extremization with respect to λ gives the condition

(x− 5) ex + 5 = 0 (8.43)

where x = β~ω. The solution of this transcendental equation is

λ∗ ≈
(2π~)c

k

1

4.96511

1

T
(8.44)

This relation is extremely useful in determining the temperature of the outer layer of stars,
called the photosphere, from which we receive radiation. By spectroscopically resolving the
radiation and working out the distribution as a function of wavelength, we can see where the
maximum is, and this gives, via (8.44), the temperature of the photosphere. Notice that higher
temperatures correspond to smaller wavelengths; thus blue stars are hotter than red stars. For
the Sun, the temperature of the photosphere is about 5777K, corresponding to a wavelength
λ∗ ≈ 502nm. Thus the maximum for radiation from the Sun is in the visible region, around
the color green.

Another case of the importance in which the radiation pressure and the λ∗ we calculated
are important is in the early history of the universe. Shortly after the Big Bang, the universe
was in a very hot phase with all particles having an average energy so high that their masses
could be neglected. The radiation pressure from all these particles, including the photon, is an
important ingredient in solving the Einstein equations for gravity to work out how the universe
was expanding. As the universe cooled by expansion, the unstable massive particles decayed
away, since there was not enough average energy in collisions to sustain the reverse process.
Photons continued to dominate the evolution of the universe. This phase of the universe is
referred to as the radiation dominated era.

Later, the universe cooled enough for electrons and nuclei to combine to form neutral
atoms, a phase known as the recombination era. Once this happened, since neutral particles
couple only weakly (through dipole and higher multipole moments) to radiation, the existing
radiation decoupled and continued to cool down independently of matter. This is the matter
dominated era in which we now live. The radiation obeyed the Planck spectrum at the time
of recombination, and apart from cooling would continue to do so in the expanding universe.
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Thus the existence of this background relic radiation is evidence for the Big Bang theory.
This cosmic microwave background radiation was predicted to be a consequence of the Big
Bang theory, by Gamow, Dicke and others in the 1940s. The temperature was estimated in
calculations by Alpher and Herman and by Gamow in the 1940s and 1950s. The radiation was
observed by Penzias and Wilson in 1964. The temperature of this background can be measured
in the same way as for stars, by comparing the maximum of the distribution with the formula
(8.44). It is found to be approximately 2.7K. (Actually this has been measured with great
accuracy by now, the latest value being 2.72548± 0.00057K.) The corresponding λ∗ is in the
microwave region, which is why this is called the cosmic microwave background.

8.3.2 Bose-Einstein condensation

We will now work out some features of an ideal gas of bosons with a conserved particle number;
in this case we do have a chemical potential. There are many atoms which are bosons and,
if we can neglect the interatomic forces as a first approximation, this discussion can apply to
gases made of such atoms. The partition function Z for a gas of bosons was given in (8.15).
Since logZ is related to pressure as in (7.73), this gives immediately

pV

kT
= logZ = −

∫
d3x d3p

(2π~)3
log
(

1− e−β(ε−µ)
)

= V

(
mkT

2π~2

) 3
2
[
z +

z2

25/2
+

z3

35/2
+ · · ·

]

= V

(
mkT

2π~2

) 3
2

Li 5
2
(z) (8.45)

where z = eβµ is the fugacity and Lis(z) denotes the polylogarithm defined by

Lis(z) =
∞∑

n=1

zn

ns
(8.46)

The total number of particles N is given by the normalization condition (8.12) and works out
to

N

V
=

(
mkT

2π~2

) 3
2
[
z +

z2

23/2
+

z3

33/2
+ · · ·

]

=

(
mkT

2π~2

) 3
2

Li 3
2
(z) =

1

λ3
Li 3

2
(z) (8.47)

We have defined the thermal wavelength λ by

λ =

√
2π~2

mkT
(8.48)

Apart from some numerical factors of order 1, this is the de Broglie wavelength for a particle
of energy kT .
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If we eliminate z in favor of N/V from this equation and use it in (8.45), we get the
equation of state for the ideal gas of bosons. For high temperatures, this can be done by
keeping the terms up to order z2 in the polylogarithms. This gives

p =
N

V
kT

[
1− N

V

λ3

25/2
+ · · ·

]
(8.49)

This equation shows that even the perfect gas of bosons does not follow the classical ideal gas
law. In fact, we may read off the second virial coefficient as

B2 = − λ3

25/2
(8.50)

The thermal wavelength is small for large T , so this correction is small at high temperatures,
which is why the ideal gas was a good approximation for many of the early experiments in
thermal physics. If we compare this with the second virial coeficient of a classical gas with
interatomic potential V (x) as given in (7.84), namely,

B2 =
1

2

∫
d3x

(
1− e−βV (x)

)
, (8.51)

we see that we can mimic (8.50) by an attractive (V (x) < 0) interatomic potential. Thus
bosons exhibit a tendency to cluster together.

We can now consider what happens when we lower the temperature. It is useful to calculate
a typical value of λ. Putting in the constants,

λ ≈
√(

300

T

)(mp

m

)
× 6.3× 10−10 meters (8.52)

(mp is the mass of the proton ≈ the mass of the hydrogen atom.) Thus for hydrogen at room
temperature, λ is of atomic size. Since V/N is approximately the free volume available to a
molecule, we find from (8.47) that z must be very small under normal conditions. The function
Li 3

2
(z) starts from zero at z = 0 and rises to about 2.61238 at z = 1, see Fig. 8.2. Beyond that,

even though the function can be defined by analytic continuation, it is imaginary. In fact there
is a branch cut from z = 1 to∞. Thus for z < 1, we can solve (8.47) for z in terms of N/V . As
the temperature is lowered, λ decreases and eventually we get to the point where z = 1. This
happens at a temperature

Tc =
1

k

(
N

V 2.61238

) 2
3
(

2π~2

m

)
(8.53)

If we lower the temperature further, it becomes impossible to satisfy (8.47). We can see the
problem at z = 1 more clearly by considering the partition function, where we separate the
contribution due to the zero energy state,

Z =
1

1− z
∏

p6=0

1

1− ze−βεp (8.54)
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We see that the partition function has a singularity at z = 1. This is indicative of a phase
transition. The system avoids the singularity by having a large number of particles making a
transition to the state of zero energy and momentum. Recall that the factor 1/(1− z) may be
viewed as

∑
n z

n, as a sum over different possible occupation numbers for the ground state.
The idea here is that, instead of various possible occupation numbers for the ground state,
what happens below Tc is that there is a certain occupation number for the ground state, say,
N0, so that the partition function should read

Z = zN0
∏

p 6=0

1

1− ze−βεp (8.55)

Thus, rather than having different probabilities for the occupation numbers for the ground
state, with correspondingly different probabilities as given by the Boltzmann factor, we have
a single multiparticle quantum state, with occupation number N0, for the ground state. The
normalization condition (8.47) is then changed to

N

V
=
N0

V
+

1

λ3
Li 3

2
(z) (8.56)

Below Tc, this equation is satisfied, with z = 1, and with N0 compensating for the second term
on the right hand side as λ increases. This means that a macroscopically large number of
particles have to be in the ground state. This is known as Bose-Einstein condensation. In terms
of Tc, we can rewrite (8.56) as

N0

V
=
N

V

[
1−

(
T

Tc

) 3
2

]
(8.57)

which gives the fraction of particles which are in the ground state.
Since z = 1 for temperatures below Tc, we have µ = 0. This is then reminiscent of the case

of photons where we do not have a conserved particle number. The proper treatment of this
condensation effect requires quantum field theory, using the concept of spontaneous symmetry
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Figure 8.3: Qualitative behavior of the specific heat of a gas of bosons

breaking. In such a description, it will be seen that the particle number is still a conserved
operator but that the condensed state cannot be an eigenstate of the particle number.

There are many other properties of the condensation phenomenon we can calculate. Here
we will focus on just the specific heat. The internal energy for the gas is given by

U =

∫
d3xd3p

(2π~)3

ε

eβ(ε−µ) − 1

= V
3

2
kT

1

λ3
Li 5

2
(z) (8.58)

At high temperatures, z is small and Li5/2(z) ≈ z and (8.47) gives z/λ3 = N/V . Thus
U = 3

2NkT in agreement with the classical ideal gas. This gives Cv = (3/2)Nk.
For low temperatures below Tc, z = 1 and we can set Li5/2(z) = Li5/2(1) ≈ 1.3415. The

specific heat becomes

Cv = V k
15

4

Li 5
2
(1)

λ3
= N k

15

4

Li 5
2
(1)

Li 3
2
(1)

(
T

Tc

) 3
2

≈ 1.926N k

(
T

Tc

) 3
2

(8.59)

We see that the specific heat goes to zero at absolute zero, in agreement with the third law of
thermodynamics. It rises to a value which is somewhat above 3/2 at T = Tc. Above Tc, we
must solve for z in terms of N and substitute back into the formula for U . But qualitatively, we
can see that the specific heat has to decrease for T > Tc reaching the ideal gas value of 3/2 at
very high temperatures. A plot of the specific heat is shown in Fig. 8.3.

There are many examples of Bose-Einstein condensation by now. The formula for the
thermal wavelength (8.52) shows that smaller atomic masses will have larger λ and one may
expect them to undergo condensation at higher temperatures. While molecular hydrogen
(which is a boson) may seem to be the best candidate, it turns to a solid at around 14K. The
best candidate is thus liquid Helium. The atoms of the isotope He4 are bosons. Helium becomes
a liquid below 4.2K and it has a density of about 125 kg/m3 (under normal atmospheric
pressure) and if this value is used in the formula (8.53), we find Tc to be about 3K. What is
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remarkable is that liquid Helium undergoes a phase change at 2.17K. Below this temperature,
it becomes a superfluid, exhibiting essentially zero viscosity. (He3 atoms are fermions, there is
superfluidity here too, at a much lower temperature, and the mechanism is very different.)
This transition can be considered as an example of Bose-Einstein condensation. Helium is not
an ideal gas of bosons, interatomic forces (particularly a short range repulsion) are important
and this may explain the discrepancy in the value of Tc. The specific heat of liquid He4 is shown
in Fig. 8.4. There is a clear transition point, with the specific heat showing a discontinuity
in addition to the peaking at this point. Because of the similarity of the graph to the Greek
letter λ, this is often referred to as the λ-transition. The graph is very similar, in a broad
qualitative sense, to the behavior we found for Bose-Einstein condensation in Fig. 8.3; however,
the Bose-Einstein condensation in the noninteracting gas is a first order transition, while
the λ-transition is a second order transition, so there are differences with the Bose-Einstein
condensation of perfect gas of bosons.

