
City University of New York (CUNY) City University of New York (CUNY)

CUNY Academic Works CUNY Academic Works

International Conference on Hydroinformatics

2014

Using Smart Water Meters In (Near) Real-Time On The iWIDGET Using Smart Water Meters In (Near) Real-Time On The iWIDGET

System System

Michael G. Barry

Mark E. Purcell

Bradley J. Eck

How does access to this work benefit you? Let us know!

More information about this work at: https://academicworks.cuny.edu/cc_conf_hic/63

Discover additional works at: https://academicworks.cuny.edu

This work is made publicly available by the City University of New York (CUNY).
Contact: AcademicWorks@cuny.edu

https://academicworks.cuny.edu/
https://academicworks.cuny.edu/cc_conf_hic
http://ols.cuny.edu/academicworks/?ref=https://academicworks.cuny.edu/cc_conf_hic/63
https://academicworks.cuny.edu/cc_conf_hic/63
https://academicworks.cuny.edu/?
mailto:AcademicWorks@cuny.edu

11
th

 International Conference on Hydroinformatics
HIC 2014, New York City, USA

USING SMART WATER METERS IN (NEAR) REAL-TIME ON THE
IWIDGET SYSTEM

MARK E. PURCELL, MICHAEL G. BARRY, BRADLEY J. ECK

IBM Research Ireland, Mulhuddart, Dublin 15, Ireland.

Devices and technologies to measure and report water consumption at sub-daily intervals are

growing in popularity. Data from these devices are creating new opportunities to manage the

supply and demand of water in near real-time. To this end, the EU FP7 iWIDGET (Improved

Water efficiency through ICT for integrated supply-Demand side manaGEmenT) project is

developing a state-of-the art analytics platform for the integrated management of urban water.

Key challenges include extracting useful insights from high-resolution consumption data and

exploring a range of decision-support tools for water utilities and consumers. To overcome

these challenges, iWIDGET is developing a distributed, open, robust, collaborative architecture

that allows partners and utilities to collect and process data from a large number of sensors in

parallel and analyze data on demand.

We present a distributed system that enables flexible, near real-time monitoring of water

networks by providing four critical mechanisms. First, a means to regularly poll water utility

raw data systems. Second, assimilation of fresh data into a purposely designed, high-

performance database. Third, geographically local or remote analytic systems poll the database

to incorporate the latest consumption information in their analysis. Lastly, an online portal

based platform is used to trigger analysis and review results.

A key architectural feature of this system is a loose coupling between central storage and

analytic systems. Communication between the central storage and processing components

utilizes standard techniques, including WaterML, over RESTful web services. This arrangement

avoids restrictions on the underlying technologies in analytical components and allows analytic

systems to execute on different operating systems and run-times. The system is under active

development and will enable a wide variety of tools for water utilities and individual

consumers.

The research leading to these results has received funding from the European Union

Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 318272.

INTRODUCTION

Measurements of water consumption at sub-daily intervals create new opportunities for urban

water management. Many types of analysis including time-series forecasting, optimization, and

agent based modeling can benefit from water consumption data. The relevant techniques are

implemented in a wide range of analysis tools and new tools and techniques are under active

development. The most valuable insights will likely come from a collaborative analysis

approach, whereby the results of one technique become part of the input data set for another

technique. In this way, successive algorithms may iteratively learn more from the underlying

data, creating new and unique insights.

Realizing the potential of a collaborative and near real-time analytics platform is not

straightforward. The underlying technologies vary considerably and depend not only on the

analysis task, but also the preferences of different organizations. Some techniques employ

licensed tools such as Matlab, others are written in Java, Python or C/C++. For example, a high

performance analysis routine written in C++ cannot easily interact with an R analytic,

especially if they operate on separate local area networks. This problem is compounded by

varying run-time environments and hardware requirements. The variety of approaches and tool

kits complicates the potential for interoperability.

This paper presents the architecture of a system for collaborative and near-real time

analysis of water consumption data. The goals of the system include flexibility for research and

commercial use as well as ease of interoperability between disparate systems and tools.

Achieving these goals will result in improved water efficiency for utilities and consumers.

ARCHITECTURE

The motivation behind the iWIDGET architecture is to promote interoperability between

heterogeneous technologies, specifically proprietary analysis engines, storage and visualization.

