
City University of New York (CUNY) City University of New York (CUNY)

CUNY Academic Works CUNY Academic Works

Open Educational Resources New York City College of Technology

2022

(2022 Revision) Chapter 2: Essential Aspects of Physical Design (2022 Revision) Chapter 2: Essential Aspects of Physical Design

and Implementation of Relational Databases and Implementation of Relational Databases

Tatiana Malyuta
CUNY New York City College of Technology

Ashwin Satyanarayana
CUNY New York City College of Technology

How does access to this work benefit you? Let us know!

More information about this work at: https://academicworks.cuny.edu/ny_oers/48

Discover additional works at: https://academicworks.cuny.edu

This work is made publicly available by the City University of New York (CUNY).
Contact: AcademicWorks@cuny.edu

https://academicworks.cuny.edu/
https://academicworks.cuny.edu/ny_oers
https://academicworks.cuny.edu/ny
http://ols.cuny.edu/academicworks/?ref=https://academicworks.cuny.edu/ny_oers/48
https://academicworks.cuny.edu/ny_oers/48
https://academicworks.cuny.edu/?
mailto:AcademicWorks@cuny.edu

1

Chapter 2. The Physical Data Model
A physical data model is a representation of a database design based on particular user requirements which will

include the database artifacts required to achieve the goal of implementing a well-performing, reliable, and

easy to use and manage database. Most business rules are implemented in the relational data model through

the structure of relations and integrity constraints. The physical data model specifies how the storage of data

of this particular logical structure is organized and managed. This model largely defines the database

performance, as well as the ease of use and maintenance.

The design of the physical model involves a particular DBMS and requires knowledge and understanding of

how data are stored and managed by this DBMS. Furthermore, when performing physical modeling, it is

necessary to know the specific business rules that define how the database will be used, such as: the expected

size of the database, the types of requests to the database and the required performance of these requests, the

expected number of users (including the number of users who may work concurrently), and other physical

considerations. This chapter describes the basic principles of data storage organization and the benefits of

different storage solutions, and demonstrates some approaches to physical design for various database usage

scenarios.

Goals of Physical Modeling
The most general goals of physical modeling are to define the physical features of the data, the most

important of which are: where data are stored, how storage is organized, what are the data types of the tables’

columns, so that users are able to perform all the necessary data operations as quickly as needed. It is also

important that the database is easy to use and maintain. For this, knowledge of how the DBMS manipulates

data is crucial.

The physical model of data is tailored to user requirements with the help of features
of the chosen DBMS.

Often, some user requirements considered during physical design conflict with each other in terms of

applying the features of the DBMS for implementing them. For example, data storage organization for the

best performance of read queries may compromise the performance of modifying queries. That is why every

physical design decision has to be analyzed for not only expected benefits, but also possible disadvantages or

complications. In many cases, the final physical data model is the result of compromises – if all user

requirements cannot be satisfied in the best possible way, then we choose a solution that is reasonably good

for most of them.

Performance and Data Availability

The physical data model has significant impact on database performance. Query processing, performance,

and database tuning are discussed in detail in Chapter 5. If described on a very general level, query processing

involves locating requested data on disk, fetching the data from disk into memory, processing the data, and

then writing the data, possibly modified, back to disk. Locating and fetching data are the most expensive steps

in terms of consumption of computer resources and time. The physical model has to support such data

storage so that locating and fetching data can be executed in the most efficient way.

Other Goals

It is important that a well performing database is easy to use and maintain, and appropriate physical design

2

can significantly reduce the support and maintenance efforts and costs.

The most important integrity rules are implemented in the relational model (primary key, foreign key). The

physical design can enhance the consistency and integrity of the data through specifying the data types of

columns, providing additional constraints, and using special features of the DBMS. The more completely the

required consistency and integrity are implemented, the easier it is to support and maintain the database.

Tables
The data in relational databases are stored in tables. Usually, tables are built for relations of the relational

model. The definition of the table includes the data types of columns, the location of data, how the storage of

data is organized, and how the DBMS should maintain the storage and access to data.

Discussions are provided on the Manufacturing Company case (see Appendix 1 with case studies) with the

following relational data model (primary keys of relations are underlined, and foreign keys are in italics):

Title (titleCode, titleDescription, salary)

Department (deptCode, deptName, location, deptType)

Employee (ID, emplName, emplType, deptCode, titleCode)

Data Types of Columns

The column data type defines the values that can be inserted into the column and the kind of operations that

can be performed on these values. The SQL standard defines numeric, character, date, and timestamp1 data

types. In addition to these data types, different DBMSs support other data types, in particular, BLOB –

Binary Large Object – for representing large amounts of binary data such as images, video, or other

multimedia data, or CLOB – Character Large Object – for storing large amounts of character data.

The character and numeric Oracle data types are used to create the following table for the relation Title of the

Manufacturing Company case:

CREATE TABLE Title (

titleCode CHAR(2) PRIMARY KEY,

titleDescription VARCHAR2(15),

salary NUMBER (7));

The column data type is chosen so that it can represent all possible column values and allow for performing necessary

operations on the column. In the above example, the character data type is used for the attribute titleCode

because title codes may include letters. Though numeric data from the column salary can be presented by

either the character or numeric data types, the latter was used to allow different numeric operations on the

column, e.g. calculating the average salary. Although the column type NUMBER(5) can accommodate all

possible salaries (it is mentioned in the case description that salaries of employees are less than $100,000), it

may be not enough to present the results of calculations on the column, e.g. SUM(salary), hence, the

column type is NUMBER(7). Often, numeric columns have to be longer than is required by their possible

values in order to enable various calculations on them.

Data types can enforce data integrity. For the table Title, title codes cannot be longer than two symbols, and

1
 Added in the new SQL 2003 standard.

3

the chosen data type guarantees it. However, if title codes were composed of digits only, then we have two

choices: 1) use the numeric data type because the character data type would not prevent inserting values with

symbols other than digits, and 2) use the character data type and apply a specific CHECK constraint to ensure

that the symbols of the value are digits.

One more consideration for choosing the data type is economical space usage. For example, for columns with

variable length, like titleDescription, it is better to use the character data type with variable length –

VARCHAR(15) – in which each value of the column in the database contains as many symbols as it actually

has, e.g. the title description ‘DBA’ is stored as three symbols. In the case of the fixed length character data

type – CHAR(15) – all values of the column, regardless of their actual length, will be padded with spaces and

stored in the database as strings fifteen symbols long.

It is important to understand the details of data types supported in a particular DBMS. For example, Oracle

supports two character data types with variable length: VARCHAR and VARCHAR2. Where appropriate, it is

recommended to use VARCHAR2 as: 1) VARCHAR can store up to 2000 bytes and VARCHAR2 can store up to

4000 bytes; 2) NULL values of the column declared as VARCHAR will occupy space while NULL values of

columns declared as VARCHAR2 will not.

Some DBMSs offer additional possibilities for column management. For instance, a very convenient feature

is automatically generating and assigning of a value to a column when inserting data. Imagine a situation when

a company wants each employee to have a unique ID, like in the table Employee of the Manufacturing

Company case. In a company with thousands of employees, support of IDs can be rather complicated. Using

special data types or special database objects that enforce automatic assignment of a new column value can be

extremely beneficial. Examples of such features are the AUTONUMBER data type in MS Access and the

IDENTITY column in MS SQL Server. If, for example, the column ID in the table Employee is declared as

AUTONUMBER, then for every inserted new employee the system generates the next integer number and

assigns it to the ID column: ‘1’ for the first inserted employee, ‘2’ for the second, and so on. In this case, the

data type guarantees support (inserting values) and the uniqueness of values. In releases before Oracle 12

there was no feature equivalent to IDENTITY or AUTONUMBER; instead developers had to use the sequence

object (is illustrated in the section with an example of the physical model at the end of the chapter). In Oracle

12 there is the IDENTITY feature on the numeric column. For example, we can use one of the options

(GENERATED ALWAYS) provided by this feature in the definition of the ID column of the table Employee:

CREATE TABLE Employee (

 ID NUMBER GENERATED ALWAYS AS IDENTITY,

 emplName VARCHAR2(30),

 …

);

Then, we will be simply inserting data about employees while the system will provide the values of ID for

these inserts (note that an attempt to insert the ID directly will cause an error):

INSERT INTO Employee (emplName, …) VALUES ('John’, …);

4

Another interesting feature of Oracle is virtual columns2 – columns that are derived from other columns of the

table but are not stored on disc. If for example employees of our case have a bonus that is calculated as a

particular percent of the salary, then we can have the following table definition:

CREATE TABLE Title (

titleCode CHAR(2) PRIMARY KEY,

titleDescription VARCHAR2(15),

salary NUMBER (7),

bonus NUMBER GENERATED ALWAYS AS (ROUND(salary*0.3,2)) VIRTUAL);

Note that data is not inserted in the virtual column; we can select from the virtual column as from a regular

column:

INSERT INTO Title (titleCode, titleDescription, salary)

VALUES (‘T1’, 'DBA', 60000);

SELECT * FROM Title WHERE titleCode = ‘T1’;

 TITLECODE TITLEDESCRIPTION SALARY BONUS

 ---------- ---------------- ------ -----

 T1 DBA 60000 18000

When choosing the data type, consider whether it allows for the support of all
possible column values and operations, enforces the column’s integrity, is
economical, and makes support of the column easier.