The treatment of superfluid Helium along the lines we have used for a perfect gas is very
inadequate. A more sophisticated treatment has to take account of interatomic forces and
incorporate the idea of spontaneous symmetry breaking. By now, there is a fairly comprehensive
theory of liquid Helium.

Recently, Bose-Einstein condensation has been achieved in many other atomic systems such
as a gas of Rb87atoms, Na23 atoms, and a number of others, mostly alkaline and alkaline earth
elements.

8.3.3 Specific heats of solids

We now turn to the specific heats of solids, along the lines of work done by Einstein and Debye.
In a solid, atoms are not free to move around and hence we do not have the usual translational
degrees of freedom. Hence the natural question which arises is: When a solid is heated, what
are the degrees of freedom in which the energy which is supplied can be stored? As a first
approximation, atoms in a solid may be taken to be at the sites of a regular lattice. Interatomic
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forces keep each atom at its site, but some oscillation around the lattice site is possible. This is
the dynamics behind the elasticity of the material. These oscillations, called lattice vibrations,
constitute the degrees of freedom which can be excited by the supplied energy and are thus
the primary agents for the specific heat capacity of solids. In a conductor, translational motion
of electrons is also possible. There is thus an electronic contribution to the specific heat as well.
This will be taken up later; here we concentrate on the contribution from the lattice vibrations.
In an amorphous solid, a regular lattice structure is not obtained throughout the solid, but
domains with regular structure exist, and so, the elastic modes of interest are still present.

Turning to the details of the lattice vibrations, for N atoms on a lattice, we expect 3N

modes, since each atom can oscillate along any of the three dimensions. Since the atoms are
like beads on an elastic string, the oscillations can be transferred from one atom to the next and
so we get traveling waves. We may characterize these by a frequency ω and a wave number ~k.
The dispersion relation between ω and ~k can be obtained by solving the equations of motion
for N coupled particles. There are distinct modes corresponding to different ω-k relations; the
typical qualitative behavior is shown in Fig. 8.5. There are three acoustic modes for which
ω ≈ cs|~k|, for low |~k|, cs being the speed of sound in the material. The three polarizations
correspond to oscillations in the three possible directions. The long wavelength part of these
modes can also be obtained by solving for elastic waves (in terms of the elastic moduli) in
the continuum approximation to the lattice. They are basically sound waves, hence the name
acoustic modes. The highest value for |~k| is limited by the fact that we do not really have a
continuum; the shortest wavelength is of the order of the lattice spacing.

There are also the so-called optical modes for which ω 6= 0 for any ~k. The minimal energy
needed to excite these is typically in the range of 30-60meV or so; in terms of a photon
energy this corresponds to the infrared and visible optical frequencies, hence the name. Since
1 eV ≈ 104K, the optical modes are not important for the specific heat at low temperatures.

Just as electromagnetic waves, upon quantization, can be viewed as particles, the photons,
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the elastic waves in the solid can be described as particles in the quantum theory. These
particles are called phonons and obey the expected energy and momentum relations

E = ~ω, ~p = ~~k (8.60)

The relation between ω and ~k may be approximated for the two cases rather well by

ω ≈
{
cs |~k| (Acoustic)

ω0 (Optical)
(8.61)

where ω0 is a constant independent of ~k. If there are several optical modes, the corresponding
ω0’s may be different. Here we consider just one for simplicity. The polarizations correspond
to the three Cartesian axes and hence they transform as vectors under rotations; i.e., they have
spin = 1 and hence are bosons. The thermodynamics of these can now be worked out easily.

First consider the acoustic modes. The total internal energy due to these modes is

U = 3

∫
d3x d3k

(2π)3

~ω
eβ~ω − 1

(8.62)

The factor of 3 is for the three polarizations. For most of the region of integration which
contributes significantly, we are considering modes of wavelengths long compared to the lattice
spacing and so we can assume isotropy and carry out the angular integration. For high k, the
specific crystal structure and anisotropy will matter, but the corresponding ω’s are high and the
e−β~ω factor will diminish their contributions to the integral. Thus

U = V
3~

2π2 c3
s

∫ ωD

0
dω

ω3

eβ~ω − 1
(8.63)

Here ωD is the Debye frequency which is the highest frequency possible for the acoustic modes.
The value of this frequency will depend on the solid under consideration. We also define a
Debye temperature TD by ~ωD = kTD. We then find

U = 3

(
V

2π2~3c3
s

)
(kT )4

∫ TD/T

0
du

u3

eu − 1
(8.64)

For low temperatures TD/T is so large that one can effectively replace it by ∞ in a first
approximation to the integral. For high T � TD, we can expand the integrand in powers of u
to carry out the integration. This way we find

∫ TD/T

0
du

u3

eu − 1
=





π4

15 + O(e−TD/T ) T � TD

1
3

(
TD
T

)3
− 1

8

(
TD
T

)4
+ · · · T � TD

(8.65)

The internal energy for T � TD is thus

U =

(
V

2π2~3c3
s

)
π4(kT )4

5
+ O(e−TD/T ) (8.66)
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The specific heat at low temperatures is thus given by

Cv ≈
(

V

2π2~3c3
s

)
4 k

5
π4(kT )3 (8.67)

We can relate this to the total number of atoms in the material as follows. Recall that the total
number of vibrational modes for N atoms is 3N . Thus

3

∫ ωD d3x d3k

(2π)3
+ Total number of optical modes = 3N (8.68)

If we ignore the optical modes, we get
(

V

2π2c3
s

)
=

3N

ω3
D

(8.69)

This formula will hold even with optical modes if N is interpreted as the number of unit cells
rather than the number of atoms. In terms of N , we get, for T � TD,

U =
3Nkπ4

5

T 4

T 3
D

+O(e−TD/T )

Cv =
12Nkπ4

5

T 3

T 3
D

+O(e−TD/T ) (8.70)

The expression for Cv in (8.67) or (8.70) is the famous T 3 law for specific heats of solids
at low temperatures derived by Debye in 1912. There is a universality to it. The derivation
relies only on having modes with ω ∼ k at low k. There are always three such modes for any
elastic solid. These are the sound waves in the solid. (The existence of these modes can also
be understood from the point of view of spontaneous symmetry breaking, but that is another
matter.) The power 3 is of course related to the fact that we have three spatial dimensions. So
any elastic solid will exhibit this behavior for the contribution from the lattice vibrations. As
we shall see shortly, the optical modes will not alter this result. Some sample values of the
Debye temperature are given in Table 8.1. This will give an idea of when the low temperature
approximation is applicable.

Table 8.1: Some sample Debye temperatures

Solid TD in K Solid TD in K

Gold 170 Aluminum 428
Silver 215 Iron 470

Platinum 240 Silicon 645
Copper 343.5 Carbon 2230
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For T � TD, we find

U =

(
V

2π2c3
s

)[
kT (~ωD)3 − 3

8
(~ωD)4 +O(TD/T )

]

= 3N

[
kT − 3

8
~ωD +O(TD/T )

]
(8.71)

The specific heat is then given by

Cv = k

(
V

2π2c3
s

)
(~ωD)3 +O(1/T 2) = 3Nk +O(1/T 2) (8.72)

Turning to the optical modes, we note that the frequency ω is almost independent of k,
for the whole range of k. So it is a good approximation to consider just one frequency ω0, for
each optical mode. Let Nopt be the total number of degrees of freedom in the optical mode of
frequency ω0. Then the corresponding internal energy is given by

Uopt = Nopt
~ω0

eβ~ω0 − 1
(8.73)

The specific heat contribution is given by

(Cv)opt = Nk
(β~ω0)2

(eβ~ω0 − 1)(1− e−β~ω0)

≈ Nk

[
1− 1

12

(
~ω0

kT

)2

+ · · ·
]

for T � ~ω0

≈ Nk

(
~ω0

kT

)2

exp(−~ω0/kT ) for T � ~ω0 (8.74)

These results were derived by Einstein a few years before Debye’s work.
Both contributions to the specific heat, the acoustic contribution given by Debye’s T 3-law

and the optical contribution given in (8.74), vanish as T → 0. This is in accordance with the
third law of thermodynamics. We see once again how the quantum statistics leads to the third
law. Further, the optical contribution is exponentially small at low temperatures. Thus the
inclusion of the optical modes cannot invalidate Debye’s T 3-law. Notice that even if we include
the slight variation of ω with k, the low temperature value will be as given in (8.74) if ω0 is
interpreted as the the lowest possible value of ω.

8.4 Applications of the Fermi-Dirac distribution

We now consider some applications of the Fermi-Dirac distribution (8.22). It is useful to start
by examining the behavior of this function as the temperature goes to zero. This is given by

n −→
{

1 ε < µ

0 ε > µ
(8.75)
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Thus all states below a certain value, which is the zero-temperature value of the chemical
potential, are filled with one fermion each. All states above this value are empty. This is a
highly quantum state. The value of ε for the highest filled state is called the Fermi level. Given
the behavior (8.75) it is easy to calculate the Fermi level in terms of the number of particles.
Let pF correspond to the magnitude of the momentum of the highest filled level. Then

N = gs

∫ pF d3x d3p

(2π~)3
= gs V

p3
F

6π2~3
(8.76)

where gs is the number of polarizations for spin, gs = 2s+ 1. Denoting N/V = n̄, the Fermi
level is thus given by

εF =
p2

F

2m
=

~2

2m

(
6π2n̄

gs

)2/3

(8.77)

The ground state energy is given by

U = gs

∫ pF d3x d3p

(2π~)3

p2

2m

= V gs
p5

F

20π2m~3
=

3

10

~2

m

(
6π2

gs

)2/3
N5/3

V 2/3
(8.78)

= V
3

5
εF n̄ (8.79)

The pressure is then easily calculated as

p =
~2

5m

(
6π2

gs

)2/3

n̄5/3 (8.80)

(Since εF depends on n̄, it is easier to use (8.78) for this.) The multiparticle state here is said
to be highly degenerate as particles try to go to the single quantum state of the lowest energy
possible subject to the constraints of the exclusion principle. The pressure (8.80) is referred
to as the degeneracy pressure. Since fermions try to exclude each other, it is as if there is
some repulsion between them and this is the reason for this pressure. It is entirely quantum
mechanical in origin, due to the needed correlation between the electrons. As we will see, it
plays an important role in astrophysics.