As such, all participating analysis systems are loosely coupled: there is no direct link between

systems. An iWIDGET application programming interface (API) provides access to water

consumption data, in effect sharing this data across participating remote systems. An analysis

system can request data from this API, perform its analysis, and return a result through the API.

These results can be disseminated across the other participating systems and be used in

subsequent analysis.

Figure 1 shows the iWIDGET system, which is comprised of a centralized server and

database, with remote client systems for data acquisition and analysis. Clients in the iWIDGET

system interact with the central iWIDGET server through an abstraction layer: the iWIDGET

API.

Figure 1. iWIDGET Distributed Architecture

A water utility acquires readings from individual consumption points and makes the

readings available by file transfer protocol (FTP). An iWIDGET monitoring client polls the

utility FTP server on a frequent schedule, normalizes the readings, and populates the database

through the iWIDGET API and server. Remote iWIDGET analysis clients obtain these readings

from the iWIDGET server, through the iWIDGET API, perform an analysis, and return results.

All requests for data are made through the iWIDGET API, not directly to the database,

thereby insulating the requestor from the specific details of the database implementation. This

abstraction effectively virtualizes the database, allowing different database technologies to be

employed. For example in a commercial scenario, IBM® DB2® enterprise edition may be

installed, whereas for smaller projects, open source or license free solutions, such as MySQL

can be used. It is even possible to use a file system directly. For iWIDGET clients and servers,

the API provides the abstraction layer which enables the use of many different strategies and

underlying techniques.

In order to provide configuration details for remote analysis engines, as well as view

analysis results, an online portal platform is used. Two flavors of platform are included in the

architecture. Firstly, at a water utility level, the data requested by analysis engines is of water

network scale. With this large volume of data, analysis may take some time and needs to be

scheduled to execute on an appropriate, remote system. This is the standard iWIDGET loosely-

coupled model. Secondly, for smaller amounts of data, for example at a household level,

analysis can be performed quite quickly. In this case, analysis and display can be more tightly-

coupled, with analysis running whilst the display is constructed. This is an on-demand variation

of the platform, where no remote analysis engine is required.

INTERACTIONS

In the iWIDGET system, components for storage, analysis and visualization interact through

the iWIDGET API, which is built as a RESTful service. Representational state transfer (REST)

[1], defines a set of architectural principles by which web services are designed to focus on a

system's resources. REST describes how resource states are addressed and transferred over the

hyper-text transfer protocol (HTTP) to a wide range of clients written in different programming

languages. A RESTful service performs tasks by answering requests over HTTP. Requests and

responses are representations of resources capturing their current state and a resource is any

piece of information/data that can be globally identified with an HTTP uniform resource

identifier (URI), for example, http://MyServer/iWidget/MyService.

From Figure 1 above, the underlying database technology is masked by the iWIDGET API

RESTful abstraction layer. Analytic components only require knowledge of this API and its

inputs and outputs. This arrangement leaves the designers of analytic components free to use

whatever underlying technology they wish.

One of the main reasons for proposing REST as the technique for accessing remote

services, is its ease of client-side implementation. Alternative mechanisms such as the simple

object access protocol (SOAP) [2] or remote procedure calls (RPC) [3], require every client

application (analysis engine) to implement a functional end-point to the communications

channel. With REST however, most of the complexity of the communication resides on the

server. To operate on the iWIDGET platform, the client simply accesses a URI, minimizing the

integration effort on the part of existing analysis engines.

This client-side ease of implementation strategy only necessitates access to the iWIDGET

server using HTTP verbs. The verbs are: PUT to create a server side entry; GET to retrieve an

existing entry; POST to update an entry; and DELETE to remove a server side entry. All

interactions between requests are stateless, reflecting current server-side state. It is even

possible to construct an iWIDGET client without writing any code. For example, the cURL [4]

application can be used:

 curl -X GET http://iwidgetserver/iWidget/devices

This RESTful query returns a device listing, or list of water meters, that can be used as input to

an analysis engine. Other queries retrieve meter readings for a given meter over a specific time

period:

 curl -X GET http://iwidgetserver/iWidget/timeseries/00062620

 ?startTime=2009-03-01 03:00:00

 &endTime=2009-03-01 04:00:00

The iWIDGET API, based on RESTful services, is similar to the Open Geospatial Consortium's

KVP Protocol (key-value pair) [5]. iWIDGET extends the HTTP GET semantics of KVP with

the PUT, POST and DELETE features described above. Although still under active

development, the iWIDGET API should eventually converge with the OGC protocols, perhaps

proposing extensions to the standard.