Constraints

DBMSs offer additional table and column constraints that are not included in the relational data model and

that can improve data consistency and integrity. The most common constraints are:

 NOT NULL: Requires that the column on which the constraint is defined has a value for every row.

 CHECK: Defines a condition that is evaluated every time a row is inserted or the columns involved in the
constraint are updated: each row has to satisfy the predicate.

 UNIQUE: Enforces uniqueness of a column or combination of columns in a table.

CHECK and UNIQUE constraints, when based on one column, can be declared in line with this column as

shown in the example below. When a constraint includes multiple columns, it has to be defined on the table

level as for example complex primary keys3.

Consider, for example, business rules that require that each title has to have a description and salaries are in a

specific range. While the relational model does not reflect these requirements, they can be enforced in the

definition of the table Title:

CREATE TABLE Title (

2
 Compare this feature with creating a view on the table. Views are introduced in the section on the 3-layer

architecture of the database.
3
 Note that complex constraints, for example the ones that contain complex logical expressions, may add

processing overhead to INSERT and relevant UPDATE operations.

5

titleCode CHAR(2) PRIMARY KEY,

titleDescription VARCHAR2(15) NOT NULL,

salary NUMBER CHECK (Salary BETWEEN 30000 AND 90000));

More complicated integrity and consistency rules that cannot be declared through table constraints (each

DBMS has specific limitations on what can be included in constraints) have to be implemented with the help

of triggers – special database procedures (discussed in the section with illustration of the physical model at the

end of the chapter).

Size and Location

When a table is created, the DBMS allocates disk space according to the size specifications. It is important to

estimate accurately the expected size and growth rate of the table. The size of the table depends on the

expected number of records, the length of one record (or an estimated average length if the record length

varies), the amount of free space in data blocks, and some other parameters. Each DBMS offers a

methodology of estimating the table size. The expected size and growth rate of the table are used to

determine the storage space parameters.

Data Storage
Design of data storage requires an understanding of data storage organization in databases. See Appendix 3

for details of data storage in Oracle.

Storage Hierarchy

Physically, data are stored in data files. Each database has at least one data file. Data files are logically organized

in storage spaces called tablespaces, and storage space for data objects, e.g. tables, is specified in tablespaces and

not directly in data files. As a result, a database object can be stored in more than one data file, but always in

one tablespace. For example, in Figure 1, the table Title is stored in the tablespace USER_DATA and has

extents in two data files: df1.dbf and df2.dbf. Within a data file, each extent is a contiguous set of data blocks

(or data pages). A data block is the smallest unit of operation and manipulation of the DBMS – if the system

needs to access a particular row of a block, it reads the whole block. In some databases it is possible to have

blocks of different sizes, e.g. in Oracle, different tablespaces can have different block sizes. In Oracle, the

default size of the block is 8K.

Table Title

Tablespace USER_DATA

df2.dbf df1.dbf

T T T T T

 T

Figure 1. Storage hierarchy.

6

In summary, data storage consists of tablespaces. Each tablespace is a logical container for one or more data

files. Data files contain extents of data blocks with data.

Here are some considerations of leveraging tablespaces to achieve the goals of the physical design:

 Improve performance

o Storing different tablespaces' datafiles on separate disk drives reduces the contention of read/write

operations on big objects, for example, on a big table.

o Including several datafiles in a tablespace overcomes limitations of a single disk to accommodate a

big object, e.g. a big table as it will be stored across several disks.

 Ease of management, availability

o Storing data of different applications in different tablespaces prevents multiple applications from

being affected if a tablespace must be taken offline.

o Most DBMSs allow back up of individual tablespaces.

Data Blocks

At the finest level of granularity, a database stores data in data blocks (also called logical blocks or pages).

One data block corresponds to a specific number of bytes of physical database space on disc. The rows of a

table are physically stored in data blocks. When accessing the requested rows, the system reads the blocks in

which these rows are stored. The fewer the number of blocks that are accessed during request processing, the

better is the performance. This chapter discusses different approaches to storage organization that help in

reducing the number of block accesses.

First, it is important to store rows of a table in the most effective way. Not all space in the data block is

dedicated to data storage (Figure 2).

Some space is occupied by the block header which contains information about the block that is used by the

system, directories which contain information about the objects stored in the block and the addresses of the

rows of the block. In addition, each block must contain free space to accommodate updates of existing rows

that may cause the rows’ expansion. Consider the situation in Figure 3 (block headers are not shown). The

data block contains several rows and free space (Figure 3a). After the third row is updated, there is not

enough free space in the block to fit the updated version of the row and the row has to be moved to another

block. This moving of a row from one block to another is known as row migration as shown in Figure 3b.

However, the system cannot change the initial address of the row when it was inserted (as it is already used in

for example Indices). As a result, the information for the third row of our example is stored in two blocks –

Figure 2. Data blocks.

Header, directories

Free space

Data

7

the row itself is now stored in the new block, and the address of this actual row (the ‘forwarding address’) is

contained in the initial block used for the row (which will be accessed when the row is requested because the

system remembers it as the storage block of the row). This situation is undesirable because in order to access

the row, the system has to access two blocks instead of one. Numerous migrating rows may cause decreased

performance.

The DBMS allows specifying the percent of free space in the blocks of a table. Obviously, data blocks have to

be as full as possible to store more rows, but, on the other hand, there must be enough space left for updates

of the rows that are already in the block.

In addition to migrating rows we can have chained rows that are stored across several blocks. This situation

can happen when for example the size of the row exceeds the size of the block. Chained rows are stored

similarly to migrating rows: a block contains a part of the row with the forwarding address to the next block

containing the continuation of the row.

Depending on the nature of the data and the database activities, database programmers have to find a

compromise between partially full blocks and the risk of having migrating rows.

Appropriately chosen data types can improve data storage, e.g. choosing the VARCHAR data type for columns

with variable length will result in more rows per block than when using the CHAR data type.

The size of the block also has an impact on performance and overall quality of data storage. Smaller block

size is recommended for short rows but does not benefit long rows (as only few rows can be stored in a block

with usually a high possibility of migrating rows). On the other hand, the overhead of the header is relatively

high for small blocks. In Oracle, it is possible to have different block sizes for different tablespaces.

The table below summarizes some considerations when choosing the size of the block.

Smaller block sized (in Oracle, 2 KB or 4 KB) are usual for Online Transaction Processing (OLTP), while

larger block sizes (in Oracle, 8 KB, 16 KB, or 32 KB) are usual for data warehouses.

b) a)

Free space

3
rd

 row

2
nd

 row

1
st

 row

4
th

 row

Free

1
st

 row

Free space

Updated 3
rd

row

Free space

3rd row

Figure 3. Migrating rows.

2
nd

 row

 4
th

 row

8

 Small blocks Large blocks

Advantages Good for small rows with intensive
random access as it reduces block
contention (typical for Online
Transaction Processing databases).

 Has lower overhead of the header;
there is more room to store data.

 Permits reading more rows into the
buffer4 with a single read/write
(depending on row size and block size).

 Good for very large rows.

Disadvantages Has relatively large space overhead due
to the block header.