The Fermi energy εF determines what temperatures can be considered as high or low. For
electrons in a metal, εF is of the order of eV , corresponding to temperatures around 104K.
Thus, for most of the physics considerations, electrons in a metal are at low temperatures.
For atomic gases, the Fermi level is much smaller due to the 1/m factor in (8.77), and room
temperature is high compared to εF. We will first consider the high temperature case, where
we expect small deviations from the classical physics.
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The expression for N , given by the normalization condition (8.23) is

n̄ =
N

V
= gs

∫
d3k

(2π)3

1

eβ(ε−µ) + 1
= gs

∫
d3k

(2π)3

ze−βε

1 + ze−βε

= gs
4

λ3
√
π

∫ ∞

0
duu2e−u

2
[
z − z2e−u

2
+ z3e−2u2 + · · ·

]

=
gs
λ3

(
−Li 3

2
(−z)

)
(8.81)

where λ is the thermal wavelength, defined as before, by λ =
√

2π~2/mkT . The partition
function Z, from (8.24), is given by

logZ = gs

∫
d3x d3p

(2π~)3
log
(

1 + e−β(ε−µ)
)

(8.82)

This being pV/kT , the equation of state is given by

p

kT
=

gs
V

∫
d3x d3p

(2π~)3
log
(

1 + e−β(ε−µ)
)

=
gs
λ3

(
−Li 5

2
(−z)

)
(8.83)

At low densities and high temperatures, we see from the power series expansion of the
polylogarithms that it is consistent to take z to be small. Keeping terms up to the quadratic
order in z, we get

z ≈ n̄λ3

gs
+

1

23/2

(
n̄λ3

gs

)2

+ · · ·

p

kT
= n̄

[
1 + n̄

λ3

gs 25/2
+ · · ·

]
(8.84)

So, as in the bosonic case, we are not far from the ideal gas law. The correction may be
identified in terms of the second virial coefficient as

B2 =
λ3

gs 25/2
(8.85)

This is positive; so, unlike the bosonic case, we would need a repulsive potential between
classical particles to mimic this effect via the classical expression (8.51) for B2.

8.4.1 Electrons in a metal

Consider a two-state system in quantum mechanics and, to begin with, we take the states to be
degenerate. Thus the Hamiltonian is just a diagonal 2× 2 matrix,

H0 =

(
E0 0

0 E0

)
(8.86)
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If we consider a perturbation to this system such that the Hamiltonian becomes

H = H0 + V = H0 +

(
0 v

v 0

)
=

(
E0 v

v E0

)
(8.87)

then the degeneracy between the two eigenstates of H0 is lifted and we have two eigenstates
with eigenvalues

E± = E0 ± v (8.88)

Now consider a system with N states, with the Hamiltonian as an N × N matrix. Starting
with all states degenerate, a perturbation would split the levels by an amount depending on
the perturbing term. We would still have N eigenstates, of different energies which will be
close to each other if the perturbation is not large. As N becomes very large, the eigenvalues
will be almost continuous; we get a band of states as the new eigenstates. This is basically
what happens in a solid. Consider N atoms on a lattice. The electronic states, for each
atom by itself, is identical to the electronic states of any other atom by itself. Thus we have
a Hamiltonian with a very large degeneracy for any of the atomic levels. The interatomic
forces act as a perturbation to these levels. The result is that, instead of each atomic level,
the solid has a band of energy levels corresponding to each unperturbed single-atom state.
Since typically N ∼ the Avogadro number, it is a very good approximation to treat the band
as having continuous energy eigenvalues between two fixed values. There are gaps between
different bands, reflecting the energy gaps in the single-atom case. Thus the structure of
electronic states in a solid is a series of well-separated bands with the energy levels within each
band so close together as to be practically continuous. Many of these eigenstates will have
wave functions localized around individual nuclei. These correspond to the original single-
atom energy states which are not perturbed very much by the neighboring atoms. Typically,
inner shell electrons in a multi-electron atom would reside in such states. However, for the
outer shell electrons, the perturbations can be significant enough that they can hop from one
atomic nucleus to a neighbor, to another neighbor and so on, giving essentially free electrons
subject to a periodic potential due to the nuclei. In fact, for the calculation of these bands,
it is a better approximation to start from free electrons in a periodic potential rather than
perturbing individual atomic states. These nonlocalized bands are crucial for the electrical
conductivity. The actual calculation of the band structure of a solid is a formidable problem,
but for understanding many physical phenomena, we only need the general structure.

Consider now a solid with the electronic states being a set of bands. We then consider
filling in these bands with the available electrons. Assume that the number of electrons is such
that a certain number of bands are completely filled, at zero temperature. Such a material is
an insulator, because if an electric field is applied, then the electrons cannot respond to the
field because of the exclusion principle, as there are no unoccupied states of nearby energy.
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Table 8.2: Some sample Fermi levels

Metal εF in eV Metal εF in eV

Gold 5.53 Aluminum 11.7
Silver 5.49 Iron 11.1

Copper 7.00 Zinc 9.47

The only available unoccupied states are in the next higher band separated by an energy gap.
As a result the electrical conductivity is zero. If the field is strong enough to overcome the gap,
then, of course, there can be conduction; this amounts to a dielectric breakdown.

However, when all the available electrons have been assigned to states, if there is a band of
nonlocalized states which is not entirely filled, it would mean that there are unoccupied states
very close to the occupied ones. Electrons can move into these when an electric field is applied,
even if the amount of energy given by the potential is very small. This will lead to nonzero
electrical conductivity. This is the case for conductors; they have bands which are not fully
filled. Such bands are called conducting bands, while the filled ones are called valence bands.

The nonlocalized states of the conducting band can be labeled by the electron momentum
~k with energy ε(k). The latter is, in general, not a simple function like ~2k2/2m, because of
interactions with the lattice of atoms and between electrons. In general it is not isotropic
either but will depend on the crystalline symmetry of the lattice. But for most metals, we can
approximate it by the simple form

ε =
~2k2

2m∗
(8.89)

The effect of interactions can be absorbed into an effective electron mass m∗. (Showing that
this can actually be done is a fairly complicated task; it goes by the name of fermi liquid
theory, originally guessed, with supporting arguments, by Landau and proved to some extent
by Migdal, Luttinger and others. We will not consider it here.) At zero temperature, when we
have a partially filled band, the highest occupied energy level within the band is the Fermi
level εF. The value of εF can be calculated from (8.77), knowing n̄, the number of electrons
(not bound to sites); this is shown in Table 8.2. Since 1 eV is of the order 104K in terms of
temperature, we see that, for phenomena at normal temperatures, we must consider the low
temperature regime of the Fermi-Dirac distribution. The fugacity z = eβµ is very large and we
need a large fugacity asymptotic expansion for various averages. This is done using a method
due to Sommerfeld.
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Consider the expression for n̄ from (8.81), which we can write as

n̄ = gs

∫
d3k

(2π)3

1

eβ(ε−µ) + 1

=
gs
λ3

4√
π

∫ ∞

0
du

u2

eu2−βµ + 1
=
gs
λ3

2√
π

∫ ∞

0
dw

√
w

ew−βµ + 1
(8.90)

where u = k
√
~2/2mkT and w = u2. The idea is to change the variable of integration to

w − βµ. The lower limit of integration will then be −βµ, which may be replaced by −∞ as a
first approximation. But in doing so, we need to ensure that the integrand vanishes at −∞.
For this one needs to do a partial integration first. Explicitly, we rewrite (8.90) as

n̄λ3

gs
=

4

3
√
π

∫ ∞

−βµ
dw

(w + βµ)3/2

(ew + 1)(e−w + 1)

=
4

3
√
π

∫ ∞

−∞
dw

(w + βµ)3/2

(ew + 1)(e−w + 1)
+ O(e−βµ) (8.91)

In the first line we have done a partial integration of the expression from (8.90); in the second
line we replaced the lower limit by −∞. The discrepancy in doing this is at least of order
e−βµ due to the e−w in the denominator of the integrand. This is why we needed a partial
integration. We can now expand (w + βµ)3/2 in powers of w; the contribution from large
values of |w| will be small because the denominator ensures the integrand is sharply peaked
around w = 0. Odd powers of w give zero since integrand would be odd under w → −w. Thus
∫ ∞

−∞
dw

(w + βµ)3/2

(ew + 1)(e−w + 1)
=

∫ ∞

−∞

dw

(ew + 1)(e−w + 1)

[
(βµ)3/2 + +

3

8
(βµ)−1/2w2 + · · ·

]

= (βµ)3/2 + (βµ)−1/2 π
2

8
+ · · · (8.92)

This gives us the equation for µ as

n̄λ3 3
√
π

4 gs
= (βµ)3/2 +

π2

8
(βµ)−1/2 + · · · (8.93)

By writing µ = µ0 + µ1 + · · · , we can solve this to first order as

βµ ≈ βεF
[

1− π2

12

(
kT

εF

)2

+ · · ·
]

(8.94)

where we have used the expression for εF in terms of n̄. As expected, the value of µ at zero
temperature is εF. Turning to the internal energy, by a similar procedure, we find

U

V
= gskT

4

5
√
π

∫ ∞

−∞
dw

(w + βµ)5/2

(ew + 1)(e−w + 1)
+O(e−βµ)

= gskT
4

5
√
π

[
(βµ)5/2 +

5π2

8
(βµ)1/2 + · · ·

]
(8.95)
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Using the result (8.94) for µ, this becomes

U

V
=

3

5
εF n̄

[
1 +

5π2

12

(
kT

εF

)2

+ · · ·
]

(8.96)

The most interesting result of this calculation is that there is an electronic contribution to the
specific heat which, at low temperatures, is given by

Cv = Nk
π2

2

kT

εF
+O(T 3) (8.97)

As expected from the third law, this too vanishes as T → 0.

8.4.2 White dwarf stars

A gas of fermions which is degenerate is also important in many other physical phenomena,
including astrophysics. Here we will briefly consider its role in white dwarf stars.

