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Abstract. Ensemble filtering techniques filter noisy instances by com-
bining the predictions of multiple base models, each of which is learned
using a traditional algorithm. However, in the last decade, due to the
massive increase in the amount of online streaming data, ensemble filter-
ing methods, which largely operate in batch mode and requires multiple
passes over the data, cause time and storage complexities. In this paper,
we present an ensemble bootstrap model filtering technique with multi-
ple inductive learning algorithms on several small Poisson bootstrapped
samples of online data to filter noisy instances. We analyze three prior
filtering techniques using Bayesian computational analysis to understand
the underlying distribution of the model space. We implement our and
other prior filtering approaches and show that our approach is more ac-
curate than other prior filtering methods.

1 Introduction

Data stream mining is the process of extracting knowledge structures from con-
tinuous, rapid data records. The goal in many data stream mining applications
is to form a generalization, from a set of previous labeled training data streams
such that classification accuracy for previously unobserved instances is maxi-
mized. The maximum accuracy achievable depends on the quality of the data
and on the chosen learning algorithms. This paper focuses on improving the
quality of training data by identifying and eliminating mislabeled instances on
streaming data.

Quinlan [1] demonstrated that as noise level increases, removing noise from
the mislabeled training instances (class noise) increases the predictive accuracy
of the resulting classifier. This has been empirically verified by many researchers
over the last decade. For example, Brodley and Friedl ([2][3]) illustrate that for
class noise levels of less than 40%, removing mislabeled instances from the train-
ing set resulted in higher predictive accuracy relative to classification achieved
without “cleaning” the training data.

Gamberger et al [4] point out that the separation of noise detection and
hypothesis formation has the advantage that noisy examples do not influence



hypothesis construction. This is different from the approaches that handle noise
in the hypothesis formation process by trying to avoid overfitting the noisy
example set.

The remainder of the paper is organized as follows. Section 2 discusses three
prior significant filtering techniques. In Section 3, we mention the contributions of
this paper. In Section 4 we analyze the current filtering techniques with Bayesian
computational analysis. In Section 5 we present our bootstrap model filtering
algorithm. In Section 6 we show empirically how our technique compares with
other filtering techniques, and we finally conclude in Section 7.

2 Prior Work in Ensemble Filtering

The problem of handling noise has been the focus of much attention in machine
learning especially in online data stream mining. For example, pruning in deci-
sion trees is designed to reduce the chance that the tree is overfitting to noise in
the training data.

Weisberg [5] suggested the use of regression analysis to identify outliers in the
training data. Those cases that could not be described by the model and have
the largest residual errors are outliers. Motivated by the same idea, filtering was
introduced to remove mislabeled training data. In this section, we survey three
significant results in the area of filtering.

2.1 Ensemble Filtering

An ensemble classifier detects noisy instances by constructing a set of classifiers
(base level detectors) [2]. A majority vote filter tags an instance as mislabeled
if more than half of the m classifiers classify it incorrectly. A consensus filter
requires that all classifiers must fail to classify an instance as the class given by
its training label. In their empirical results, it was shown that the majority filter
performs better than a consensus filter.

2.2 Classification Filtering

Classification filtering [4] is a filtering approach in which the training set E is
partitioned into n subsets, and the set of classifiers trained from the aggregation
of any n — 1 subsets are used to classify the instance in the excluded subset.
There is only one base-level classifier used in classification filtering.

2.3 Partition Filtering

Partition filtering proposed by Zhu et al [6] partitions a dataset into equally
sized subsets, and each instance is evaluated by more than one model, and the
results are averaged to identify the noisy instances. The major difference between
classification and partition filtering is that in partition filtering each instance is
evaluated by k& — 1 hypotheses, whereas in classification filtering, each instance
is evaluated once by a single model built from the remaining instances in the
other k£ — 1 partitions.



3 Contributions of this paper

The novel contributions of this paper are as follows:

1. We perform Bayesian analysis to understand the underlying noise model
distribution in ensemble techniques, and show that the three prior filtering
techniques use crude approximations of model averaging (Section 4).

2. We present our novel ensemble filtering technique which extends the model
space by Poisson bootstrap samples and learns on those samples using mul-
tiple inductive learners (Section 5).

3. We compare our approach with a single filter, a prior filtering technique
(partition filtering) and online bagging, and plot the different techniques
using (a) an accuracy vs noise level graph and (b) learning curves.