 Not recommended for large rows.
There might only be a few rows stored
for each block; the change of migrating
rows is significant.

 Wastes space in the buffer when
accessing small rows. For example,
with an 8 KB block size and 50 byte
row size, 7,950 bytes loaded in the
buffer are not used.

Heap Storage

Depending on the type of storage, data blocks are filled by the records of a table differently.

Heap storage adds new rows to the available free space in the blocks that already contain the table’s data. If

there is not enough space in these blocks, then the system goes to the next unused block of the table’s extent

and places the row there5. As a result, rows are stored without any particular order. Figure 4 shows the

process of inserting data into the table Employee of the Manufacturing Company case that uses the heap

storage organization:

a) Rows for the first three employees are inserted into the first block. Then, none of the next four rows can
fit in the rest of the available space in the first block, and these rows are placed in the second block
(Figure 4a).

b) One row (row 6) is deleted from the second block, and hence a free space becomes available there
(Figure 4b).

c) For the next two new rows, the first, for the employee with ID = 10, is short enough to fit in the first

block, and the second, for the employee with ID = 11, is placed in the second block (Figure 4c).

4
 Buffer and its role in data processing are explained in the chapter on query processing.

5
 If there are no available blocks in the extent, the system allocates a new extent in correspondence with the table

growth specifications.

a) b)

Free space

3 Mary

2 Adam

1 John

Free space

6 Susan

5 Scott

…
4 Peter

7 Alex

Free space

3 Mary

2 Adam

1 John

Free space

5 Scott

…
4 Peter

7 Alex

Free space

3 Mary

2 Adam

1 John

Free space

11 Russ

5 Scott

4 Peter

7 Alex 10 Ben

c)

Figure 4. Heap storage of data.

9

For tables using the heap storage method, the search for rows by a specific condition results in accessing

multiple blocks across which the requested rows are scattered. Let us consider the query:

SELECT e.emplName, d.deptName

FROM Employee e INNER JOIN Department d

ON e.deptCode = d.deptCode

WHERE deptCode = ‘002’;

For the Employee table using heap data storage as shown in Figure 5a, the search for the employees of the

second department (deptCode = ‘002’) requires the system to access all data blocks of the table

Employee (two in this case) and one block of the table Department (the requested rows are shown in bold

italics).

Cluster Storage

If database applications frequently access data about employees of a particular department, then their

performance can be improved by keeping the rows of employees of the same department together in the

same block or blocks. In this case, as Figure 5 b shows, the system needs to access fewer blocks. For join

queries, as the one we are discussing, performance can be further improved by storing the row of the

respective department in the same group of blocks. Such an organization of storage in which rows that are

similar by some criterion are stored in the same block is called clustering, and the group of blocks with similar

rows is referred to as a cluster.

A column (or columns) that define how rows are clustered is called the cluster key. In our example, the cluster

…

Cluster

b)

Free space

…

2 Adam…

5 Scott…

1 John…

Free space Free space

Figure 5. Heap and clustered organization of data.

001 Computer 002 Budget 003 Marketing

Table

Employee

Table

Department

a)

Free space

3 Mary…004

2 Adam…001

1 John…002

Free space

6 Sus… 005

5 Scott…002

4 Peter…003

7 Alex…004

003 Market

002 Budget

001 Computer

…

…

Free space

…

4 Peter…

10

key is the column deptCode – rows of the tables Employee and Department that have the same deptCode

value are stored together, and the value of the cluster key is stored only once.

Unlike heap storage, where the location of a row is random, the locations of rows in clustered storage are

predefined. When a new row is inserted, it is not placed in the first block with available space, but in the

block designated for storing rows with the same cluster key value as the inserted row6. Note that a table when

stored as clustered usually occupies more blocks than when it is stored as heap. In our example, assume that

all records of employees of the five departments are stored in three blocks of the heap, however, the clustered

by deptCode storage will occupy five blocks according to the number of departments.

Access to data includes locating the data and reading the data into memory. Clustering can provide a more

efficient means to read the requested data. But before continuing this discussion we need to introduce a new

database object – index.

Indices
As we have just seen, rows in tables with heap storage organization are stored without any particular order

and access to a specific portion of data in the table in many cases requires access to most of the table’s data

(this is called a full table scan). For example, to find the employee with ID = 1, the system has to perform the

reading of all the data in the table Employee. Indices are special database objects that make access to data

more efficient.

Role of Indices

The most common are B-tree (balanced tree – a generalization of a binary search tree) indices. The

description of their organization is beyond the goals of this book and can be found in [Connolly 2010],

[Silberschatz]. The role of the index is similar to the role of the last and first names of the telephone directory

in finding the address or telephone of a person. Telephone directory searches are simplified by ordered last

and first names that allow one to apply some reasonable search strategies, e.g. if the last name starts with ‘B’,

then we do not need to look in the end of the directory and can concentrate on its beginning. Indices are built

for the columns of the table by which data are searched, like ID in the example above. Values of indexed

columns are stored in an ordered way (similarly to the last and first names in the phone directory) in the

index, and for each set of values the index contains pointers to the corresponding rows (blocks) of the table.

For example, if users access data about employees by ID, it would make sense to create the index on this

column:

CREATE INDEX i0 ON Employee(ID);

The index contains values of the column ID and pointers (addresses) to the corresponding rows of the table

Employee. With the index, a request for data about a particular employee will result in:

1) Searching the index and finding the requested values of ID
2) Reading pointers to the corresponding rows of the table
3) Accessing the blocks containing these rows of the table Employee. Figure 6 schematically7 shows such

access.

6
 If the block is full, then the system adds a new block to the cluster and places the row in this block. The

cluster becomes chained.
7
 B-tree indices are self-balanced trees.

11

The index on the column ID of the table Employee was created to demonstrate indexed access.

However in reality the index on the column ID would have been created automatically by the DBMS because

the DBMS creates an index for the primary key of every table. Such an index is called the primary index.

Indices on the non-key columns of the table (or on some of the key attributes, or on key attributes in the

order different from the order of these attributes in the primary key) are called secondary, and they are

created to improve the performance of queries that access data based on conditions on these columns. For

example, for queries that request data about employees given their name it is reasonable to consider the index

on the column emplName. In many cases, indices can dramatically improve database performance.

The storage parameters for indices are defined similarly to the storage parameters of tables. It is

recommended to store tables and their indices in different tablespaces with the files located on different disks.

In this way, the performance is improved because the system can access a table and its index in parallel.

Some DBMSs support other types of indices, e.g. MS SQL Server offers hash indices and Oracle – bitmap

and function-based indices. The purpose of different types of indices is to improve the performance of read,

delete and update queries (whereas insert queries are actually slowed by them). The discussion of indices and

the conditions when they are beneficial is continued in Chapter 5 on query processing and performance.

Cluster Storage and the Use of Indices

The clustered storage organization that we illustrated above can be supported in two ways. The first type of

clustering which is called index clustering requires a cluster index. Queries for clustered rows are accessed

through the cluster index: first, the system reads the address of the table block for the requested cluster key

value in the cluster index, and then it goes to the block with the rows. Cluster indices are smaller than table

indices. The cluster index contains as many entries as there are values of the cluster key, while the table index

contains as many entries as there are rows with values of the index column. For example, the index for the

cluster built on the column deptCode of our discussed example has 200 entries – as many as there are

departments, while the index on the column deptCode of the table Employee has 4000 entries – as many as

there are rows in the table.

Many DBMSs also support another type of cluster known as hash cluster. Rows in the hash cluster are stored

based not on values of the cluster key itself, but based on the result of applying the hash function to the

cluster key. The hash function applied to the cluster key defines the location of a new row when data is

inserted, and the location of an existing row, when data is retrieved. Appropriately defined hash clusters

perform the access to a row in a single disk read.

Index Table

SELECT *

FROM Employee

WHERE ID = 1;

1 Pointer

3 Pointer

4 Pointer

5 Pointer

2 Pointer

3 Mary …

1 John …

5 Scott …

4 Peter …

2 Adam …

Figure 6. Indexed access to data.

12

The hash and index clustering on the same cluster key result in similar storage. However, access to hash

clusters is different from access to index clusters (see Figure 7). The hash cluster does not need an index to

support it. When a row with a particular value of the cluster key is requested, the system applies the hash

function to calculate the address of the row. In the index cluster, the address of the table row is found in the

cluster index search.