The absolute magnitude of a star which is proportional to its luminosity or total output
of energy per unit time is related to its spectral characteristic , which is in turn related to the
temperature of its photosphere. Thus a plot of luminosity versus spectral classification, known
as a Hertsprung-Russell diagram, is a useful guide to classifying stars. Generally, bluer stars or
hotter stars have a higher luminosity compared to stars in the red part of the spectrum. They
roughly fall into a fairly well defined curve. Stars in this category are called main sequence
stars. Our own star, the Sun, is a main sequence star. There are two main exceptions, white
dwarfs which tend to have low luminosity even though they are white and red giants which
have a higher luminosity than expected for the red part of the spectrum. White dwarfs have
lower luminosity because they have basically run of hydrogen for fusion and usually are not
massive enough to pass the threshold for fusion of higher nuclei. They are thus mostly made
of helium. The radiation is primarily from gravitational contraction. (Red giants are rather
low mass stars which have exhausted the hydrogen in their cores. But then the cores contract,
hydrogen from outer layers get pulled in somewhat and compressed enough to sustain fusion
outside the core. Because the star has a large radius, the total output is very high even though
the photosphere is not very hot, only around 4000K.)

Returning to white dwarfs, what keeps them from completely collapsing is the degeneracy
pressure due to electrons. The stars are hot enough for most of the helium to be ionized and
so there is a gas of electrons. The Fermi level is around 20MeV or so, while the temperature
in the core is of the order of 107K ∼ 103 eV . Thus the electron gas is degenerate and the
pressure due to this is important in maintaining equilibrium. Electron mass being ∼ 0.5MeV ,
the gas is relativistic. If we use the extreme relativistic formula, the energy-momentum relation
is

ε ∼ c |~p| (8.98)
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Calculating the Fermi level and energy density, we find

N

V
≡ n̄ = gs

∫ kF

0

d3k

(2π)3
= gs

k3
F

6π2

U

V
= gs~c

∫ kF

0

d3k

(2π)3
k =

gs~c
8π2

(
6π2n̄

gs

)4/3

≡ K n̄4/3

p =
K

3
n̄4/3 (8.99)

For the condition for hydrostatic equilibrium, consider a spherical shell of material in the
star, of thickness dr at a radius r from the center. If the density (which is a function of the
radius) is ρ(r), then the mass of this shell is ρ 4πr2dr. The attractive force pulling this towards
the center is −(Gmρ/r2) 4πr2dr, where m(r) is the mass enclosed inside the sphere of radius
r. The pressure difference between the inside and outside of the shell under consideration is
p(r)− p(r + dr), with an outward force (dp/dr)4πr2dr Thus equilibrium requires

dp

dr
= −Gmρ

r2
(8.100)

Further, the mass enclosed can be written as

m(r) =

∫ r

0
dr 4πr2 ρ (8.101)

These two equations, along with the equation of state, gives a second order equation for ρ(r).
The radius R of the star is defined by p(R) = 0.

What contributes to the pressure? This is the key issue in solving these equations. For a
main sequence star which is still burning hydrogen, the kinetic pressure (due to the random
movements of the material particles) and the radiation pressure contribute. For a white dwarf,
it is basically the degeneracy pressure. Thus we must solve these equations, using the pressure
from (8.99). The result is then striking. If the mass of the star is beyond a certain value, then
the electron degeneracy pressure is not enough to counterbalance it, and hence the star cannot
continue as a white dwarf. This upper limit on the mass of a white dwarf is approximately 1.4

times the mass of the Sun. This limit is known as the Chandrasekhar limit.
What happens to white dwarfs with higher masses? They can collapse and ignite other

fusion processes, usually resulting in a supernova. They could end up as a neutron star, where
the electrons, despite the degeneracy pressure, have been squeezed to a point where they
combine with the protons and we get a star made of neutrons. This (very dense) star is
held up by neutron degeneracy pressure. (The remnant from the Crab Nebula supernova
explosion is such a neutron star.) There is an upper limit to the mass of neutron stars as
well, by reasoning very similar to what led to the Chandrasekhar limit; this is known as the
Tolman-Oppenheimer-Volkov limit. What happens for higher masses? They may become quark
stars, and for even higher masses, beyond the stability limit of quark stars, they may completely
collapse to form a black hole.
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8.4.3 Diamagnetism and paramagnetism

Diamagnetism and paramagnetism refer to the response of a material system to an external
magnetic field Bi. To quantify this, we look at the internal energy Uof the material, considered
as a function of the magnetic field. The magnetization Mi of the material is then defined by

Mi =
1

V

(
− ∂U
∂Bi

)

S,V,N

(8.102)

The magnetization is the average magnetic dipole moment (per unit volume) which the
material develops in response to the field and, in general, is itself a function of the field Bi. For
ferromagnetic materials, the magnetization can be nonzero even when we turn off the external
field, but for other materials, for small values of the field, we can expect a series expansion in
powers of Bi, so that

Mi = χij Bj +O(B2) (8.103)

χij is the magnetic susceptibility of the material. In cases where the linear approximation
(8.103) is not adequate, we define

χij =

(
∂Mi

∂Bj

)
= − 1

V

(
∂2U

∂Bi ∂Bj

)

S,V,N

(8.104)

In general χij is a tensor, but for materials which are isotropic to a good approximation, we
can take χij = χ δij , defining a scalar susceptibility χ. Materials for which χ < 0 are said to be
diamagnetic while materials for which χ > 0 are said to be paramagnetic. The field ~H, which
appears in the Maxwell equation which has the free current ~J as the source, is related to the
field ~B by ~H = ~B(1− χ) = ~B/µ; µ is the magnetic permeability.

Regarding magnetization and susceptibility, there is a theorem which is very simple but
deep in its implications. It is originally due to Niels Bohr and later rediscovered by H.J. van
Leeuwen. The theorem can be rephrased as follows.

Theorem 8.4.1 — Bohr-van Leeuwen theorem. The equilibrium partition function of a system
of charged particles obeying classical statistics in an external magnetic field is independent
of the magnetic field.

It is very easy to prove this theorem. Consider the Hamiltonian of a system of N charged
particles in an external magnetic field. It is given by

H =

N∑

α=1

(pαi − qαAi(xαi) )2

2mα
+ V (x) (8.105)

where α refers to the particle, i = 1, 2, 3, as usual, and V is the potential energy. It could
include the electrostatic potential energy for the particles as well as the contribution from
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any other source. Ai(xαi) is the vector potential which is evaluated at the position of the α-th
particle. The classical canonical partition function is given by

QN =
1

N !

∫ ∏

α

d3xα d
3pα

(2π~)3
e−βH (8.106)

The strategy is to change the variables of integration to

Παi = pαi − qαAi(xαi) (8.107)

The Hamiltonian becomes

H =
N∑

α=1

Παi Παi

2mα
+ V (x) (8.108)

Although this eliminates the external potential Ai from the Hamiltonian, we have to be careful
about the Jacobian of the transformation. But in this case, we can see that the Jacobian is 1.
For the phase space variables of one particle, we find

(
dΠi

dxi

)
=

[
δij −q ∂Ai∂xj

0 δij

] (
dpj

dxj

)
(8.109)

The determinant of the matrix in this equation is easily verified to be the identity and the
argument generalizes to N particles. Hence

QN =
1

N !

∫ ∏

α

d3xα d
3Πα

(2π~)3
e−βH({Π,x}) (8.110)

We see that Ai has disappeared from the integral, proving the theorem. Notice that any mutual
binding of the particles via electrostatic interactions, which is contained in V (x), does not
change this conclusion. The argument extends to the grand canonical partition since it is∑

n z
nQN .

R For the cognoscenti, what we are saying is that one can describe the dynamics of charged
particles in a magnetic field in two ways. We can use the Hamiltonian (8.105) with the
symplectic form ω = dpi∧dxi or one can use the Hamiltonian (8.108) with the symplectic
form Ω = dΠi ∧dxi + q

∂Aj

∂xi
dxi ∧dxj . The equations of motion will be identical. But in the

second form, the Hamiltonian does not involve the vector potential. The phase volume
defined by Ω is also independent of Ai. Thus the partition function is independent of Ai.

This theorem shows that the explanation for diamagnetism and paramagnetism must come
from the quantum theory. We will consider these briefly, starting with diamagnetism. The
full treatment for an actual material has to take account of the proper wave functions of the
charged particles involved, for both the localized states and the extended states. We will
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consider a gas of charged particles, each of charge e and mass m, for simplicity. We take the
magnetic field to be along the third axis. The energy eigenstates of a charged particle in an
external uniform magnetic field are the so-called Landau levels, and these are labeled by p, k, λ.
The energy eigenvalues are

Ek,p =
p2

2m
+ ~ω (k + 1

2), k = 0, 1, · · · (8.111)

where ω = eB/m. p is the momentum along the third axis and k labels the Landau level. Each
of these levels has a degeneracy equal to

Degeneracy =
eB

(2π~)
×Area of sample (8.112)

The states with the same energy eigenvalue are labeled by λ. The particles are fermions
(electrons) and hence the occupation number of each state can be zero or one. Thus the
partition function Z is given by

logZ =
∑

λ,k,p

log
(

1 + e−βEk,p+βµ
)

=

∫
d2x

eB

(2π~)

dp dx3

(2π~)

∑

k

log
(

1 + z e−βEk,p
)

(8.113)

where z is the fugacity as usual. For high temperatures, we can consider a small z-expansion.
Retaining only the leading term,

logZ = V
eB

(2π~)2
(2πmkT )

1
2 z

e−x/2

1− e−x + · · · , x =
~ω
kT

(8.114)

For high temperatures, we can also use a small x-expansion,

e−x/2

1− e−x ≈
1

x

(
1− x2

24
+ · · ·

)
(8.115)

This leads to

logZ = V

(
2πmkT

(2π~)2

) 3
2

z

(
1− x2

24
+ · · ·

)
(8.116)

The definition (8.102) is equivalent to dU = TdS−pdV +µdN−MV dB. From pV = kT logZ,
we have G− F = µN − F = kT logZ, so that

d(kT logZ) = dG− dF = Ndµ+ SdT + pdV +MV dB (8.117)

which shows that

M =
kT

V

(
∂ logZ

∂B

)

T,V,µ

=
kT

V

(
∂ logZ

∂B

)

T,V,z

(8.118)
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Using (8.102), (8.118), we see that

M =

(
2πmkT

(2π~)2

) 3
2

z

[
− 1

12

(
e~
m

)2 B

kT
+ · · ·

]
(8.119)

Further, the average particle number is given by

N ≡ z
(
∂ logZ

∂z

)

T,V,B

= V

(
2πmkT

(2π~)2

) 3
2

z

(
1− x2

24
+ · · ·

)
(8.120)

Using this to eliminate z, we find from (8.119),

M =
N

V

[
− 1

12

(
e~
m

)2 B

kT
+ · · ·

](
1− x2

24

)−1

≈ N

V

[
− 1

12

(
e~
m

)2 B

kT

]
(8.121)

The diamagnetic susceptibility is thus

χ ≈ −N
V

(
e~
m

)2 1

12 kT
(8.122)

Although the quantum mechanical formula for the energy levels is important in this derivation,
we have not really used the Fermi-Dirac distribution, since only the high temperature case
was considered. At low temperatures, the Fermi-Dirac distribution will be important. The
problem also becomes closely tied in with the quantum Hall effect, which is somewhat outside
the scope of what we want to discuss here. So we will not consider the low temperature case
for diamagnetism here. Instead we shall turn to a discussion of paramagnetism.