4 Bayesian Analysis

Ensemble techniques can be considered as performing model averaging. Model
averaging framework is to build a set of models, obtain model specific estimates
and use the rules of probability to average over all the instances. It has been
shown that model averaging works by extending the model space [9] and that
several classifiers produces a higher accuracy as compared to any single model
[7]. In this section we use Bayesian analysis to understand the noise model dis-
tribution in ensemble techniques.

Let & represent the original training set, i/ the corresponding class labels and
6 a model (or hypothesis) in the model space ©. Mathematically, an unseen test
instances x, is assigned to a class y that maximizes the following equation:

Pr(y|#,0) = Y Pr(ylz,0).Pr(f|Z,q) (1)
fco

By Bayes’ theorem, and assuming the instances are drawn independently, the
posterior probability of 8 is given by:

PRV = s 1] Pries o) )
’ i=1

where Pr(#) is the prior probability of 6, and the product of Pr(x;,y;| 6) is
the likelihood. The data prior Pr(&,¥) is the same for all models and can thus
be ignored.

In order to compute the likelihood in equation (2), it is necessary to com-
pute the probability of a class label y;, given an unlabeled instance z;, and the
hypothesis 6 since:

Pr(z;,y;|0) = Pr(z;,0).Pr(y;|z;,0) (3)

The probability Pr(y;|x;, 0) is called the noise model. We assume a uniform
class model in which each instance’s class is corrupted with probability €, and
thus:



Pr(y;|x;,0) = 1 — € if 0 predicts the correct class y;, and
Pr(y;|x;,0) = € if 0 predicts an incorrect class
Equation (2) then becomes:

Pr(0|Z,y) o< Pr(0)(1 —e)%"™*° (4)

where s is the number of instances correctly classified by 6, and the noise
level can be estimated by the models’ average error rate.
Using Equation (4) in (1) we get:

(y#,0) o< > Pr(ylz,0).Pr(0).(1 - €)*e"~* (5)
0co
As n — oo the distribution of the noise model tends to Poisson(1l) dis-
tribution. Therefore for each training instance (as discussed in Section 5), we
choose that instance K ~ Poisson(1) times independently. We now analyze the
computation of the three prior filtering techniques.

4.1 Bayesian Analysis of Ensemble Filtering

In the case of a majority vote filter, the probability of classifying an unseen
instance x to a true label ¢, can be represented by the following equation:

> 6(t,0(x) (6)

|8* fco*

where 6(t,0(x)) = 1 if the class label predicted by the classifier for the test
case x is the true label ¢, and 0 otherwise. ©* represents the most probable
classifiers of the model

If Pr(y =t|z,©) < =, then the instance is noisy and filtered.

Pr(y = t|z,0) =

4.2 Bayesian Analysis of Classification Filtering

As mentioned in the previous section, classification filtering performs k-fold cross
validation. K-fold cross validation is a commonly used technique which takes a
set of n examples and partitions them into k sets of size 7. For each fold, a
classifier is trained on the other folds and tested on the current fold. Thus k hy-
potheses 61,05, ...,0; are generated. This prediction is equivalent to outputting

the average of k-hypotheses as shown below:

Pr(y = t|z,0) = k}:éte (7)

where ¢ is a 0-1 loss function, which returns 1 if 8; predicts the correct label ¢,
else returns 0. Equation (7) captures the cross validation step of the classification
filtering algorithm. If ¢ is the true class label, and 6 is the final model built, then
it performs the following computation:

Pr(y =tlz) = Pr(y = t|Z,0).Pr(0|Z, v) (8)
If Pr(y = t|z) < 3, then the instance is noisy and filtered.



4.3 Bayesian Analysis of Partition Filtering

In the case of partition filtering, there are k different hypotheses and unlike the
previous case, each instance is evaluated on each of the k — 1 hypotheses. If more
than half of the hypotheses classify the instance as noisy, then it is eliminated.
That is, each instance is evaluated by an average of the other models built.

1 k—1
Pr(y =tlz) = 7— > 68(t,0;) (9)
=1

where § is a 0-1 loss function, which returns 1 if 6; predicts the correct label
t, else returns 0
If Pr(y = t|z) < %, then the instance is noisy and filtered.

5 Bootstrap Model Filtering

In all the prior filtering techniques, we find that by having more than one model
to evaluate the instances, they extend the model space as compared to a single
filter. We also observe that in all the three techniques, a crude approximation of
model averaging is performed.