In addition to heap and cluster types of storage, most DBMSs offer other storage solutions, e.g. partitions

and index-organized tables that are discussed later in this chapter. Each storage solution is aimed at reducing

the number of disk accesses during query processing. Different solutions may be beneficial for different types

of access to data. For example, the cluster solution works well for the select query discussed above, but it

causes problems when the cluster key is frequently modified. Chapter 5 discusses database performance and

gives recommendations about using different types of storage depending on types of data access.

DBMSs have other parameters that define how data are stored and processed, e.g. compression and

encryption parameters. For each DBMS these parameters have to be considered for the physical data model

because they have impact on database performance and ease of maintenance.

Transparency of the Physical Model
The physical data model is transparent to users – they do not know where the data are physically stored or

how data storage is organized. Transparency is supported by the architecture of the DBMS.

3-level Database Architecture

Commercial DBMSs comply with the three-level architecture of the database suggested by the American

National Standards Institute (ANSI) and Standards Planning and Requirements Committee (SPARC) in 1975.

This architecture (Figure 8) defines three levels of abstraction of the data or three levels of data description in

the database; it provides a separation of higher-level semantics of data from the physical implementation and

makes the physical implementation transparent to users of the database.

The external schema defines how users see the data (users’ views of data). For example, Scott and John are users

of the discussed Manufacturing Company Case database: Scott works with ID, name, and salary of employees

– this is his view of the database content; John works with employees’ names, and codes and names of

employees’ departments – this is how he sees and understands data from the database. The external schema

of the database consists of a number of views for different users. DBMSs have features that allow for

implementing the external level. One of the database objects used for this purpose is a view. A view is a saved

Figure 7. Hash and index clusters.

SELECT *

FROM Employee

WHERE deptCode =

‘002’;

Hash cluster
Hash function

Index Cluster

Free space

002 Budget…

5 Scott

1 John

Free space

002 Budget…

5 Scott

1 John

Cluster Index

13

query. The following view for Scott represents Scott’s needs in data:

CREATE VIEW vw_Scott AS

SELECT ID, name, salary

FROM Employee e, Title t

WHERE e.titleCode = t.titleCode;

When working with the database, Scott will be using the view, e.g.:

SELECT * FROM vw_Scott;

The view makes the database transparent to Scott – not only does Scott not know where the data are located

and how data storage is organized, he does not even know what tables he is using.

The internal schema defines how the DBMS and operating system see the data of the database; it includes

descriptions of data structures and file organizations, storage space allocations for objects of the database,

rows placement, data compression and data encryption, and other physical parameters of data.

The conceptual schema serves as a link between the external and internal schemas; it provides a mapping from

the internal schema to the external schema. This level supports the external level – each external view is based

on definitions of objects in the conceptual level. The conceptual schema reflects the developer’s vision of the

database; it contains the definitions of tables, columns, and constraints.

The 3-tier architecture provides independence between the users’ perception of the database and the physical

implementation of the data. Such independence has the following benefits:

 Users see the data according to their need: If the users need changes, their view of data can be changed
without rebuilding the database and without affecting the views of other users. For example, if Scott’s
needs changes and he wants to see ID, name, title, and salary, then anew view can be built without any
changes to the database or to the existing view for John.

 Users see data the way they want to see it, completely unaware of the conceptual and physical aspects of
the data: The user is unware of which tables the data comes from, where data are stored andin what data
structures or formats, and what other structures were involved in processing the data (like indices or

Conceptual Level
(Conceptual Schema)

Database

Users

DBMS,

Operating

System

DBA

Internal Level
(Internal Schema)

External Level
(External Schema)

External Level
(External Schema)

Figure 8. Three-level database architecture.

14

clusters). For example, Scott does not know that he is working with the tables Employee and Title and
what structure the tables have, or that the DBMS uses the primary index on ID to retrieve data about a
particular employee.

 Reorganizing data storage does not affect the conceptual model of the database and users’ views: For
example, the table Employee can be moved from one disk to another without the users knowing about
the move, and data processing applications referencing this table will remain valid and unchanged.

 Redesigning the conceptual model does not necessarily affect the users’ views: If the database
programmer adds a column to the table Employee, none of the previous views based on this table need
to be redefined or changed since they would not be using the new column. Some changes on the
conceptual level may cause rebuilding user views, but the users still will be unaware of these changes. For
example, if the table Title starts storing salaries in thousands of dollars (and not in dollars as before), then
Scott’s view will be changed:

CREATE VIEW vw_Scott AS

SELECT ID, name, salary * 1000 as salary

FROM Employee e, Title t

WHERE e.titleCode = t.titleCode;

Scott, however, will not notice the change. Of course, more “radical” changes of conceptual schema may

cause users to change their perception of the data, like, for example, deleting a column from a table.

The Physical Data Model in Oracle

Heap Storage Organization

Table storage parameters are defined in the CREATE TABLE statement:

CREATE TABLE Title (

titleCode CHAR(2) PRIMARY KEY,

titleDescription VARCHAR2(15),

salary NUMBER CHECK (Salary BETWEEN 30000 AND 90000))

 PCTFREE 10

 PCTUSED 40

 TABLESPACE users

 STORAGE (INITIAL 50K

 NEXT 50K

 MAXEXTENTS 10

 PCTINCREASE 25);

The TABLESPACE clause defines the tablespace where the table will be located (see the explanation of

tablespaces above in this chapter and in Appendix 3). The STORAGE parameters specify the initial size and

expansion of the table. In the above example, the initial size of the table is set to 50K. If expansion of the

table is needed, the system allocates not more than 10 additional extents – the second extent will be equal to

50K, and every next extent will have the size of the previous extent increased by 25 percent. Such an

approach for defining and capturing storage for a table is flexible and dynamic – the storage space for the

table is allocated when needed.

15

The parameters PCTFREE and PCTUSED define how allocated data blocks are filled with data8. PCTFREE

sets the percent of space in the block that has to remain free to accommodate future updates of the rows of

the block. Once the block no longer has its free space percentage greater than or equal to PCTFREE, it is

removed from the list of available blocks the DBMS keeps. For example, if PCTFREE is set to 20, it would

mean that the block allows for row inserts until 80% is occupied, leaving 20% free for updates to existing

rows in the block.

PCTUSED defines what percent of space in the block has to become free again (the percentage of the block

used must be less than PCTUSED) for the system to return the block to the list of available blocks that can

add new rows. For example, if PCTUSED is set to 40, it would mean that no new rows can be inserted until

the amount of used space falls below 40%.

The appropriate use of these parameters can increase the performance of writing and reading operations on

tables or indices, decrease the amount of unused space in the data blocks, and decrease the amount of

migrating rows between data blocks. Chained rows – rows stored across several blocks – can occur not only

when the length of the row exceeds the size of the block, but for the tables with more than 255 columns.

When the system has to insert a new row in a table, it looks into the list of available (free) blocks for this

table, i.e. the list of blocks that allow adding a row, or in other words, the blocks for which the free storage

percentage is above PCTFREE. After the block becomes full, it is deleted from the list of free blocks and can

be returned to the list only after the percent of its used space drops below PCTUSED. A lower PCTUSED

increases the unused space in the database, but reduces the processing cost of UPDATE and DELETE

because the block will be moved out of the list of the free blocks less often. A higher PCTUSED improves

space efficiency, but increases the cost of INSERT and UPDATE, because the block is eliminated from the

list of free blocks and is returned back into the list frequently.

A lower PCTFREE leads to less unused space in the table blocks (more records in the block) and fewer

blocks to accommodate the table. However, when this parameter is small, the possibility of migrated or

chained rows is increased. A high PCTFREE setting, on the other hand, may result in sparse table storage but

a lower possibility of chained rows.

The settings of PCTUSED and PCTFREE are dependent on the type of the activities expected on the table.

For example, for a table that experiences frequent updates which may increase the size of the rows

PCTFREE = 20 and PCTUSED = 40 is appropriate. On the other hand, for a very large table, for which

storage efficiency is important and which experiences little insert, delete, and update activities, an appropriate

setting is PCTFREE = 5 and PCTUSED = 90.