Paramagnetism can arise for the spin magnetic moment of the electron. Thus this is also
very much a quantum effect. The Hamiltonian for a charged point particle including the
spin-magnetic field coupling is

H =
(p− eA)2

2m
− e

2m
γ ~S · ~B (8.123)

Here ~S is the spin vector and γ is the gyromagnetic ratio. For the electron ~S = ~
2~σ, ~σ being

the Pauli matrices, and γ is very close to 2; we will take γ = 2. Since we want to show how a
positive χ can arise from the spin magnetic moment, we will, for this argument, ignore the
vector potential A in the first term of the Hamiltonian. The energy eigenvalues are thus

Ep,± =
p2

2m
∓ µ0B, µ0 =

e~
2m

(8.124)

The partition function Z is thus given by

logZ =

∫
d3xd3p

(2π~)3

[
log

(
1 + z+e

−βp
2

2m

)
+ log

(
1 + z−e

−βp
2

2m

)]
(8.125)



8.4 Applications of the Fermi-Dirac distribution 103

where z± = exp(βµ±) with

µ± = µ± µ0B (8.126)

From logZ, we get

M =
1

V
(kT )

(
∂ logZ

∂B

)

z

= µ0(n+ − n−)

n± =

∫
d3p

(2π~)3

1

eβ( p
2

2m
−µ±) + 1

(8.127)

By taking z(∂ logZ/∂z), we see that the number density of electrons for both spin states
together is n = n+ + n−. For high temperatures, we can approximate the integral in (8.127)
by

n± ≈
∫

d3p

(2π~)3
e−β

p2

2m eβµ± =

[
2πmkT

(2π~)2

] 3
2

eβµ± (8.128)

Using this, the magnetization becomes,

M = µ0 n tanh

(
µ0B

kT

)

≈ µ2
0n

kT
B, for µ0B � kT (8.129)

The susceptibility at high temperatures is thus given as

χ =
µ2

0 n

kT
(8.130)

Turning to low temperatures, notice that we have already obtained the required expansion
for the integral in (8.127); this is what we have done following (8.90), so we can use the
formula (8.94) for µ, along with (8.77) for the Fermi level in terms of n̄, applied in the present
case to µ± separately. Thus

µ± = εF(n±)

[
1− π2

12

(
kT

εF(n±)

)2

+ · · ·
]

εF(n±) =
~2

2m
(6π2n±)

2
3 (8.131)

Defining ∆ = n+ − n−, we can write

εF(n±) = εF(n)
]
n=(1±∆/n)

, εF =
~2

2m
(3π2n)

2
3 (8.132)

The fact that µ+ − µ− = 2µ0B from (8.126) now can be written as

2µ0B = εF

[
(1 + ∆/n)

2
3 − (1−∆/n)

2
3

]
− π2

12

(
kT

εF

)2
[

1

(1 + ∆/n)
2
3

− 1

(1−∆/n)
2
3

]
+ · · ·
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(8.133)

After solving this for ∆/n , we can get the magnetization as M = µ0∆ or χ = µ0∆/B. Since
∆ = 0 for B = 0, to linear order in the magnetic field, we find

∆

n
=

3

2

µ0B

εF

[
1− π2

12

(
kT

εF

)2

+ · · ·
]

(8.134)

The susceptibility at low temperatures is then

χ =
3

2

µ2
0 n

εF

[
1− π2

12

(
kT

εF

)2

+ · · ·
]

(8.135)

The susceptibility from spin magnetic moment shows paramagnetic bahavior both at high and
low temperatures, as seen from (8.130) and (8.135).



9. The Carathéodory principle

The formulation of the second law from thermodynamics used the concept of heat engines,
at least indirectly. But the law is very general and one could ask whether there is another
formulation which does not invoke heat engines, but leads to the notion of absolute temperature
and the principle that entropy cannot spontaneously decrease. Such a version of the second
law is obtained in an axiomatization of thermodynamics due to C. Carathéodory.

9.1 Mathematical Preliminaries

We will start with a theorem on differential forms which is needed to formulate Carathéodory’s
version of the second law.

Before proving Carathéodory’s theorem, we will need the following result.

Theorem 9.1.1 — Integrating factor theorem. Let A = Aidx
i denote a differential one-form.

If A ∧ dA = 0, then at least locally, one can find an integrating factor for A; i.e., there exist
functions τ and φ such that A = τ dφ.

The proof of this result is most easily done inductively in the dimension of the space. First
we consider the two-dimensional case, so that i = 1, 2. In this case the condition A ∧ dA = 0 is
vacuous. Write A = A1dx

1 +A2dx
2. We make a coordinate transformation to λ, φ where

dx1

dλ
= −f(x1, x2)A2

dx2

dλ
= f(x1, x2)A1 (9.1)

where f(x1, x2) is an arbitrary function which can be chosen in any convenient way. This
equation shows that

A1
∂x1

∂λ
+A2

∂x2

∂λ
= 0 (9.2)
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Equations (9.1) define a set of nonintersecting trajectories, λ being the parameter along the
trajectory. We choose φ as the coordinate on transverse sections of the flow generated by (9.1).
Making the coordinate transformation from x1, x2 to λ, φ, we can now write the one-form A as

A =

(
A1
∂x1

∂λ
+A2

∂x2

∂λ

)
dλ+

(
A1
∂x1

∂φ
+A2

∂x2

∂φ

)
dφ

= τ dφ (9.3)

τ = Ai
∂xi

∂φ

This proves the theorem for two dimensions. In three dimensions, we have

A = A1dx
1 +A2dx

2 +A3dx
3 (9.4)

The strategy is to start by determining τ , φ for the A1, A2 subsystem. We choose the new
coordinates as λ, φ, x3 and impose (9.1). Solving these, we will find x1 and x2 as functions of
λ and x3. The trajectories will also depend on the staring points which may be taken as points
on the transverse section and hence labeled by φ. Thus we get

x1 = x1(λ, φ, x3), x2 = x2(λ, φ, x3) (9.5)

The one-form A in (9.4) now becomes

A =

(
A1
∂x1

∂λ
+A2

∂x2

∂λ

)
dλ+

(
A1
∂x1

∂φ
+A2

∂x2

∂φ

)
dφ

+A3dx
3 +

(
A1
∂x1

∂x3
+A2

∂x2

∂x3

)
dx3

= τ dφ+ Ã3dx
3 (9.6)

Ã3 = A3 +

(
A1
∂x1

∂x3
+A2

∂x2

∂x3

)

We now consider imposing the equations A ∧ dA = 0,

A ∧ dA =
[
Ã3(∂λAφ − ∂φAλ) +Aλ(∂φÃ3 − ∂3Aφ) +Aφ(∂3Aλ − ∂λÃ3)

]
dx3 ∧ dλ ∧ dφ

= 0 (9.7)

Since Aλ = 0 and Aφ = τ from (9.6), this equation becomes

Ã3
∂τ

∂λ
− τ ∂Ã3

∂λ
= 0 (9.8)

Writing Ã3 = τ h, this becomes

τ2 ∂h

∂λ
= 0 (9.9)

Since τ is not identically zero for us, we get ∂h/∂λ = 0 and, going back to (9.6), we can write

A = τ
[
dφ+ h(φ, x3) dx3

]
(9.10)
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The quantity in the square brackets is a one-form on the two-dimensional space defined by
φ, x3. For this we can use the two-dimensional result and write it as τ̃ dφ̃, so that

A = ττ
[
dφ+ h(φ, x3) dx3

]
= τ τ̃dφ̃ ≡ T dφ̃ (9.11)

T = τ τ̃ . This proves the theorem for the three-dimensional case.
The extension to four dimensions follows a similar pattern. The solutions to (9.1) become

x1 = x1(λ, φ, x3, x4), x2 = x2(λ, φ, x3, x4) (9.12)

so that we can bring A to the form

A =

(
A1
∂x1

∂φ
+A2

∂x2

∂φ

)
dφ+

(
A3 +A1

∂x1

∂x3
+A2

∂x2

∂x3

)
dx3

+

(
A4 +A1

∂x1

∂x4
+A2

∂x2

∂x4

)
dx4

= τ dφ+ Ã3dx
3 + Ã4dx

4 (9.13)

We now turn to imposing the condition A ∧ dA = 0. In local coordinates this becomes

Aα(∂µAν − ∂νAµ) +Aµ(∂νAα − ∂αAν) +Aν(∂αAµ − ∂µAα) = 0 (9.14)

There are four independent conditions here corresponding to (α, µ, ν) = (1, 2, 3), (4, 1, 2),

(3, 4, 1), (3, 2, 4). Using Aλ = 0 and Aφ = τ , these four equations become

Ã3
∂τ

∂λ
− τ ∂Ã3

∂λ
= 0 (9.15)

Ã4
∂τ

∂λ
− τ ∂Ã4

∂λ
= 0 (9.16)

Ã4
∂Ã3

∂λ
− Ã3

∂Ã4

∂λ
= 0 (9.17)

Ã3
∂Ã4

∂φ
− Ã4

∂Ã3

∂φ
+ τ

∂Ã3

∂x4
− Ã3

∂τ

∂x4
+ Ã4

∂τ

∂x3
− τ ∂Ã4

∂x3
= 0 (9.18)

Again, we introduce h and g by Ã3 = τ h, Ã4 = τ g. Then equations (9.15) and (9.16) become

∂h

∂λ
= 0,

∂g

∂λ
= 0 (9.19)

Equation (9.17) is then identically satisfied. The last equation, namely, (9.18), simplifies to

h
∂g

∂φ
− g ∂h

∂φ
+

∂h

∂x4
− ∂g

∂x3
= 0 (9.20)

Using these results (9.13) becomes

A = τ
[
dφ+ hdx3 + gdx4

]
(9.21)
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The quantity in the square brackets is a one-form on the three-dimensional space of φ, x3, x4

and we can use the previous result for an integrating factor for this. The condition for the
existence of an integrating factor for dφ + hdx3 + gdx4 is precisely (9.20). Thus if we have
(9.20), we can write dφ+ hdx3 + gdx4 as tds for some functions t and s, so that finally A takes
the form A = T dS. Thus the theorem is proved for four dimensions. The procedure can be
extended to higher dimensions recursively, establishing the theorem for all dimensions.

