


CI = 0.06–0.31) (Fig. 7a,b), which could result in decreased
infectivity of the vaginal fluid of these animals. MZCL and
MZC IVRs also reduced HSV-2 shedding levels compared to
the LNG and placebo controls, respectively (MZCL
p = 0.0029, OR = 0.18, 95% CI = 0.06–0.59; MZC
p < 0.0001, OR = 0.10, 95% CI = 0.03–0.31).

Effect of the menstrual cycle on SHIV-RT infection

Serum progesterone and estradiol levels fluctuated (Fig. 4),
allowing us to calculate the number of menstrual cycles

(mean ± SEM) over the entire 137-d study as follows:
3.75 ± 0.63 for the placebo group, 3.42 ± 0.23 for
MZC, 1.00 ± 0.41 for LNG, and 1.42 ± 0.45 for
MZCL. These data indicate that LNG-containing IVRs
released sufficient LNG to suppress cycling (p = 0.04,
LNG [mean ± SEM = 1.00 ± 0.41] vs. placebo
[mean ± SEM = 3.75 ± 0.63]), and this was not affected
by MZC (p = 0.95, MZCL [mean ± SEM = 1.42 ± 0.45]
vs. LNG [mean ± SEM = 1.00 ± 0.41]). The luteal phase
was defined by a progesterone level above 1 ng/ml [37].
And notably, three of the four animals that became

Fig. 6 Anti-SHIV-RT activity of
MZC and MZCL IVRs in
macaques following repeated co-
challenge with SHIV-RT and
HSV-2. (a) The percent of ma-
caques remaining SHIV negative
over time was calculated by mea-
suring SIV RNA in plasma col-
lected immediately before each
challenge (n = 4 LNG, n = 12
MZCL, n = 4 placebo, n = 12
MZC). (b) Plasma viral loads and
(c) antibody development were
monitored over time
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infected with SHIV in the absence of LNG were infected
during late luteal phase, the time of the menstrual cycle
when women (and also cycling rhesus and pigtail ma-
caques) have estrogen/progesterone levels favorable for
HIV infection and are the most susceptible to HIV infec-
tion [20, 38–45] (Fig. 8).

Effect of biological fluids on antiviral activity

The presence of semen neither increased nor decreased the
anti-HIVactivity of vaginal fluid from macaques treated with
MZCL/MZC IVRs (p = 0.066, ratio = 0.133, 95%CI = 0.018–
0.978, Fig. 9); EC50 values matched that of native MIV-150
(Table 3). Previously, we showed that vaginal fluid and semen
do not interfere with CG’s anti-HPVactivities in vitro [17, 23].

Discussion

MPT IVR development requires a multipronged approach that
aims to correlate in vivo biological effects in animal models

with PK/PD and with IVR performance measures like in vitro
and in vivo release profiles. This approach becomes even
more challenging when the MPT contains drugs that target
multiple indications, when analytical methods to detect drugs
in all biological matrices are not validated, when absorption of
the drugs differs, and when a single animal model to fully
evaluate multiple biological outcomes is unavailable or unfea-
sible. To overcome these challenges, we used a variety of
methods to correlate IVR performance and PK with biological
effects.

Herein, we have demonstrated that a prototypeMZCL IVR
released sufficient quantities of its drug payload to significant-
ly reduce SHIV-RT infection and HSV-2 vaginal shedding in
macaques exposed to repeated SHIV-RT/HSV-2 co-
challenges and shut down hormonal cycling. The study uti-
lized a modified version of our published repeated SHIV-RT/
HSV-2 co-challenge model. For proof-of-concept testing of
the prototype IVRs against both viruses, we modified the
schedule (challenge 4 times in 10 days followed by 11 days
of no challenge) so as to challenge macaques with SHIV-RT
and HSV-2 during a time period in which the animals would

Table 2 Screening for NNRTI-
resistance-associated mutations in
macaques infected with SHIV-RT
in the presence of IVRs