Consider the typical view of mining where a single training set of size n is
available from the underlying distribution that generated the data F'. However
this view masks the underlying uncertainty in the data, namely that the training
data we have is one of many that could have been chosen. If we were to build a
model for each possible data set we would have a probability distribution over
the model space. However, typically we do not have the luxury of many different
data sets drawn independently of the same size so that we can compute the
uncertainty over the model space from them. To approximate this distribution
using a single dataset, Efron [8] created the bootstrapping approaches. Non-
parametric bootstrapping is an example of attempting to simulate draws from F,
where no knowledge of its form is known. Formally, the computation performed
would be:

Pr(y|7,0) = Z Pr(y|z,0).Pr(D'|D) (10)
D’,6eo

where the datasets D’ are the different bootstrap samples generated from the
original dataset D.

The standard bootstrap procedure creates each simulated data set by draw-
ing observations from x with replacement. In any given resample, each obser-
vation may occur 0, 1 or more times according to Binomial(n, %) And since
the total number of observations is constrained to be n, the counts are jointly

Multinomial(n, %, cey %) We also note that:

1
lim Binomial(n,—) = Poisson(1) (11)
n

n—oo



Therefore for each training instance, we choose that instance K ~ Poisson(1)
times independently. We refer to this as Poisson Bootstrap Sampling.

Our Bootstrap Model Filtering algorithm as shown in Figure 1 begins with
n Poisson bootstrapped samples of our dataset E (step 1) and an empty output
set A of detected noisy examples (step 2). The main loop (steps 3-12) is repeated
for each bootstrap sample F;. F; is used as an input for the k inductive learning
algorithms to generate models k& models 6; 1,6; 2 ---0; ;. In step 7, we form a set
FE; which includes all the examples from E except F;. The set E; is evaluated
by our k£ models in steps 8-11. If more than half of the models misclassify an
instance, then it is treated as noise and eliminated.

Algorithm BootstrapModelFiltering (E,n, k)
Input: E (training set),
n (number of Poisson bootstrap samples),
k (number of inductive learning algorithms)
Output: A (a detected noisy subset of E)
1: Form n Poisson bootstrap samples E1,... , of E
2: A+ 0
3: fori=1,...,ndo

4: forj=1,...,kdo

5: 0;,; < model built from bootstrap sample E; and inductive algorithm j

6: end for

7. Ey <+ E\E;

8: for every e € E; do

9: If e is misclassified by more than half of the 6; ; models built, then it is noisy
and needs to be eliminated.

10: A+ Aude}

11:  end for

12: end for

Fig. 1. Bootstrap Model Filtering Algorithm

6 Empirical Results

In this section, we discuss experiments using J48, RandomForest and Ran-
domTree as the base classifier models for the bootstrap model filtering approach.
We tested our approach on several UCI [12] and other datasets of varying (small,
medium and large) sizes. For each dataset, we compare the accuracies after fil-
tering using the following techniques:

1. Single Model: We used decision trees (J48) as our single filtering base model.

2. Partition Filtering: Partition Filtering is chosen as it outperforms Classifi-
cation and Ensemble Filtering techniques [6]. We use Decision Tree as the
base model.

3. Online Bagging: We implemented online bagging as illustrated by Oza [10]
using Nave Bayes as the base model.



6.1 Small Datasets

We compare our approach on small UCI datasets (in the area of medicine).
Medicine is an area where the quality of the data is essential for accurate predic-
tion. The datasets selected are: Diabetes, Hepatitis, Liver Disorders and Dengue
[11] disease as shown in Table 1.

Table 1. Sizes of Small Datasets

Dataset [# of instances[# of attributes[# of classes
Diabetes 768 9 2
Liver Disorder 345 7 2
Hepatitis 155 20 2
Dengue 846 18 2

For each dataset, for bootstrap model filtering we use 30 Poisson bootstrap
samples with 3 different classifiers (J48, RandomForest and RandomTree) on

each sample. The results of our experiments on small datasets are shown in
Table 2.