Now we turn to the basic theorem needed for the Carathéodory formulation. Consider an
n-dimensional manifold M with a one-form A on it. A solution curve to A is defined by A = 0

along the curve. Explicitly, the curve may be taken as given by a set of function xi = ξi(t)

where t is the parameter along the curve and

Ai
dxi

dt
= Ai ξ̇

i = 0 (9.22)

In other words, the tangent vector to the curve is orthogonal to Ai. The curve therefore
lies on an (n − 1)-dimensional surface. Two points, say, P and P ′ on M are said to be A-
accessible if there is a solution curve which contains P and P ′. Carathéodory’s theorem is the
following:

Theorem 9.1.2 — Carathéodory’s theorem. If in the neighborhood of a point P there are
A-inaccessible points, then A admits an integrating factor; i.e., A = T dS where T and S
are well defined functions in the neighborhood.

The proof of the theorem involves a reductio ad absurdum argument which constructs paths
connecting P to any other point in the neighborhood. (This proof is due to H.A. Buchdahl,
Proc. Camb. Phil. Soc. 76, 529 (1979).) For this, define

Cijk = Ai(∂jAk − ∂kAj) +Ak(∂iAj − ∂jAi) +Aj(∂kAi − ∂iAk) (9.23)

Now consider a point P ′ near P . We have a displacement vector εηi for the coordinates of P ′

(from P ). ηi can in general have a component along Ai and some components orthogonal to
Ai.The idea is to solve for these from the equation A = 0. Let ξi(t) be a path which begins
and ends at P , i.e., ξi(0) = ξi(1) = 0, 0 ≤ t ≤ 1, and which is orthogonal to Ai. Thus it is
a solution curve. Any closed curve starting at P and lying in the (n − 1)-dimensional space
orthogonal to Ai can be chosen. Consider now a nearby path given by xi(t) = ξi(t) + εηi(t).
This will also be a solution curve if AI(ξ + εη)(ξ̇ + εη̇)i = 0. Expanding to first order in ε, this
is equivalent to

Aiη̇
i + ξ̇i

(
∂Ai
∂xj

)
ηj = 0 (9.24)

where we also used Aiξ̇
i = 0. We may choose ξ̇i to be of the form ξ̇i = f ijAj where f ij is

antisymmetric, to be consistent with Aiξ̇i = 0. We can find quantities f ij such that this is true;
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in any case, it is sufficient to show one path which makes P ′ accessible. So we may consider
ξ̇i’s of this form. Thus (9.24) becomes

Aiη̇
i + ηj (∂jAi)f

ikAk = 0 (9.25)

This is one equation for the n components of the displacement ηi. We can choose the n − 1

components of ηi which are orthogonal to Ai as we like and view this equation as determining
the remaining component, the one along Ai. So we rewrite this equation as an equation for
Aiη

i as follows.

d

dt
(Aiη

i) = Ȧiη
i +Aiη̇

i

= (∂jAi)ξ̇
jηi − ηj(∂jAi)f ikAk

= −ηif jk(∂iAj − ∂jAi)Ak
= −1

2
ηif jk [Ak(∂iAj − ∂jAi) +Aj(∂kAi − ∂iAk) +Ai(∂jAk − ∂kAj)]

+
1

2
(A · η)f jk(∂jAk − ∂kAj)

= −1

2
ηif jkCkij +

1

2
(A · η)f ij(∂iAj − ∂jAi) (9.26)

This can be rewritten as

d

dt
(A · η)− F (A · η) = −1

2
(Ckijη

if jk) (9.27)

where F = 1
2f

ij(∂iAj − ∂jAi). The important point is that we can choose f ij , along with a
coordinate transformation if needed, such that Ckijf jk has no component along Ai. For this,
notice that

Cijkf
jkAi =

[
A2Fij −AiAkFkj +AjAkFki

]
f ij (9.28)

where Fij = ∂iAj − ∂jAi. There are 1
2n(n − 1) components for f ij , for which we have one

equation if we set Cijkf jkAi to zero. We can always find a solution; in fact, there are many
solutions. Making this choice, Cijkf jk has no component along Ai, so the components of η
on the right hand side of (9.27) are orthogonal to Ai. As mentioned earlier, there is a lot of
freedom in how these components of η are chosen. Once they are chosen, we can integrate
(9.27) to get A · η, the component along Ai. Integrating (9.27), we get

A · η(1) =

∫ 1

0
dt exp

(∫ 1

t
dt′F (t′)

) (
1
2Cijkη

if jk
)

(9.29)

We have chosen η(0) = 0. It is important that the right hand side of (9.27) does not involve
A · η for us to be able to integrate like this. We choose all components of ηi orthogonal to Ai
to be such that

ε ηi = coordinates of P ′ orthogonal to Ai (9.30)
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We then choose f jk, if needed by scaling it, such that A · η(1) in (9.30) gives Ai(xP ′ − xP )i.
We have thus shown that we can always access P ′ along a solution curve. The only case where
the argument would fail is when Cijk = 0. In this case, A · η(1) as calculated is zero and we
have no guarantee of matching the component of the displacement of P ′ along the direction
of Ai. Thus if there are inaccessible points in the neighborhood of P , then we must have
Cijk = 0. In this case, by the previous theorem, A admits an integrating factor and we can
write A = T dS for some functions T and S in the neighborhood of P . This completes the
proof of the Carathéodory theorem.

9.2 Carathéodory statement of the second law

The statement of the second law due to Carathéodory is:

Carathéodory Principle: In the neighborhood of any equilibrium state of a physical
system with any number of thermodynamic coordinates, there exist states which
are inaccessible by adiabatic processes.

The adiabatic processes can be quite general, not necessarily quasi-static. It is easy to see
that this leads immediately to the notion of absolute temperature and entropy. This has been
discussed in a concise and elegant manner in Chandrasekhar’s book on stellar structure. We
briefly repeat his argument for completeness. For simplicity, consider a gas characterized by
pressure p and volume V , and (empirical) temperature t, only two of which are adequate to
specify the thermodynamic state, the third being given by an equation of state. Since these are
the only variables, dQ has an integrating factor and we may write

dQ = τ dσ (9.31)

where σ and τ will be functions of the variables p, V , t. The power of Carathéodory’s
formulation becomes clear when we consider two such systems brought into thermal contact
and come to equilibrium. We then have a common temperature t and the thermodynamic
variables can now be taken as V1, V2, t (or t and one variable from each of (p1, V1), (p2, V2)).
We also have dQ = dQ1 + dQ2. The number of variables is now three; nevertheless, the
Carathéodory principle tells us that we can write

τ dσ = τ1 dσ1 + τ2 dσ2 (9.32)

We now choose t, σ1, σ2 as the independent variables. Equation (9.32) then leads to

∂σ

∂σ1
=
τ1

τ
,

∂σ

∂σ2
=
τ2

τ
,

∂σ

∂t
= 0 (9.33)

The last of these equations tells us that σ is only a function of σ1 and σ2, σ = σ(σ1, σ2). Further,
since σ is a well-defined function of the various variables, derivatives on σ commute and so

∂

∂t

∂σ

∂σ1
− ∂

∂σ1

∂σ

∂t
= 0 (9.34)



9.2 Carathéodory statement of the second law 111

with a similar relation for derivatives with respect to σ2 as well. Thus we have the result

∂

∂t

(τ1

τ

)
= 0,

∂

∂t

(τ2

τ

)
= 0 (9.35)

Equivalently, we can write

1

τ1

∂τ1

∂t
=

1

τ2

∂τ2

∂t
=

1

τ

∂τ

∂t
(9.36)

This shows that the combination (1/τ)(∂τ/∂t) is independent of the system and is a universal
function of the common variable t. Taking this function as g(t) and integrating, we get

τ = Σ(σ1, σ2)C exp

(∫ t

t0

dt g(t)

)

τ1 = Σ1(σ1)C exp

(∫ t

t0

dt g(t)

)

τ2 = Σ2(σ2)C exp

(∫ t

t0

dt g(t)

)
(9.37)

The τ ’s are determined up to a function of the σ’s; we take this arbitrariness as C Σ, where C is
a constant and Σ is a function of the σ’s involved. We can now define the absolute temperature
as

T ≡ C exp

(∫ t

t0

dt g(t)

)
(9.38)

Notice that, in the case under consideration, T1 = T2 = T as expected for equilibrium. This
gives dQ1 = TΣ1dσ1, etc. The relation dQ = dQ1 + dQ2 now reduces to

Σ dσ = Σ1 dσ1 + Σ2 dσ2 (9.39)

In the two-dimensional space with coordinates σ1, σ2, the vector (Σ1,Σ2) has vanishing curl,
i.e., ∂1Σ2 − ∂2Σ1 = 0, since Σ1 only depends on σ1 and similarly for Σ2. Thus (9.39) shows
that Σdσ is a perfect differential. This means that there exists a function S such that Σdσ = dS;
this also means that Σ can depend on σ1 and σ2 only through the combination σ(σ1, σ2). Thus
finally we have

dQ = T dS (9.40)

In this way, the Carathéodory principle leads to the definition of entropy S.
One can also see how this leads to the principle of increase of entropy. For this, consider

a system with n thermodynamic variables. The entropy will be a function of these. We can
alternatively choose n− 1 of the given variables and the entropy S to characterize states of
the system. Now we ask the question: Given a state A, can we find a path which takes us via
adiabatic processes to another state C? It is useful to visualize this in a diagram, with S as
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S

V

A
B

C

D

Figure 9.1: Illustrating the Carathéodory principle and increase of entropy

one of the axes, as in Fig. 9.1. We show one of the other axes, but there could be many. To
get to C, we can start from A and go along a quasi-static reversible adiabatic to B and then,
via some nonquasi-static process such as stirring, mixing, etc., get to C, keeping the system
in adiabatic isolation. This second process can be irreversible. The idea is that the first part
does not change the entropy, but brings the other variables to their desired final value. Then
we move to the required value of S by some irreversible process. As shown SC > SB = SA.
Suppose the second process can also decrease the entropy in some cases, so that we can go
from B to D by some similar process. Then we see that all states close to B are accessible.
Starting from any point, we can move along the surface of constant S to get to the desired
value of the variables, except for S and then jump to the required value of S by the second
process. This contradicts the Carathéodory principle. Thus, if we postulate this principle, then
we have to conclude that in all irreversible processes in adiabatic isolation the entropy has
to either decrease or increase; we cannot have it increase in some processes and decrease
in some.other processes. So S should be either a nondecreasing quantity or a nonincreasing
quantity. The choice of the sign of the absolute temperature, via the choice of the sign of the
constant C in (9.38), is related to which case we choose for entropy. The conventional choice,
of course, is to take T ≥ 0 and entropy to be nondecreasing. In other words

∆S ≥ 0 (9.41)

Thus effectively, we have obtained the version of the second law as given in Proposition 4 in
chapter 3.