IVR Animal ID Time point tested L100, K101, K103, V108, E138, I178,
V179, Y181, Y188, G190, P225

MZCL GK45 Wk 8, Wk 12 NAa

IC87 Wk 6 0 (23)b

HN43 Wk 2 0 (24)

GC05 Wk 8 NA

MZC EJ42 Plasma: Ch 5–8, Wk 2, Wk 30

PBMC: Wk 30

Plasma: 67 (68) I178Vc

PBMC: 20 (23) I178V

1 (23) I178V + K101R

Cultured PBMC: 19 (19) I178V

IT26 Wk 6 0 (20)

Stock SHIV-RT 0 (32)

a NA indicates that no RNA could be isolated from available plasma samples, likely due to low viral load and/or
volume of plasma
b The number of clones in which amino acid mutations conferring NNRTI resistance were detected. Parentheses
indicate the total number of clones sequenced
c I178Vwas present in 23/23 clones of plasma virus from acute infection (pooled plasma from challenge 5–8) and
44/45 clones from chronic infection (23/23 at Wk 2 post-last challenge and 21/22 at Wk 30 post-last challenge)

Table 3 NNRTI-resistance
profile of I178V NNRTI EC50 (95% confidence interval)

SHIV-RT WT SHIV-RTEJ42 I178V HIV-1NL4-3 WT HIV-1NL4-3 I178V

MIV-150 1.1 (0.9–1.3) 1.1 (0.8–1.5) 0.96 (0.80–1.14) 0.70 (0.61–0.82)

Efavirenz ND ND 1.22 (1.05–1.42) 0.80 (0.66–0.96)

Etravirine 3.1 (2.5–3.8) 2.2 (1.3–3.5) 0.54 (0.42–0.68) 0.23 (0.18–0.29)

Rilpivirine 0.5 (0.4–0.7) 0.3 (0.2–0.4) 1.79 (1.48–2.16) 0.92 (0.70–1.21)

ND not determined
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most likely be protected based on drug concentrations. An
optimized IVR with stabilized release profile will need to be
tested in a standard challenge regimen (e.g., weekly exposure)
as has been used by other studies of IVR efficacy [46–48].

Importantly, the MZCL IVR protected even in the context of
20 twice-weekly co-exposures in contrast to other IVR effica-
cy studies using SHIV alone in a weekly challenge regimen
often with fewer challenges [46–48]. The in vivo antiviral
activity for the MZCL IVR matches our data on MZC gel in
a similar repeated co-challenge model [20] and also matches

Fig. 7 Anti-HSV-2 activity of MZC and MZCL IVRs in macaques
following repeated co-challenge with SHIV-RT and HSV-2. (a) HSV-2
infection and vaginal shedding were assessed by nested PCR in gD on
vaginal fluid and cervical and vaginal tissue biopsies (n = 4 LNG, n = 12
MZCL, n = 4 placebo, n = 12 MZC). Evaluation commenced 4 wks after
the last challenge. (b) Heat map depicting HSV-2 shedding in vaginal
fluid observed over time for LNG, MZCL, placebo, and MZC groups

from (a). Each row represents an animal. Shedding was measured at wks
4, 5, 6, 7, 8, and 9, or 10, and then again at 2, 6, 24, 30, 48, 54, and 72 h
following biopsy. The legend shows the colors representing the fraction
of replicate PCR reactions positive of 6 total with gray indicating not
determined (nd), representing that no sample was available at that time
point

Fig. 8 SHIV infection during luteal phase of the menstrual cycle. The
ratio of progesterone (P) to estradiol (E) was calculated for animals not
exposed to LNG that became infected during the study. P/E for each
animal was overlaid beginning 4 wks before plasma virus RNA detection
(−4)