Clustered Storage Organization

The table Title in the previous section was stored as a heap. For some applications, it is beneficial to store a

table in a cluster. Oracle supports two types of clusters: index and hash.

8 The new feature – Automatic Segment Space Management (ASS Management) – automates management of

some aspects of the physical model and does not allow to specify PCTFREE, PCTUSED, and some other

parameters that are used for manual storage management.

16

It is important to remember that clusters improve performance of some read queries, but intensive updating

activity may result in the necessity to reorganize clusters and therefore can worsen performance.

To improve the performance of queries that are based on the join of the tables Employee and Department,

we can consider storing these tables in an index cluster with the deptCode column as the cluster key. The

cluster is created with the help of the following command:

CREATE CLUSTER Emp_dept (deptCode CHAR(3))

TABLESPACE USER_DATA

PCTUSED 80

PCTFREE 5

SIZE 40

STORAGE (…);

The command specifies the type of the cluster key, the tablespace in which the cluster is located, data packing

parameters of the cluster blocks and the storage settings. The parameter SIZE defines the expected length (in

bytes) of one row in the cluster and, therefore, how many rows can be placed in one cluster block. If the

parameter is too high, then fewer records are placed in one block and the cluster occupies more space than it

actually needs. On the other hand, if the size is set too low, chaining of data may occur.

The cluster can be used for allocating the tables Employee and Department. Note that the cluster storage is

already organized and you do not have to specify the tablespace and packing parameters for the tables – data

are stored according to the corresponding parameters of the cluster:

CREATE TABLE Department (

deptCode CHAR(3) PRIMARY KEY,

deptName VARCHAR2(15),

location NUMBER)

CLUSTER Emp_dept (deptCode);

CREATE TABLE Employee (

ID NUMBER PRIMARY KEY,

emplName VARCHAR2(20) NOT NULL,

emplType VARCHAR2(10),

deptCode CHAR(3) REFERENCES Department,

titleCode CHAR(2) REFERENCES Title)

 CLUSTER Emp_dept (deptCode);

The index cluster needs a cluster index. The index has to be created before inserting the first record into any

of the two cluster tables:

CREATE INDEX Emp_dept_index

 ON CLUSTER Emp_dept;

Hash clusters are created similarly to index clusters; however, they do not need the cluster index. The hash

function, applied to the cluster key, defines the address of a row. This is really a “direct” and very efficient

way to access data. DBMS documentation contains recommendations on using hash functions.

The following hash cluster with the hash function on the column deptCode is created for the table Employee:

CREATE CLUSTER Employee_cluster (

17

deptCode CHAR(3))

PCTUSED 80

PCTFREE 5

SIZE 40

HASHKEYS 10

STORAGE (…);

The important parameters of the hash cluster are the expected number of values of the cluster key column

(HASHKEYS) and the average row size (SIZE). The above values for these parameters are based on the

company having 10 departments and an average row size of 40 bytes. These parameters are used by the

DBMS to specify and limit the number of unique hash values that can be generated by the hash function

used by the cluster and the number of rows per cluster block. The prepared cluster is used to store the table

Employee:

CREATE TABLE Employee (

ID NUMBER (5,0) PRIMARY KEY,

emplName VARCHAR2(20) NOT NULL,

emplType VARCHAR2(10),

deptCode CHAR(3) REFERENCES Department,

titleCode CHAR(2) REFERENCES Title)

)

 CLUSTER Employee_cluster (deptCode);

In this example, the system hash function is used. It is possible to use user-defined hash functions as well.

For every new row of the table Employee, the system calculates the hash value based on the deptCode (the

value defines the address of the block for the row) and as a result, the rows with the same value of deptCode

are stored together. For the retrieval of data about employees of a particular department, the same hash

function is applied to the value of deptCode in queries with the condition:

…WHERE deptCode = x

The value of the hash function defines the block address of the rows of the query and enables the system to

go directly to the blocks with requested data.

Index-Organized Tables

Oracle supports another organization of data storage – index-organized tables. In such tables, all table data,

both the primary key and all non-key columns are stored in the index in key-sequenced order. In a heap

organized table, the primary key index stores the primary key with the address of the corresponding row (in

Oracle the address of the row is called the ROWID) in the table being indexed. For a key-based query, two

accesses are required. First, the index must be accessed to find the address of the row (ROWID), and then a

second access is made on the table. For index-organized tables only one access is needed, because the index

contains the entire data in each row: primary key and non-key data.

The following statement creates the index-organized table Employee:

CREATE TABLE Employee (

ID NUMBER (5,0) PRIMARY KEY,

emplName VARCHAR2(20) NOT NULL,

emplType VARCHAR2(10),

deptCode CHAR(3) REFERENCES Department,

titleCode CHAR(2) REFERENCES Title)

18

ORGANIZATION INDEX;

Index-organized tables have several advantages:

 Fast access to data by queries with equality or range conditions on the primary key of the table (or any
left-most part of the primary key): In the case of indexed access to a regular table, there are at least two
block accesses: one to the index and another to the table, while for the index-organized table there is only
one access to the table itself.

 Efficient storage: Because the indexed columns are not duplicated as in the “table plus index” case, and
ROWID (address of the row) is not stored, the index-organized table occupies less space than the heap
table plus its primary index.

Index-organized tables are ideal for those applications, which require fast primary key access.

If the index-organized table is accessed by queries with conditions on the non-key columns, it loses its

performance advantage. Secondary indices on such storage organization are less efficient than they are on the

heap table.

Partitions

Oracle 8 introduced a new storage feature – partitioning. Partitioning addresses key issues in supporting very

large tables and indexes by letting you decompose them into smaller and more manageable pieces called

partitions. Imagine that the database for the Manufacturing Company case is implemented as a centralized

database. Local users of Boston have to perform access to the tables where the rows of Boston departments

and employees are scattered across multiple blocks that contain data about the departments and employees of

other locations as well (unless data is clustered by location). Accessing Boston data requires reading multiple

blocks and the efficiency of such access is low.

Partitioning combines the benefits of the logical integrity of the centralized database and the physical

independence of data in the distributed database (see discussion of distributed databases below in this chapter

and in Chapter 3). Partitioning unambiguously assigns each row to assigned particular partition based on the

partition key. The partition key is a set of one or more columns that determines the partition for each row.

The following statement creates the table Department partitioned by location, which is the partition key:

 CREATE TABLE Department (

…

)

PARTITION BY HASH(location)

PARTITIONS 3;

This is an example of hash partitioning: for each of the three locations, the system hash function returns a

particular value, and the rows with the same hash value are stored in the same physical partition. Figure 9

shows the difference in access to data for partitioned and non-partitioned tables.

Oracle also supports range and hybrid (combination of hash and range) partitioning. Range partitioning maps

data to partitions based on ranges of partition key values that you establish for each partition as shown in the

following example, which creates a table Title with two range partitions: one for the titles with low salary (less

than 50000), and another for the titles with high salary (between 50000 and 100000). Note that partitions in

this case have different physical characteristics (to accommodate differences in managing titles with low and

high salaries) :

19

CREATE TABLE Title (

…

)

PARTITION BY RANGE(salary) (

PARTITION low_Salary VALUES LESS THAN (50000)
TABLESPACE TS1

STORAGE (INITIAL 5M, NEXT 1M, PCTUSED 75, PCTFREE 15)

PARTITION high_Salary VALUES LESS THAN (100000)

TABLESPACE TS2

STORAGE (INITIAL 2M, NEXT 20K, PCTUSED 80, PCTFREE 10));

Storage parameters of each partition – location, size, and block packing – are specified similarly to the storage

parameters of a separate table. Access to data on the partitioned table can be supported by global table

indices. Additionally, a partition can have separate partition indices. For example, the partitioned by location

table Department can have the global index on the deptType, and the Boston partition can have the index on

the deptName.

Note the differences between clustering and partitioning:

 All blocks of a clustered table are organized in the same way according to the storage settings of the
cluster. Blocks of different partitions can be organized differently because storage of each partition is
defined separately.

 A table is clustered if for each value of the cluster key we expect not too many records that will be stored
in one or several blocks. Partitions are beneficial for storing large numbers of records. The examples
above were used for demonstration purpose only – obviously, partitioning the tables Department and
Title does not seem appropriate. A better example could be partitioning the table Employee by emplType
if the table contains hundreds of thousands of records.