DATA FORMAT

Water consumption data transported through the iWIDGET API, must adhere to a known

structure. The structure of this data must be comprehensible by all participating analysis

engines. Two schemes are currently used to format this data, JSON and WaterML.

An example measurement time series is shown in Figure 2, for both WaterML and JSON.

This is the data that is returned to an iWIDGET client in response to a query (see the curl

examples earlier). WaterML is significantly more verbose than JSON, and this has implications

in terms of network bandwidth and processing requirements, especially when multiple remote

systems are operating on the iWIDGET platform.

JavaScript Object Notation (JSON) [6], is a lightweight, human-readable, data-interchange

format. It is programming language agnostic, and is built on a collection of name-value pairs,

and ordered lists of values, or arrays. JSON is very easy to parse, and can be used directly in

many programming languages, including Python and Javascript. This makes it particularly

suitable as a data structure for online web portals.

WaterML [7], is an information model for water data, specified by the Open Geospatial

Consortium. WaterML is based on XML and was designed to promote interoperability for

hydrologic time series data across many adopters. As an XML format, the data must first be

parsed by a SAX [8] based XML parser (such as Xerces), before consumption and analysis by a

client application. This places an additional programming effort on clients that wish to use the

WaterML variant of iWIDGET data.

<wml2:Collection xsi:schemaLocation="http://opengis.net/waterML/2.0

 http://schemas.opengis.net/waterml/2.0/waterml2.xsd">

 <wml2:observationMember>

 <om:OM_Observation>

 <om:featureOfInterest>

 <wml2:MonitoringPoint>

 <gml:identifier>00060986</gml:identifier>

 </wml2:MonitoringPoint>

 </om:featureOfInterest>

 <om:result>

 <wml2:MeasurementTimeseries>

 <wml2:metadata>

 <wml2:MeasurementTimeseriesMetadata>

 <wml2:cumulative>false</wml2:cumulative>

 </wml2:MeasurementTimeseriesMetadata>

 </wml2:metadata

 <wml2:defaultPointMetadata>

 <wml2:DefaultTVPMeasurementMetadata>

 <wml2:quality xlink:href="http://www.opengis.net/def/WaterML/2.0/quality/good"

 xlink:title="Good"/>

 <wml2:uom code=”l/min"/>

 <wml2:interpolationType xlink:href="http://www.opengis.net/def/waterml/2.0/Interpolation"

 xlink:title="Average In Preceeding Interval"/>

 <wml2:aggregationDuration>P1D</wml2:aggregationDuration>

 </wml2:DefaultTVPMeasurementMetadata>

 </wml2:defaultPointMetadata>

 <wml2:point>

 <wml2:MeasurementTVP>

 <wml2:time>2009-03-11 04:00:00.0</wml2:time>

 <wml2:value>0.0</wml2:value>

 </wml2:MeasurementTVP>

 </wml2:point>

 <wml2:point>

 <wml2:MeasurementTVP>

 <wml2:time>2009-03-11 05:00:00.0</wml2:time>

 <wml2:value>1.6666667E-5</wml2:value>

 </wml2:MeasurementTVP>

 </wml2:point>

 </wml2:MeasurementTimeseries>

 </om:result>

 </om:OM_Observation>

 </wml2:observationMember>

</wml2:Collection>

[{

"deviceID":"00060986",

"units":"l/min,

"timeSeries":[

{“date":"2009-03-11 04:00:00",

"value":0.0},

{"date":"2009-03-11 05:00:00",

"value":1.6666667E-5}]

}]

Figure 2. iWIDGET WaterML and JSON encodings for a measurement time series

DEPLOYMENT

The iWIDGET architecture supports a wide range of deployment scenarios. The current

development deployment provides user interfaces through a portal server. This is composed of a

number of sub-components called portlets. Each portlet provides an interaction layer to specific

analytics, establishing a configuration and presenting results. For example, a portlet could

define a configuration for a remote analysis engine to execute at midnight, using as input, all

water consumption data for the previous twenty-four hours.