Fig. 9 Effect of biological fluids on the antiviral properties of the MZC
combination. The effect of semen (Lee Biosciences) on the in vitro anti-
HIV activity of MZC released in vivo from MZCL (closed symbols,
n = 3) and MZC (open symbols, n = 6) IVRs was measured in macaque
vaginal fluid. The EC50 values were estimated using the TZM-bl assay
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efficacy data on an MIV-150 IVR that released the drug with
similar pharmacokinetics in vivo [23, 30].We have previously
found that MZC gel significantly protects mice against HPV
pseudovirus (PsV) infection [10]. In addition, CG reduced
HPV16 PsV infection in macaques [16] and a recent study
of women who used the CG-based lubricant Divine 9 found
that cervicovaginal lavages containing more than 0.4 μg/ml
CG exhibited more than 95% inhibition of HPV16 PsV infec-
tion in vitro [29]. Based on CG levels seen in vaginal fluid in
this study, we expect that the MZCL IVR will also reduce
HPV infection significantly [10, 23], although we were unable
to directly evaluate that herein.

MZC and MZCL IVRs significantly protected macaques
against SHIV-RT even in the absence of 100% infection fre-
quency in the controls, a common result in limiting dose vag-
inal challenge studies in rhesus macaques in the absence of
hormonal treatment (i.e., DMPA [20, 49–51]). Plasma viremia
was delayed in three of four animals from the MZCL group
and zero of two animals in the MZC group, detected only after
IVR-5 was removed. This suggests that those animals likely
became infected on the last or close to the last challenge and
had a low-level infection that only became detectable system-
ically weeks after infection. There are several possible reasons
why animals in the MZCL IVR group, in particular, exhibited
delayed viremia. Because we were not able to look at many
tissue sites in this study, we cannot rule out there may have
been low levels of virus replicating in distal tissues that ulti-
mately gave rise to systemic infection. It is possible that ef-
fects of LNG (delivered by the MZCL IVR) in the vaginal
mucosa allowed low level infections to take hold in this group
but not in the MZC IVR group. It is also possible that residual
systemic or tissue MIV-150 levels may have played a role in
controlling a low level infection until the drug was completely
cleared from the tissues. In support of these possibilities, we
have previously shown that a MIV-150 IVR protected ma-
caques only when it was in place post-challenge [30]. In this
case, had we left the IVRs in place for longer than 4 d after the
last challenge, we might have seen better protection by the
MZCL IVRs. That the macaques became more readily infect-
ed during IVR-5 vs. IVR-1 could also possibly reflect the
lower levels of MIV-150 detected overall in vivo from
MZCL IVR-5 vs. IVR-1. Both plasma and vaginal fluid
MIV-150 levels were consistently lower during MZCL IVR-
5 compared to IVR-1 despite similar amounts of MIV-150
having been released from the IVRs (as determined by resid-
ual levels of MIV-150 in the used IVRs). Quality control test-
ing showed similar drug loading in the two batches of IVRs,
suggesting that batch-to-batch variability was not the cause.
Lower levels of MIV-150 in vaginal tissues and/or shorter
residence time there could have contributed to the SHIV-RT
infections that occurred post-removal of MZCL IVR-5. In
prior studies, we found that the best correlate of protection
from SHIV-RT infection was concentration of MIV-150 in

genital tissue [19, 30], which we were unable to measure
herein, since sampling of vaginal tissue at or around the time
of virus challenge would have perturbed the mucosal environ-
ment and perhaps increased infection frequencies. Prolonged
exposure to MIV-150 could have led to increased levels of
MIV-150-metabolizing enzymes, as seen with other NNRTIs
[52]. We have also observed that repeated intramuscular dos-
ing of MIV-150 results in lower peak levels post-injection
over time [32]. Finally, since we co-challenged with HSV-2
and SHIV-RT, it is possible that the lag time to systemic in-
fection may be related to the inflammatory environment cre-
ated by HSV-2 co-exposure (regardless of eventual HSV-2
infection). We did not have the samples to check if these
animals in the MZCL group that became SHIV+ weeks after
the last challenge had a greater concentration of inflammatory
mediators in their vaginal fluid or a heightened inflammatory
state systemically.

