4-22-2016

Early Warning/Intervention Systems (presentation slides from NACOLE Symposium 2016 held at John Jay College)

Jennifer Helsby
University of Chicago

Samuel Carton
University of Chicago

Kenneth Joseph
University of Chicago

Ayesha Mahmud
University of Chicago

Youngsoo Park
University of Chicago

See next page for additional authors

How does access to this work benefit you? Let us know!

Follow this and additional works at: http://academicworks.cuny.edu/jj_pubs

Part of the Criminology and Criminal Justice Commons, Law Enforcement and Corrections Commons, and the Social Control, Law, Crime, and Deviance Commons

Recommended Citation
Helsby, Jennifer; Carton, Samuel; Joseph, Kenneth; Mahmud, Ayesha; Park, Youngsoo; Walsh, Joe; and Haynes, Lauren, "Early Warning/Intervention Systems (presentation slides from NACOLE Symposium 2016 held at John Jay College)" (2016). CUNY Academic Works.
http://academicworks.cuny.edu/jj_pubs/56

This Presentation is brought to you for free and open access by the John Jay College of Criminal Justice at CUNY Academic Works. It has been accepted for inclusion in Publications and Research by an authorized administrator of CUNY Academic Works. For more information, please contact AcademicWorks@cuny.edu.
Early Warning/Intervention Systems
Predicting Adverse Incidents Between Police and the Public

Center for Data Science & Public Policy

in collaboration with Charlotte-Mecklenburg Police Department, White House OSTP
White House Police Data Initiative

1. Open Data
2. Early Intervention/Warning Systems to prevent adverse interactions

These are two separate programs!
Defining Adverse Interactions

- Citizen Complaint
- Officer Complaint

Non-Complaint Related Incidents
- Use of Force
- Pursuits
- Rules of Conduct Violation
- Raid and Search
- Accidents
- Injuries

Internal Affairs

Sustained/Not Justified/Preventable?

Our definition of an "adverse" interaction
Current EIS

Early Intervention System

<table>
<thead>
<tr>
<th>EIS Status Summary For:</th>
<th></th>
<th>Freedom Division</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accidents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Frame</td>
<td>180 Days</td>
<td></td>
</tr>
<tr>
<td>No of Accidents</td>
<td>0</td>
<td>No of Complaints</td>
</tr>
<tr>
<td>Threshold</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold</td>
</tr>
<tr>
<td>Injuries</td>
<td>100 Days</td>
<td></td>
</tr>
<tr>
<td>Time Frame</td>
<td>100 Days</td>
<td>Use of Force</td>
</tr>
<tr>
<td>No of Injuries</td>
<td>1</td>
<td>Time Frame</td>
</tr>
<tr>
<td>Threshold</td>
<td>2</td>
<td>No of Uses of Force</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Threshold</td>
</tr>
<tr>
<td>Pursuits</td>
<td>180 Days</td>
<td>Combinations</td>
</tr>
<tr>
<td>Time Frame</td>
<td>180 Days</td>
<td>Time Frame</td>
</tr>
<tr>
<td>No of Pursuits</td>
<td>1</td>
<td>No of Events</td>
</tr>
<tr>
<td>Threshold</td>
<td>2</td>
<td>Threshold</td>
</tr>
<tr>
<td>Sick Leave/Days Off</td>
<td>90 Days</td>
<td>Sick Leave/Vacation</td>
</tr>
<tr>
<td>Time Frame</td>
<td>90 Days</td>
<td>Time Frame</td>
</tr>
<tr>
<td>No of Events</td>
<td>0</td>
<td>No of Events</td>
</tr>
</tbody>
</table>

Complaints

- **Time Frame**: 180 Days
- **No of Complaints**: 2
- **Threshold**: 3
Issues with Threshold-based EIS

• Not effective at providing early warning, which results in interventions being punitive and not preventive
 – **False positives**: ~40% of officers were flagged at some point in a one year time period
 – **Missed adverse interactions**: Only ~50% of those officers that went on to have an adverse incident in that time period were flagged by the system

• At least one vendor hard codes the thresholds and indicators into their systems, making changes difficult and costly.
Prioritization and Gaming

• Threshold-based systems assign yes/no flags rather than continuous risk scores

• Risk scores enable the department to:
 – Prioritize officers by risk
 – Explicitly tradeoff between accuracy and false positives

• Prone to gaming by officers
Our Approach: Data Science based Early Intervention System

• Use data science methods from other industries (both corporate and government) for early warning prediction systems

• Use historical data from adverse interactions, officer demographics, and behaviors to build predictive models that can predict:
 – Risk score for each officer at arbitrary time periods in the future (in the next 3 months, 6 months, 2 years, etc.)