Changing the Physical Model

New user requirements and or changes in data usage can require changes of the physical model. Often the

physical model needs to be changed when we discover that our assessment of some physical parameters was

Heap table Department

Blocks of
the table

Blocks of
the table

Blocks of
the table

SELECT deptCode

FROM Department

WHERE location =

Boston’ ;

Partitioned table Department

Blocks of
Boston
partition

Blocks of
New York
partition

Blocks of
Cleveland
partition

Figure 9. Not partitioned and partitioned table.

20

not correct, e.g. we have a table with many migrating rows, or our partitions cannot accommodate new data.

Some changes require rebuilding the table, some other changes can be handled by the table alteration.

For example, we discovered that partitioning our table Department can be beneficial for our queries and

hence we create a new table called Department_new with the new partitioning requirements:

CREATE TABLE Department_new (

…

)

PARTITION BY HASH(location)

PARTITIONS 3

AS SELECT * FROM Department;

INSERT INTO Department_new

(SELECT * FROM Department);

After the new table is created, we can drop the original table and rename this new table to the original
table name. Note that constraints may require additional attention.

The following example illustrates alteration of the table when we need to create a new partition either on
the high end of the partitioning range

ALTER TABLE Title

ADD PARTITION very_high_Salary VALUES LESS THAN 150000;

or in the middle of it

ALTER TABLE Title

SPLIT PARTITION high_Salary AT (75000)

INTO (PARTITION modest_Salary,

 PARTITION high_Salary);

Transparency of the Database

Various physical aspects of the data in Oracle databases, such as the actual organization of the data (heap,

cluster, index, index-organized or partitioned storage of data), the percent of free space in data blocks, the

existence of indices are transparent to database users and in many cases to database programmers.

Database programmers work with the conceptual schema of a table, which is available from the data

dictionary. For example, the following command shows the structure of the table Employee:

SQL> DESCRIBE Employee;

 Name Null? Type

-------- ---------------- ----------------------

ID NOT NULL NUMBER

EMPLNAME NOT NULL VARCHAR2(30)

EMPLTYPE NOT NULL VARCHAR2(10)

. . .

When inserting a new row into the table Employee, the programmer uses this information without knowing

21

the details of how the row is physically written into the database:

INSERT INTO Employee(ID, emplName, emplType, …)

VALUES (1234, ‘John’, ‘Full-time’, …);

If physical parameters of the table are changed or the table is moved to another tablespace, this query will

remain unchanged because it is independent of the physical schema of the table Employee.

The Oracle DBMS, on the other hand, uses the internal schema to process data from the Employee table.

When inserting a row, the DBMS must find the block for the row placement (according to parameters

PCTFREE and PCTUSED, and the type of storage), check whether the tablespace has to be extended if all

allocated data blocks are full, represent the data changes in all indices on the table, and perform some other

actions. All this processing is hidden from the users and programmers.

Distributed Data Storage
A distributed database system allows applications to access data from local and remote databases. The distributed

implementation of a database can significantly improve its performance, reliability and availability. In a distributed

database, data are physically stored in several databases. This allows for better performance of some database

applications and makes data accessed easier by local sites. Replicating data on different sites of the distributed

database improves the reliability of the whole database and improves accessibility of data by local users.

The discussion of distributed databases is limited to the solution supported by most commercial DBMSs. A

collection of multiple logically interrelated and physically independent databases is considered a distributed database

if there exists at least one application that uses data from these different databases; such an application is

called global.

According to this definition, the distributed database is composed of separate autonomous databases that are

supported independently. In case all databases in the distributed database are implemented in the same

DBMS, such a database is called homogenous. Discussion of other distributed solutions with databases

physically dependent on each other (tightly integrated or semi-autonomous) or implemented in different

DBMSs (heterogeneous) is beyond the scope of this book and can be found in [Őzsu].

There are several instances where distributed databases are beneficial:

 Localizing access to specific portions of data

 Improving reliability and availability of data

 Improving performance: data are localized for the greatest demand, and access to multiple database
systems is parallelized.

Distributed solutions are justified for large databases because of their complexity and cost.

A distributed DBMS is a software system that enables management of a distributed database.

Promises of Distributed Databases

The possible advantages of distributed databases are discussed using the example of the Manufacturing

Company case. Because the offices in the three different cities deal with local data – data about local

departments and employees working in these departments – it may be reasonable to distribute the data so that

a database used by a particular office stored only the local data. Such a solution can have several benefits.

22

Improved Performance

The mentioned distribution of data means that each database contains parts of the tables Department and

Employee with data about local departments and employees working in these departments. Parts of tables

residing in different databases are called fragments, and the process of splitting a table is called fragmentation.

Such data localization can improve the performance of local applications in the cities (Figure 10) because:

 Each local application handles smaller amounts of data

 If data are brought closer to local users, access to the data is faster

 The management of a smaller database is easier.

The performance of some global applications may be improved as well. For example, if a global application

requests data about all the employees of the company with a particular title code, then the global request is

distributed to three databases, and data processing is performed in parallel (such execution is called intra-

query parallelism). The parallel processing of smaller amounts of data is faster than the processing of the

whole amount of data. Suppose there are 3000 employees evenly distributed across the databases of the three

cities (1000 employee rows in each local database). Then the retrieval of data about employees of a particular

title is performed as a search on 1000 rows in each of the three databases in parallel, and data could be

retrieved faster than using a search on 3000 rows in the centralized database. However, the performance of

distributed queries also depends on data transfer between databases; the cost of data transfer may be

significant and can compromise the performance of some distributed queries.

In addition to intra-query parallelism, the distributed database can provide greater inter-query parallelism,

when more queries can be executed in parallel increasing the throughput of the database – three databases in

our case can process more requests simultaneously than the centralized database.

The distribution and localization of data may also improve the performance of other applications in the

company because the load on the company’s network will be reduced.

Scalability

In a distributed solution, an expansion of a database or an increase in the number of database users is easier

to handle than in a centralized one – new servers can be added to the distributed database without affecting

Boston New York Cleveland

Local application

Departments
and employees

of Cleveland

Departments
and employees

of New York

Local application

Departments
and employees

of Boston

Local application

Global application

Figure 10. Localization of data.

23

the performance of existing databases. In the centralized solution, on the other hand, to accommodate

growth of the database or an increase in database load, it is necessary to upgrade hardware and software,

which may make the database temporarily unavailable and require modification of the database or database

applications.

Increased Reliability and Availability

Using several databases allows for replicating data and increasing data reliability. Figure 11 shows that if the

Boston database goes down or even is destroyed, the application can switch to the Cleveland database that

keeps a synchronized copy of the Boston data (replica).

Distribution also improves data availability. Imagine that the database administrator has to perform some

reorganization of the Cleveland data. In a centralized database, this activity may result in the temporary

unavailability of the tables Department and Employee. If data are localized (data for Boston’s departments

and employees are kept in the Boston database), then the availability of this data to local applications is not

dependent on the condition and availability of data and database servers in other locations.

Complicating Factors

A distributed solution, though it might bring significant improvements in the performance and reliability of

the database, is more complicated and costly. The following are the complexities of the distributed approach:

 Lack of standards and methodology:

 As with physical design in general, there is no straightforward methodology of data distribution
design, often it is a ‘trial and error’ approach.

 There are no standards or methodology on converting a centralized database into a distributed one.

 Complex design of data distribution. Decisions on splitting tables into fragments, allocating and, possibly,
replicating fragments and unfragmented tables are often difficult to make.

 Complex implementation, including implementation of integrity constraints and transparency of data
distribution.

Complexity of Design

Decisions on the distribution of data often are difficult to make because of conflicting needs in data. For

instance, in our case, in addition to the mentioned requirements about offices in three cities that use data

about local departments and employees, we learned about users in Boston who process data about full-time

Application

Boston (Boston data) Cleveland (with replica
of Boston data)

Figure 11. Replication of data.

24

employees, users in New York who perform similar processing of data about part-time employees, and users

in Cleveland who work with data about consultants. In each city, the application, which supports data about

the employees of a particular type, will have to access three different databases on the fragmentation shown

in Figure 10. The availability of data for this application will be compromised because it will depend on the

availability of three databases.