Although the portal based user interface is depicted on the same physical system as the

iWIDGET server, in Figure 1, as with analysis engines, individual portlets are in fact acting as a

remote clients. They use the same techniques as remote analysis engines to access water

consumption data: the iWIDGET API. This enables the user interface and iWIDGET server to

be deployed on geographically separate systems. As the portal based user interface platform is

effectively an iWIDGET client, it is similarly possible to provide a tablet/smartphone based

user interface platform, also acting as an iWIDGET client.

The database can also operate remote to the iWIDGET server making the iWIDGET

platform ready for cloud deployments. No system adaptation is required for a fully virtual

environment. Multi-tenant use is also supported, whereby several water utilities can operate

simultaneously on the iWIDGET platform, with appropriate data isolation and protection.

To facilitate the use of the iWIDGET system in research environments, the architecture is

realizable using fully open source, or license free software. The active development platform

was built in this manner. Recent meter data is acquired in near real-time, via FTP, from a

remote water utility and passed through one or more normalization routines, which produce a

standardized data set for use in analysis calculations. For example, volumetric meter readings

are normalized into a series of hourly flow rates, denominated in m
3
/s.

This data is then stored in a purposely designed iWIDGET database which is backed by

IBM® DB2® Express-C. This is the community edition of the database, with no licensing

restrictions. The database schema is built with standard SQL constructs allowing for transition

to other database technologies. In fact, as part of the development process, this schema was also

successfully deployed on an IBM® Informix database.

The iWIDGET server, which hosts the iWIDGET API, is built upon Apache Tomcat, an

open source product. The user interface is portlet based and requires a portal server, for

example, the open source Open Portal Portlet Container.

Future commercial installations of the iWIDGET system can replace all of these free

products with enterprise scale alternatives, such as IBM® DB2® Enterprise Server Edition and

IBM® WebSphere® Portal Server.

CONCLUSIONS

The iWIDGET project is primarily concerned with improving water efficiency through the

analysis of water usage from sub-daily measurements of water consumption. The iWIDGET

architecture, system design, storage mechanism, and communication techniques support this

objective by providing data that is normalized in a consistent way. The design minimizes

complexity for analytics, ensuring easy integration of newly designed analytic routines.

Existing analytical tools may operate on the iWIDGET platform by instantiating an iWIDGET

client, which interacts with the system.

An iWIDGET system holds benefits for many stakeholders. Universities, companies, and

utilities wishing to analyze high resolution water consumption data can access a common set of

data and share results. Individual water users gain visibility into their own resource usage.

Utilities can provide an iWIDGET interface to their data to gain access to a variety of analysis

tools. The results of these analytics on water consumption data can lead to significant

advancements across the whole network, in the form of improved leak detection, optimized

flow rates and reduced energy consumption.

REFERENCES

[1] Roy T. Fielding and Richard N. Taylor., “Principled design of the modern Web

architecture”, ACM Transactions on Internet Technology 2, May 2002, 115–150.

[2] W3C, “SOAP Version 1.2 Part 0: Primer”, Second Edition, in Nilo Mitra & Yves Lafon,

W3C Recommendation, 2007.

[3] Andrew D. Birrell , Bruce Jay Nelson, “Implementing remote procedure calls”, ACM

Transactions on Computer Systems (TOCS), v.2 n.1, p.39-59, February 1984.

[4] Jes Fraser, "Command-Line Application Roundup", Linux Journal, Issue 198, October

2010.

[5] Peter Baumann, “Web Coverage Service 2.0 Interface Standard - KVP Protocol Binding

Extension”, Open GeoSpatial Consortium, Ref: 09-147, 2013.

[6] Tim Bray, “The JavaScript Object Notation (JSON) Data Interchange Format”, Internet

Engineering Task Force RFC7159, ISSN: 2070-1721, 2014.

[7] Peter Taylor, “WaterML 2.0: Part 1 – Timeseries”, Open GeoSpatial Consortium, Ref: 10-

126r4, 2014.

[8] David Brownell, Sax2, O'Reilly & Associates, Inc., Sebastopol, CA, USA, 2002.

	Using Smart Water Meters In (Near) Real-Time On The iWIDGET System
	Paper template for HIC2004