10. Entropy and Information

The concept of entropy is one of the more difficult concepts in physics. Historically, it emerged
as a consequence of the second law of thermodynamics, as in (3.16). Later, Boltzmann gave
a general definition for it in terms of the number of ways of distributing a given number of
particles, as in (7.11). But a clearer understanding of entropy is related to its interpretation in
terms of information. We will briefly discuss this point of view here.

10.1 Information

We want to give a quantification of the idea of information. This is originally due to C. Shannon.
Consider a random variable x with probability distribution with p(x). For simplicity,

initially, we take x to be a discrete random variable, with N possible values x1, x2, · · · , xN ,
with pi ≡ p(xi) being the probability for xi. We may think of an experiment for which the
outcomes are the xi, and the probability for xi being pi in a trial run of the experiment. We
want to define a concept of information I(p) associated with p(x). The key idea is to note that
if an outcome has probability 1, the occurrence of that outcome carries no information, since it
was clear that it would definitely happen. If an outcome has a probability less than 1, then its
occurrence can carry information. If the probability is very small, and the outcome occurs, it
is unlikely to be a random event and so it makes sense to consider it as carrying information.
Based on this intuitive idea, we expect information to be a function of the probability. By
convention, we choose I(p) to be positive. Further from what we said, I(1) = 0. Now consider
two completely independent events, with probabilities p and p̃. The probability for both to
occur is p p̃, and will carry information I(p p̃). Since the occurrence of each event separately
carries information I(p) and I(p̃), we expect

I(p p̃) = I(p) + I(p̃) (10.1)

Finally, if the probability of some event is changed by a small amount, we expect the information
for the event to be changed by a small amount as well. This means that we would like I(p) to



114 Chapter 10. Entropy and Information

be a continuous and differentiable function of p. Thus we need a continuous and differentiable
function I(p) obeying the requirements I(p) ≥ 0, I(1) = 0 and I(p p̃) = I(p) + I(p̃). The only
function which obeys these conditions is given by

I(p) = − log p (10.2)

This is basically Shannon’s definition of information. The base used for this logarithm is
not specified by what has been said so far; it is a matter of choosing a unit for information.
Conventionally, for systems using binary codes, we use log2 p, while for most statistical systems
we use the natural logarithms.

Consider now the outcome xi which has a probability pi. The amount of information for xi
is − log pi. Suppose now that we do N trials of the experiment, where N is very large. Then
the number of times xi will be realized is N pi. Thus it makes sense to define an average or
expectation value for information as

S =
∑

i

pi I(pi) = −
∑

i

pi log pi (10.3)

This expected value for information is Shannon’s definition of entropy.
This definition of entropy requires some clarification. It stands for the amount of informa-

tion which can be coded using the available outcomes. This can be made clearer by considering
an example, say, of N tosses of a coin, or equivalently a stream of 0s and 1s, N units long.
Each outcome is then a string of 0s and 1s; we will refer to this as a word, since we may think
of it as the binary coding of a word.. We take these to be ordered so that permutations of 0s
and 1s in a given word will be counted as distinct. The total number of possibilities for this
is 2N , and each occurs with equal probability. Thus the amount of information in realizing a
particular outcome is I = N log 2, or N bits if we use logarithm to base 2. The entropy of the
distribution is

S =
∑ 1

2N
log 2N = N log 2 (10.4)

Now consider a situation where we specify or fix some of the words. For example, let us say
that all words start with 0, Then the probability of any word among this restricted set is now
1/2N−1, and entropy becomes S = (N − 1) log 2. Thus entropy has decreased because we have
made a choice; we have used some information. Thus entropy is the amount of information
which can be potentially coded using a probability distribution.

This definition of entropy is essentially the same as Boltzmann’s definition or what we have
used in arriving at various distribution functions for particles. For this consider the formula for
entropy which we used in chapter 7, equation (7.13),

S ≈ k
[
N logN −N −

∑

i

(ni log ni − ni)
]

(10.5)
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Here the ni is the occupation number for the state i. In limit of large N , ni/N may be
interpreted as the probability for the state i. Using the symbol pi for this, we can rewrite (10.5)
as

S

k
= −

∑

i

pi log pi (10.6)

showing that the entropy as defined by Boltzmann in statistical physics is the same as Shannon’s
information-theoretic definition. (In thermodynamics, we measure S in J/K; we can regard
Boltzmann’s constant k as a unit conversion factor. Thus S/k from thermodynamics is the
quantity to be compared to the Shannon definition.) The states in thermodynamics are specified
by the values of positions and momenta for the particles, so the outcomes are continuous. A
continuum generalization of (10.6) is then

S

k
= −

∫
dN p log p (10.7)

where dN is an appropriate measure, like the phase space measure in (7.55).
Normally, we maximize entropy subject to certain averages such as the average energy and

average number of particles being specified. This means that the observer has, by observations,
determined these values and hence the number of available states is restricted. Only those
states which are compatible with the given average energy and number of particles are allowed.
This constrains the probability distribution which maximizes the entropy. If we specify more
averages, then the maximal entropy is lower. The argument is similar to what was given
after (10.4), but we can see this more directly as well. Let Aα, α = 1, 2, · · · , n be a set of
observables. The maximization of entropy subject to specifying the average values of these is
given by maximizing

S

k
=

∫ [
−p log p−

n∑

α

λαAα p

]
+

n∑

α

λα〈Aα〉 (10.8)

Here 〈Aα〉 are the average values which have been specified and λα are Lagrange multipliers.
Variation with respect to the λs give the required constraint

〈Aα〉 =

∫
Aα p (10.9)

The distribution p which extremizes (10.8) is given by

p̄n =
1

Zn
e−

∑n
α λαAα , Zn =

∫
e−

∑n
α λαAα (10.10)

The corresponding entropy is given by

S̄n
k

= logZn +
n∑

α

λα〈Aα〉 (10.11)
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Now let us consider specifying n+ 1 averages. In this case, we have

p̄n+1 =
1

Zn+1
e−

∑n+1
α λαAα , Zn+1 =

∫
e−

∑n+1
α λαAα

S̄n+1

k
= logZn+1 +

n+1∑

α

λα〈Aα〉 (10.12)

This distribution reverts to p̄n, and likewise S̄n+1 → S̄n, if we set λn+1 to zero.
If we calculate 〈An+1〉 using the distribution p̄n and the answer comes out to be the

specified value, then there is no information in going to p̄n+1. Thus it is only if the distribution
which realizes the specified value 〈An+1〉 differs from p̄n that there is additional information
in the choice of 〈An+1〉. This happens if λn+1 6= 0. It is therefore useful to consider how S̄

changes with λα. We find, directly from (10.11),

∂S̄

∂λα
=

∑

β

λβ
∂

∂λα
〈Aβ〉 =

∑

β

λβ [−〈AαAβ〉+ 〈Aα〉 〈Aβ〉]

= −
∑

β

Mαβ λβ (10.13)

Mαβ = 〈AαAβ〉 − 〈Aα〉 〈Aβ〉

The change of the maximal entropy with the λs is given by a set of correlation functions
designated as Mαβ . We can easily see that this matrix is positive semi-definite. For this we use
the Schwarz inequality

[∫
B∗B

] [∫
C∗C

]
≥
[∫

B∗C

] [∫
C∗B

]
(10.14)

For any set of complex numbers γα, we take B = γαAα and C = 1. We then see from (10.14)
that γαγ∗βMαβ ≥ 0. (The integrals in (10.14) should be finite for the inequality to make
sense. We will assume that at least one of the λs, say corresponding to the Hamiltonian.
is always included so that the averages are finite.) Equation (10.13) then tells us that S̄
decreases as more and more λs pick up nonzero values. Thus we must interpret entropy as a
measure of the information in the states which are still freely available for coding after the
constraints imposed by the averages of the observables already measured. This also means
that the increase of entropy in a system left to itself means that the system tends towards
the probability distribution which is completely random except for specified values of the
conserved quantities. The averages of all other observables tend towards the values given
by such a random distribution. In such a state, the observer has minimum knowledge about
observables other than the conserved quantities.

10.2 Maxwell’s demon

There is a very interesting thought experiment due to Maxwell which is perhaps best phrased
as a potential violation of the second law of thermodynamics. The resolution of this problem
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highlights the role of entropy as information.
We consider a gas of particles in equilibrium in a box at some temperature T . The velocities

of the particles follow the Maxwell distribution (7.44),

f(v) d3v =
( m

2πkT

) 3
2

exp

(
−mv

2

2kT

)
d3v (10.15)

The mean square speed given by

〈v2〉 =
3kT

m
(10.16)

may be used as a measure of the temperature. Now we consider a partition which divides the
box into two parts. Further, we consider a small gate in the partition which can be opened
and closed and requires a very small amount of energy, which can be taken to be zero in an
idealized limit. Further, we assume there is a creature (“Maxwell’s demon") with a large brain
capacity to store a lot of data sitting next to this box. Now the demon is supposed to do the
following. Every time he sees a molecule of high speed coming towards the gate from the left
side, he opens the gate and lets it through to the right side. If he sees a slowly moving molecule
coming towards the gate from the right side, he opens it and lets the molecule through to the
left side. If he sees a slow moving molecule on the left side, or a fast moving one on the right
side, he does nothing. Now after a while, the mean square speed on the left will be smaller
than what it was originally, showing that the temperature on the left side is lower than T .
Correspondingly, the mean square speed on the right side is higher and so the temperature
there is larger than T . Effectively, heat is being transferred from a cold body (left side of the
box) to a hot body (the right side of the box). Since the demon imparts essentially zero energy
to the system via opening and closing the gate, this transfer is done with no other change, thus
seemingly providing a violation of the second law. This is the problem.