The performance of this application may become worse because it will have to approach access two remote

sites to perform its tasks (Figure 12).

Localizing data by employee type for the new application, on the other hand, will make the existing local

applications more complicated and, most probably, slower. The decision about the distribution of data about

departments and employees depends on the importance of the local needs for data. Usually, a decision on the

importance of an application is based on how frequently it accesses the data. If, for example, the application

that supports the data about local departments and employees is executed more frequently than the new

application, then the initial distributed solution will improve the performance of the more important

application and be beneficial, even though it may make the performance of the other application worse.

The decision on the allocation and replication of fragments and tables often involves balancing between

intentions to increase reliability and availability of data on the one hand, and the necessity to improve

performance and lower the cost of data support on the other.

Complexity of Implementation

For distributed solutions, the implementation of some aspects of relational databases requires additional

efforts:

 Most DBMSs do not provide transparency of distribution and replication of data. These transparencies,
therefore, must be implemented by the database programmer (see the section on transparency of
distribution below).

 Most distributed DBMSs do not support distributed integrity constraints. Usually, these constraints have
to be implemented through database triggers or in applications.

Local

application

Cleveland New York

Local

application

Boston

Local

application

Global

application

New local

application

Figure 12. Local applications with conflicting requirements.

25

 Resolving performance problems and tuning the distributed database are more complicated than working
with a centralized database; they involve considering such additional issues as the distribution of data,
communication costs, and obtaining sufficient locally available performance information.

 Additional performance problems may be caused by data replication.

 There are certain issues in implementing security in distributed and replicated databases; these issues are
discussed in Chapter 4.

Some other problems, like distributed concurrency control and consistency of replicated data, recovery of

replicas, switching from failed databases to functioning ones, distributed deadlock management are usually

resolved by the DBMS.

The Distributed Database in Oracle

Oracle provides support of distributed databases. Consider a distributed solution for the Manufacturing

Company case. Figure 13 shows part of this distributed database – the New York and Boston databases with

localized data about the company’s departments (the table Department in New York contains the rows of

New York departments and the table Department in Boston – the rows of Boston departments). The case

description mentions that the application that is executed from the New York office requires data about all

departments. The application should be able to access the Boston’s portion of the data about the

departments. Obviously, the databases have to be connected physically via the network. Oracle makes a

database “visible” to another database through a database link. A database link defines a one-way

communication path from one Oracle database to another; it is a logical connection between the databases

(made possible by the physical network connection between them) that specifies the name and location of the

remote database.

In this case, the New York database has to “see” the Boston database and, therefore, has to contain the

following database link (as in the Figure 13):

CREATE PUBLIC DATABASE LINK boston USING boston.ourcompany.us.com;

Users of the New York database can access the Boston table Department by explicitly specifying the database

where the table is located:

SELECT * FROM Department@boston;

Note that the Boston database does not “see” the New York database through this link.

Figure 13. Distributed database in Oracle.

Network – physical connection

Link – logical connection

New York Boston

Department Department

26

Transparency of Distribution

The physical distributed design of the database is not transparent to the users as the users must not only

know that the database is distributed but also know the locations of the tables needed. If the table

Department is relocated from Boston to another database (e.g. Cleveland), the way users access data will be

affected and some applications will have to be rewritten, e.g. the last query of the previous section.

The goal of transparency of distribution is to make the distributed database appear as though it is a single

Oracle database. The Oracle distributed database has features that hide (or allow hiding) the physical location

of database objects from applications and users. Location transparency allows users to address objects such as

tables in a unified way regardless of the database where the objects are located.

Location transparency has several benefits, including:

 Access to remote data is simple because database users do not need to know the physical location of the
remote database object.

 Administrators can move database objects with no impact on users’ requests or existing database
applications.

An object’s location can be made transparent with the help of synonyms. Synonyms are additional names for a

database object. For example, we will create the synonym for the remote table Department of the Boston

database in the New York database:

CREATE PUBLIC SYNONYM Department_Boston FOR Department@boston;

Now users of the New York database can access the remote table Department with the help of a simpler

query that does not depend on the location of this table:

SELECT * FROM Department_Boston;

The users’ view of the distributed database is simpler now (as shown in Figure 14) and they see it as the

centralized database.

However, the database is still not transparent to users (or applications) that need to access data about all

departments because they need to know that data about departments are fragmented and correspondingly

build their requests:

SELECT * FROM Department

UNION

SELECT * FROM Department_Boston;

New York

Figure 14. Transparency of distribution.

Department (NY) Department (Boston)

27

The fragmentation of data can be made transparent with the help of views. For example, for the global New

York application we will build the following view:

CREATE VIEW Department_all AS

SELECT * FROM Department

UNION

SELECT * FROM Department_Boston;

Now data about all departments can be accessed through the view:

SELECT * FROM Department_all;

In many database applications, different transparencies are implemented with the help of stored procedures. The

stored procedure is a database object implemented in the procedural extension of SQL (PL/SQL in Oracle).

Users execute the procedure without knowing the details of how data are processed by the commands within

the procedure. For example, the following procedure created in the New York database performs the

inserting of a new row in the table Department of the Boston database:

CREATE PROCEDURE insert_Department

(par_Code CHAR, par_Name VARCHAR2, par_Location VARCHAR2,

par_Type VARCHAR2) AS

BEGIN

INSERT INTO Department@boston

VALUES (par_Code, par_Name, par_Location, par_Type);

END;

Adding a new Boston department can be performed by executing the procedure with the appropriate

parameters’ values:

EXEC insert_Department (‘999’, ‘Accounts Payable’, ‘Cleveland’,

‘Business’);

Stored procedures implement the transparency of data and data processing. Consider the case where we need

to create a new department that requires some checking operations, and adding a row into the auditing table

that keeps track of who created the new department and when they did it. In such a case, if these actions are

implemented within a procedure, users are unawre of them and are relieved from executing these actions

themselves for every insert operation.

Such objects as synonyms, views and procedures can be used for implementing the transparency of

distributed databases. Note that every object is created by a particular database user and belongs to this user’s

schema. Other users need special permissions to be able to use these objects. Schemas and security issues are

discussed in detail in Chapter 4.

Example: Building the Physical Model of Data
Let us discuss the physical design of the table Employee – a part of the physical data model for the

Manufacturing Company case. This discussion is provided for the centralized database solution; the

distributed design for this case is shown in Chapter 3.

Building the physical model of data includes making decisions about data types for the columns, additional

integrity constraints, the initial size and growth of the table, the type of storage, and storage parameters.

28

Decisions about a column data type are based on user requirements for a column’s possible values and the

expected data manipulations on the column. The following data types are chosen for the columns of the table

Employee:

 ID. This column is the primary key of the table and its values are assigned within the company. Integer
numbers are a good choice for this column for a couple of reasons. First, this makes the column short
and simple – necessary properties for the primary key column. In addition, it allows for using the
IDENTITY feature mentioned above or a special Oracle object – sequence – to automatically generate
new unique values of this column for the new rows.

 emplName. VARCHAR2(30)The names of persons include letters and are of variable length. Columns of
such type usually have the VARCHAR2 data type. The length of the column is limited to 30 symbols.

 emplType. VARCHAR2(10)allows storing the three possible values(‘Full-time’, ‘Part-time’, ‘Consultant’)of
the column. However, a better solution might be to store shorter values, e.g., the first letter, which will
not only reduce resources usage but will also reduce the possibility of error when entering the value – we
suggest CHAR (length 1 is the default).

 deptCode and titleCode. These columns are the foreign keys to other tables of the database and we will use
the same data types as these columns have in their parent tables Department and Title, respectively.
Assume that both of these columns have the CHAR data type as both may contain digits and letters.
Both columns are fixed length: three symbols for deptCode and two symbols for titleCode.

The NOT NULL constraint on the column emplName enforces the requirement that each employee in the

database has a name. The CHECK constraint on the column emplType ensures that values of the column are

limited to ‘F, ‘P, and ‘C’.

The table is stored as a heap. The table blocks do not need much free space because columns ID, deptCode,

and emplType are fixed-length, and columns emplName and emplType are unlikely to change often.