Table 2. Classification Accuracy after eliminating noisy instances

Decision Partition Online Bootstrap
Dataset Tree Filtering Bagging Model
(J48) Filtering
Diabetes 0.73 0.75 0.79 0.88
Liver Disorder 0.68 0.74 0.76 0.79
Hepatitis 0.83 0.84 0.88 0.89
Dengue 0.74 0.77 0.81 0.92

6.2 Medium and Large Datasets

In this section, we used our approach on several medium and large datasets
as shown in Table 3. In each of the medium datasets (Abalone, CMC, Car
Evaluation, Multiple Features, Waveform and Wine Quality) we use 50 Poisson
bootstrap samples. For the massive datasets (Nursery, Letter, Electricity board,
and Localization) we used 100 Poisson bootstrap samples. The results are as
shown in Table 4.

The boldface entries in Table 2 and Table 4 represent cases when the en-
semble technique significantly (t-test, « = 0.05) outperformed a single filtering
technique. As we can see from the results, for small (e.g. Diabetes) and very large
sized datasets (e.g. Localization, Electricity Board), we see that our technique
outperforms the other techniques significantly. For medium sized, the ensemble
techniques show a very small improvement in accuracy.



Table 3. Sizes of the Medium and Large datasets

l Dataset [# of instances[# of attributes[# of classes
CMC 1473 10 3
Car Evaluation 1728 7 4
Multiple Features 2000 48 10
Abalone 2924 9 28
Waveform 3500 41 3
Wine Quality 3429 12 11
Nursery 12960 9 5
Letter Recognition 20000 17 26
Electricity Board 45781 5 31
Localization 164860 8 11

Table 4. Classification Accuracy after Filtering

Decision Partition Online Bootstrap
Dataset Tree Filtering Bagging Model
(J48) Filtering
CMC 0.52 0.65 0.69 0.75
Car Evaluation 0.92 0.94 0.95 0.97
Multiple Features 0.72 0.74 0.76 0.78
Abalone 0.20 0.34 0.38 0.48
Waveform 0.75 0.76 0.77 0.82
Wine Quality 0.56 0.58 0.61 0.69
Nursery 0.97 0.97 0.98 0.98
Letter Recognition 0.87 0.88 0.88 0.89
Electricity Board 0.65 0.66 0.68 0.73
Localization 0.76 0.73 0.79 0.89

6.3 Classification Accuracy vs Noise

Figure 2 shows the effect of filtering on classification accuracy on the test set by
each of the four techniques. We introduce noise levels from 10% to 40% on each
of the datasets by adding mislabeled instances in the test set. At 10% noise level
we see that there is no significant difference for any of the ensemble techniques
used, however there is significant difference when compared to the single filter.
For noise levels up to 20%, we see that online bagging and bootstrap model
filtering significantly outperform the other two techniques. For noise levels be-
tween 30% and 40%, bootstrap model filtering outperforms the other techniques
significantly. We also see that bootstrap model filtering approach does well on
very large datasets with higher noise levels.

6.4 Learning Curve Comparison

To illustrate the learning curve convergence in all the techniques, we tried the car
evaluation dataset, which has about 1728 instances. We used 528 as the test set,
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Fig. 2. Simulation results for the network.

and used 200, 400, 600, 800 and 1000 instances as streams of training data. We
see in Figure 3 that bootstrap averaged ensemble technique performs better than
the other two ensemble technique in terms of the number of instances needed for
accuracy convergence, as the inductive learning algorithm learns from several
small bootstrapped samples.

100.00
90.00 - --Dn[in.e
Bagging
80,00
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Partition
E‘ 60.00 - Filtering
5 50.00
2
< 4000 -
Bootstrap
30.00 Model
20,00 Averaging
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Fig. 3. Learning curve convergence of ensemble filtering techniques for the car evalu-
ation dataset.

7 Conclusion

Resolving data quality issues in stream mining is often one of the biggest efforts
in data mining. Prior filtering techniques required multiple passes of data. The
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main challenge in applying prior filtering techniques to data streams is that a
stream is theoretically infinite and that means that data has to be processed in
a single pass using little memory. Also, using all the available data is prohibitive
due to memory and time constraints. In this paper, we attempt to address this
problem for different sized datasets by using Poisson bootstrap samples with
multiple base classifiers.

We analyzed prior filtering techniques by using Bayesian computation anal-
ysis. We then used that knowledge and extended the model space by using 1)
several bootstrap samples and 2) multiple classifiers. Our empirical results show
that although online bagging performs well for medium sized datasets in terms of
computational size required, the bootstrap model filtering approach outperforms
other approaches in the case of small and massive datasets.
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