• Human experts come up with ‘seed’ indicators and the algorithms expands them, creates, validates, and tunes the predictive model that adapts and improves over time.
CMPD Data

- 2002
 - Traffic Stops (1.6M)
 - Dispatches (13M)
 - Internal Affairs (20K)
 - Arrests (350K)
 - Crime Reports (1M)

- 2015
 - Field Interviews (180K)
 - Census/ACS
 - + Personnel and Organization
Validation Methodology

• Pretend it’s December 31, 2009:
 – build a model using the data available on that day,
 – see how well it predicts for 2010

• Pretend it’s December 31, 2010:
 – build a model using the data available on that day,
 – see how well it predicts for 2011

• Move forward a year and repeat
Results: We can reduce false positives by ~30% while increasing accuracy by ~10-15%

<table>
<thead>
<tr>
<th>Description</th>
<th>Improvement in DSaPP model over threshold system</th>
</tr>
</thead>
<tbody>
<tr>
<td>True positives - Officers correctly flagged</td>
<td>+12%</td>
</tr>
<tr>
<td>False Positives - Officers incorrectly flagged</td>
<td>-32%</td>
</tr>
<tr>
<td>True negatives - Officers correctly not flagged</td>
<td>+25%</td>
</tr>
<tr>
<td>False negatives - Officers incorrectly not flagged</td>
<td>-8%</td>
</tr>
</tbody>
</table>
Predictive Officer-Level Indicators

• Features related to prior history of problems increase risk:
 – Adverse incidents, complaints, suspensions, unjustified uses of force in the past
 – Notes in IA relating to concerns about communication or tactics

• Features related to stress increase risk:
 – High numbers of suicide calls, domestic violence calls
 – Calls with low mean victim age

• Some trainings decrease risk:
 – Less than lethal weapons training
Predictive EIS can support predictions at different levels

- Officer level
- Dispatch level
- Group level
Contact Information

Center for Data Science & Public Policy

http://dsapp.org

Interested in participating?

Contact information:

Postdoc: Jennifer Helsby jhelsby@uchicago.edu
Project Manager: Lauren Haynes lnhaynes@uchicago.edu
Tradeoff: False positives and true positives
Predictive Officer Level Characteristics

Officer 1
- High number of prior adverse incidents in last 15 years
- Officer was suspended in last 15 years
- High number of counseling interventions after special investigations
- IA noted concerns with communication
- High number of special investigations correctives written in last 15 years

Officer 2
- High number of arrests in last year
- High number of rule of conduct violations in last 15 years
- High number of prior adverse incidents in last 15 years
- IA noted concerns with tactics
- High number of sustained complaints in the last 15 years

Officer 3
- High number of prior adverse incidents in last 1 year
- High number of rule of conduct violations in last 15 years
- Officer was suspended in last 15 years
- Officer uses pepper spray often
- High number of sustained complaints in the last 15 years

Officer 4
- High number of accidents in last 1 year
- IA noted concerns with communication
- High number of accidents in last 15 years
- Officer has dealt with high number of suicide incidents
- High number of preventable accidents in last 1 year

Officer 5
- Officer has dealt with high number of domestic violence incidents
- High number of preventable accidents in last 1 year
- Officer uses weapons often
- Officer was suspended in last 15 years
- High number of prior adverse incidents in last 15 years
Other Benefits

- Flag low-risk officers as part of a Performance Management System
- Flag groups for designing new group interventions
- Train supervisors
- Improve dispatch decisions
- Cheaper to build, implement, maintain
Implementation
Discussion: Can we specify a set of requirements EIS systems should follow?

• Data that should be used
• Customizable
• Adaptive
• Able to prioritize officers
• Interpretable/Auditable
• Validation Process?
 – How early it can predict?
 – At what levels of:
 • Accuracy
 • False positive rate
• How effective are the interventions?