Therefore, PCTFREE can be low. Users do not expect many staff changes, which means there will not be

too many deleting and inserting operations, and, therefore, PCTUSED can be high. Given these

requirements, PCTFREE can be set to 5, and PCTUSED to 90.

Users expect to support about 4000 employees, and we can roughly estimate the initial size of the table using

the average row length and the percent of free space. The average row length depends on the average length

of the emplName column, which we estimate as 20. Then the average row length is 30 bytes: 4 bytes for ID,

20 bytes for emplName, 1 byte for emplType, and 5 bytes for deptCode and titleCode.

The initial size of the table is estimated as 126000 bytes: 30 bytes multiplied by 4000 rows and increased by

5% of free space. The estimation is rough and does not consider some other storage factors, e.g. space in the

data blocks occupied by block headers and directories; the initial size is rounded to 130K.

The table is not expected to grow fast; and we will specify five possible extensions of 50K each.

Here is the resulting physical model of the table:

CREATE TABLE Employee (

ID INTEGER PRIMARY KEY,

emplName VARCHAR2(30) NOT NULL,

emplType CHAR

CHECK (emplType IN (‘F’, ‘P’,C’)),

deptCode CHAR(3) REFERENCES Department,

29

titleCode CHAR(2) REFERENCES Title)

 PCTFREE 5

 PCTUSED 90

 TABLESPACE users

 STORAGE (INITIAL 130K

 NEXT 50K

 MAXEXTENTS 5

 PCTINCREASE 0);

It is important to utilize specific features of the DBMS to make the support of data easier. In this example,

we want to show how to use a special feature of Oracle – sequence – for generating unique values. We will

create a simple sequence that starts with the value 1 and generates the next value with an increment of 1:

CREATE SEQUENCE seq_Employee;

To use the sequence object for generating unique ID numbers for the table Employee, we need to create a

special type of procedure – a trigger on the table. The trigger that we need here will be automatically invoked

for every insert statement on the table, generate the next value of the sequence, and assign this value to the

ID column of the new row.

CREATE TRIGGER tr_ins_Employee -- creating the trigger

BEFORE INSERT ON Employee --the trigger is invoked

before every insert

FOR EACH ROW --the trigger action takes

place for every inserted row

DECLARE

vNext NUMBER;

BEGIN

vNext:=

seq_Employee.NEXTVALUE;

-- request the sequence to

generate the next value

:NEW.ID := vNext; -- assign the new sequence

value to ID of the new row

END;

Every insert statement

INSERT INTO Employee (emplName, emplType, deptCode, titleCode)

VALUES (…);

invokes the trigger and generates a new value for the ID column. Generating the new value and assigning it to

ID is transparent to users.

Summary
The physical data model specifies where the data are stored and how data storage is organized. Building the

physical model requires knowledge of the conditions under which the database will be used and user

requirements for the expected sizes of tables, performance of various requests, availability of data, number of

users concurrently working with data, and other considerations. In addition, developers have to understand

the features of the DBMS and utilize these features properly to build the physical model.

The main goals of a good physical data model are providing the required performance and availability of data,

economical space usage, and easy database maintenance. This chapter discusses the basic features of DBMSs

30

for achieving these goals. Each DBMS has additional specific tools and features, and developers need to

understand them and use them to full advantage.

The important steps in building the physical model are:

 Choosing the data types for the columns of tables. A data type has to: 1) represent all possible values of a column
and 2) allow for all needed operations on the column’s values. A data type also 3) imposes constraints on
the column’s values and it can be used to enhance the column’s integrity. Additional considerations for
choosing a data type include 4) performance (e.g. VARCHAR2 vs. CHAR) and 5) the economical use of
storage space. Some DBMSs offer specific data types that can substantially reduce the cost of data
maintenance (e.g. IDENTITY).

 Applying additional integrity constraints. DBMSs support additional integrity constraints not included in the
relational model, such as NOT NULL, CHECK, and UNIQUE. These constraints implement user
requirements that are not presented in the relational data model and improve data integrity. More
complicated user requirements are implemented with the help of special database procedures –
triggers.While some requirements can be supported by the database application, we strongly advocate
making the database responsible for data quality – such quality support measures cannot be bypassed and
will be implemented only once to be leveraged by any application.

 Defining storage type. The type of storage organization is dependent upon how the data will be used.
Developers have to choose between heap (or random) and organized storage. The most common type of
storage organization is clustering, when rows that have the same value of a column (index cluster) or the
same value of a special function applied to a column (hash cluster) are stored in the same blocks. When a
request for data is constrained by conditions on the column used for clustering, because the requested
rows are stored together, the system can access all needed data in a few block reads. DBMSs support
other types of organized data storage, e.g. index-organized tables and partitions. In some cases, achieving
the necessary performance requires the distribution and localization of data. A special case of data
distribution – a replicated database – is the ultimate resolution of the problem of data reliability and
availability.

 Specifying storage parameters. Storage parameters of a table define where (in which tablespace) the table is
stored, its initial size and growth, the packing of data in data blocks, and other physical properties.

Review Questions
1. What are the main goals of physical data design?

2. What DBMS features are used for performing physical design?

3. How does storage organization affect performance on the database?

4. What types of organized storage do you know?

5. When is it recommended to use clusters?

6. In what situations is it beneficial to distribute data?

7. What are the benefits of the 3-tier architecture of a database?

8. How does the DBMS read data from a table and process the data?

9. What table storage parameters do you know? What is the role of each of them?

10. What types of organized data storage in Oracle do you know?

11. How would you implement transparency for a distributed database?

Practical Assignments
1. Describe the database storage hierarchy. Explain how a table’s data is stored in a database.

2. Explain how parameters PCTFREE and PCTUSED control the packing of data in data blocks.

31

3. Choose the data types for the table Student (ID, name, dateOfBirth) and explain your
decisions.

4. Choose data types for the columns of the table T (A, B, C, D) and specify column constraints for
the following conditions:

 Values of the column B are alphanumeric strings five symbols long, and for each row of the
table, the column B must always have a value and this value has to be unique.

 The column C is designed to store numeric values not greater than 50000; users often request
totals of the column C.

 The column D stores dates of the year 2019.

5. Estimate PCTFREE and PCTUSED for the following tables and situations:
a. CREATE TABLE T1 (field1 NUMBER, field2 CHAR(3), field3 DATE). Intensive

updating, inserting and deleting activities are expected.
b. CREATE TABLE T2 (field1 NUMBER, field2 VARCHAR(250)). Intensive inserting

and deleting activities are expected.
c. CREATE TABLE T3 (field1 VARCHAR2(50), VARCHAR2(300)). Intensive updating

activities are expected.
d. CREATE TABLE T1 (field1 NUMBER, field2 CHAR(3), field3 DATE). Intensive

retrieving activities are expected.
e. CREATE TABLE T3 (field1 VARCHAR2(50), field2 VARCHAR2(300)). Intensive

retrieving activities are expected.

6. A database contains two tables T1(A, B, C) and T2 (C, D, E). The column C of T1 is the foreign
key to T2. Explain in which of the following situations it is reasonable to use clusters, and create clusters
and clustered tables.

a. The data in the tables are often modified.
b. The performance of select queries with conditions … WHERE C = x on the table T1 is

important.
c. The performance of queries with conditions … WHERE C <> x on the table T1 is important.
d. The performance of queries with conditions … WHERE C > x on the table T1 is important.
e. The performance of the queries on the join of the tables is important.

7. Explain when it is beneficial to store the table T (A, B, C)as index-organized.

8. Define the difference in conditions for your decisions to store the table Employee as clustered or
partitioned by the attribute emplType.

9. Define the difference in conditions for your decisions to store the table Employee as distributed or
partitioned by the attribute emplType.

10. What would be your choice of the storage organization of the table Employee if the following querying
patterns were the most important ones:

a. … WHERE ID = x;
b. … WHERE emplName = x;
c. … WHERE deptCode <> x;
d. … WHERE titleCode BETWEEN x and y;
e. … WHERE titleCode =x;

11. Describe distributed data design for one of the case studies from Appendix 1.

32

12. Build the physical data model for one of the case studies from Appendix 1.

	(2022 Revision) Chapter 2: Essential Aspects of Physical Design and Implementation of Relational Databases
	tmp.1659891821.pdf.thziG