We can rephrase this in terms of entropy change. To illustrate the point, it is sufficient
to consider the simple case of N particles in the volume V forming an ideal gas with the
demon separating them into two groups of N/2 particles in volume V/2 each. If the initial
temperature is T and the final temperatures are T1 and T2, then the conservation of energy
gives T = 1

2(T1 + T2). Further, we can use the the Sackur-Tetrode formula (7.32) for the
entropies,

S = N k

[
5

2
+ log

(
V

N

)
+

3

2
log

(
U

N

)
+

3

2
log

(
4πm

3(2π~)2

)]
(10.17)

The change in entropy when the demon separates the molecules is then obtained as

∆S = S1 + S2 − S =
3N

2
log

(√
T1T2

T

)
(10.18)

Since
(
T1 + T2

2

)2

= T1T2 +

(
T1 − T2

2

)2

≥ T1T2 (10.19)
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we see that ∆S ≤ 0. Thus the process ends up decreasing the entropy in contradiction to the
second law.

The resolution of this problem is in the fact that the demon must have information about
the speeds of molecules to be able to let the fast ones to the right side and the slow ones to
the left side. This means that using the Sackur-Tetrode formula for the entropy of the gas in
the initial state is not right. We are starting off with a state of entropy (of gas and demon
combined) which is less than what is given by (10.17), once we include the information carried
by (or obtained via the observation of velocities by) the demon, since the specification of more
observables decreases the entropy as we have seen in the last section. While it is difficult to
estimate quantitatively this entropy, the expectation is that with this smaller value of S to begin
with, ∆S will come out to be positive and that there will be no contradiction with the second
law. Of course, this means that we are considering a generalization of the second law, namely
that the entropy of an isolated system does not decrease over time, provided all sources of
entropy in the information-theoretic sense are taken into account.

10.3 Entropy and gravity

There is something deep about the concept of entropy which is related to gravity. This is far
from being well understood, and is atopic of ongoing research, but there are good reasons
to think that the Einstein field equations for gravity may actually emerge as some some sort
of entropy maximization condition. A point of contact between gravity and entropy is for
spacetimes with a horizon, an example being a black hole. In an ultimate theory of quantum
gravity, spacetimes with a horizon may turn out to be nothing special, but for now, they may
be the only window to the connection between entropy and gravity. To see something of the
connection, we look at a spherical solution to the Einstein equations, corresponding to the
metric around a point (or spherical distribution of) mass. This is the Schwarzschild metric
given as

ds2 = c2dt2
(

1− 2GM

c2r

)
− dr2

(
1− 2GM

c2r

) − r2dθ2 − r2 sin2 θ dϕ2 (10.20)

We are writing this in the usual spherical coordinates (r, θ, ϕ) for the spatial dimensions. G is
Newton’s gravitational constant and c is the speed of light in vacuum. We can immediately see
that there are two singularities in this expression. The first is obviously at r = 0, similar to what
occurs in Newton’s theory for the gravitational potential, and the second is at r = 2GM/c2.
This second singularity is a two-sphere since it occurs at finite radius. Now, one can show
that r = 0 is a genuine singularity of the theory, in the sense that it cannot be removed by
a coordinate transformation. The singularity at r = 2GM/c2 is a coordinate singularity. It
is like the singularity at θ = 0, π when we use spherical coordinates and can be eliminated
by choosing a different set of coordinates. Nevertheless, the radius 2GM/c2 does have an
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important role. The propagation of light, in the ray optics approximation, is described by
ds = 0. As a result, one can see that nothing can escape from r < 2GM/c2 to larger values
of the radius, to be detected by observers far away. An observer far away who is watching
an object falling to the center will see the light coming from it being redshifted due to the
(1− 2GM/c2r) factor, eventually being redshifted to zero frequency as it crosses r = 2GM/c2;
the object fades out. For this reason, and because it is not a real singularity, we say that the
sphere at r = 2GM/c2 is a horizon. Because nothing can escape from inside the horizon, the
region inside is a black hole. The value 2GM/c2 is called the Schwarzschild radius.

Are there examples of black holes in nature? The metric (10.20) can be used to describe
the spacetime outside of a nearly spherical matter distribution such as a star or the Sun. For
the Sun, with a mass of about 2× 1030 kg, the Schwarzschild radius is about 1.4 km. The form
of the metric in (10.20) ceases to be valid once we pass inside the surface of the Sun, and
so there is no horizon physically realized for the Sun (and for most stars). (Outside of the
gravitating mass, one can use (10.20) which is how observable predictions of Einstein’s theory
such as the precession of the perihelion of Mercury are obtained.) But consider a star which is
more massive than the Chandrasekhar and Tolman-Oppenheimer-Volkov limits. If it is massive
enough to contract gravitationally overcoming even the quark degeneracy pressure, its radius
can shrink below its Schwarzschild radius and we can get an black hole. The belief is that
there is such a black hole at the center of our galaxy, and most other galaxies as well.

Returning to the physical properties of black holes, although classical theory tells us that
nothing can escape a black hole, a most interesting effect is that black holes radiate. This is a
quantum process. A full calculation of this process cannot be done without a quantum theory
of gravity (which we do not yet have). So, while the fact that black holes must radiate can be
argued in generality, the nature of the radiation can only be calculated in a semiclassical way.
The result of such a semiclassical calculation is that irrespective of the nature of the matter
which went into the formation of the black hole, the radiation which comes out is thermal,
following the Planck spectrum, corresponding to a certain temperature

TH =
~c3

8πkGM
(10.21)

Although related processes were understood by many scientists, the general argument for
radiation from black holes was due to Hawking and hence the radiation from any spacetime
horizon and the corresponding temperature are referred to as the Hawking radiation and
Hawking temperature, respectively.

Because there is a temperature associated with a black hole, we can think of it as a
thermodynamic system obeying

dU = T dS (10.22)

The internal energy can be taken as Mc2 following the Einstein mass-energy equivalence. We
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can then use (10.22) to calculate the entropy of a black hole as

SB−H =
c3

~
A

4G
(10.23)

(This formula for the entropy is known as the Bekenstein-Hawking formula.) Here A is the
area of the horizon, A = 4πR2

S, RS = 2GM/c2 being the Schwarzschild radius.
These results immediately bring up a number of puzzles.

1. A priori, there is nothing thermodynamic about the Schwarzschild metric or the radiation
process. The radiation can obtained from the quantized version of the Maxwell equations
in the background spacetime (10.20). So how do thermodynamic concepts arise in this
case?

2. One could envisage forming a black hole from a very ordered state of very low entropy.
Yet once the black hole forms, the entropy is given by (10.23). There is nothing wrong
with generating more entropy, but how did we lose the information coded into the
low entropy state? Further, the radiation coming out is thermal and hence carries no
information. So is there any way to understand what happened to it?
These questions can be sharpened further. First of all, we can see that the Schwarzschild
black hole can evaporate away by Hawking radiation in a finite time. This is because
the radiation follows the Planck spectrum and so we can use the Stefan-Boltzmann law
(8.38) to calculate the rate of energy loss. Then from

d(Mc2)

dt
= −σ T 4

HA (10.24)

we can obtain the evaporation time. Now, there is a problem with the radiation being
thermal. Time-evolution in the quantum theory is by unitary transformations and these
do not generate any entropy. So if we make a black hole from a very low entropy state
and then it evaporates into thermal radiation which is a high entropy state, how is this
compatible with unitary time-evolution? Do we need to modify quantum theory, or do
we need to modify the theory of gravity?

3. Usually, when we have nonzero entropy, we can understand that in terms of microscopic
counting of states. Are the number of states of a black hole proportional to SB−H? Is
there a quantitative way to show this?

4. The entropy is proportional to the area of the horizon. Usually, entropy is extensive
and the number of states is proportional to the volume (via things like d3xd3p/(2π~)3).
How can all the states needed for a system be realized in terms of a lower dimensional
surface?

There are some tentative answers to some of these questions. Although seemingly there is
a problem with unitary time-evolution, this may be because we cannot do a full calculation.
The semiclassical approximation breaks down for very small black holes. So we cannot reliably
calculate the late stages of black hole evaporation. Example calculations with black holes in
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lower dimensions can be done using string theory and this suggests that time-evolution is
indeed unitary and that information is recovered in the correlations in the radiation which
develop in later stages.

For most black hole solutions, there is no reliable counting of microstates which lead to the
formula (10.23). But there are some supersymmetric black holes in string theory for which
such a counting can be done using techniques special to string theory. For those cases, one does
indeed get the formula (10.23). This suggests that string theory could provide a consistent
quantum theory of black holes and, more generally, of spacetimes with horizons. It could also
be that the formula (10.23) has such universality (as many things in thermodynamics do)
that the microscopic theory may not matter and that if we learn to do the counting of states
correctly, any theory which has quantum gravity will lead to (10.23), with perhaps, calculable
additional corrections (which are subleading, i.e., less extensive than area).

The idea that a lower dimensional surface can encode enough information to reconstruct
dynamics in a higher dimensional space is similar to what happens in a hologram. So perhaps
to understand the entropy formula (10.23), one needs a holographic formulation of physical
laws. Such a formulation is realized, at least for a restricted class of theories, in the so-called
AdS/CFT correspondence (or holographic correspondence) and its later developments. The
original conjecture for this is due to J. Maldacena and states that string theory on an anti-de
Sitter(AdS) spacetime background in five dimensions (with an additional 5-sphere) is dual
to the maximally supersymmetric Yang-Mills gauge theory (which is a conformal field theory
(CFT)) on the boundary of the AdS space. One can, in principle, go back and forth, calculating
quantities in one using the other. Although still a conjecture, this does seem to hold for all
cases where calculations have been possible.

It is clear that this is far from a finished story. But from what has been said so far, there is
good reason to believe that research over the next few years will discover some deep connection
between gravity and entropy.
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