LNG could have contributed to the observed loss of pro-
tection in MZCL IVR-carrying macaques post-IVR-5 remov-
al. Although the study was not designed or powered to assess
LNG effects on the vaginal microenvironment, LNG released
from the IVRs might have made the vaginal epithelium more
permissive to infection or increased infection frequency
through another mechanism. In turn, this could have increased
the requirement for post-challenge MIV-150 coverage,
resulting in decreased protection after removal of IVR-5.
However, LNG levels in vivo were not associated with time
of infection. The impact of LNG should be explored further
given the widespread use of LNG-containing contraceptives
[22] and development of LNG-containing MPTs [3].
Epidemiological studies suggest that some forms of hormonal
contraception might increase HIV transmission and acquisi-
tion [53–55], but the data so far remain inconclusive, and
more studies, such as the ongoing ECHO trial, are needed to
fully understand the relationship between hormones and HIV
transmission [56]. Recent microarray analyses of cervical and
endometrial tissues taken from women using DMPA or the
LNG intrauterine system revealed that progestins influence
the expression of immune-related genes that could alter sus-
ceptibility to HIV infection and that this was particularly ap-
parent in the endometrial tissues [57]. However, no data are
available on the risk of HIV acquisition when hormones are
delivered in low doses via an IVR, and additional studies
designed specifically to address this are needed. Critically,
LNG did not reduce the overall efficacy of continuously dosed
MZC microbicide.

The MZCL IVR significantly reduced HSV-2 shedding in
infected macaques but not HSV-2 infection outright. The re-
duced shedding could reflect a blunted infection in the muco-
sa, less robust neural infection, and/or control of virus by
mucosal innate immune mediators that were triggered by
sustained release of ZA and CG from the IVRs [58–65].
However, we did not collect data on HSV-2 in dorsal root
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ganglia (via necropsy) and immunemediators in vaginal fluid.
We have previously found that macaques that became infected
after receiving MZC gel vaginally did not develop an HSV-2-
specific T cell response [13], suggesting that adaptive immu-
nity did not play a role in the reduced shedding. The inability
of the MZCL IVR to protect macaques from infection may be
related to the high dose of HSV-2 used in the co-challenge
model. A large body of data exists for SHIV doses in the ma-
caque, but there are no data on optimal, relevant doses for HSV-
2. The HSV-2 dose in this study is based on our single high-
dose co-challenge model [13, 20, 66]. We administered the
same total inoculum (2 × 108 pfu) spread over 20 challenges
(107 pfu per challenge). This high dose of HSV-2 inoculum
ensures 100% HSV-2 infection in the control groups; however,
it is 3–5 logs higher than that found in infected people [67–69]
and may have overwhelmed the ZC-mediated protection. In
mice, protection from HSV-2 depends on the HSV-2 challenge
dose [10, 12, 14]. Lowering the HSV-2 inoculum and/or opti-
mizing ZC release/content may improve MZC’s anti-HSV-2
activity and reduceHSV-2 shedding further. ZA and CG release
(PK and residual drug levels in IVRs) wasmore variable overall
than MIV-150 and LNG release. ZA and CG were both re-
leased from the core and may have been more affected by
inter-animal differences in vaginal fluid volume and viscosity.
As evident in Table 1, ZA/CG released through neither the 500
nor 800 μm pore-inhibited HSV-2 infection. Importantly, re-
duced viral shedding in HSV-2-infected individuals could re-
duce subsequent transmission of HSV-2 to partners. And since
HSV-2 infection increases the likelihood of HIVacquisition in
humans and SHIVacquisition in macaques, reduced viral shed-
ding might potentially reduce the acquisition or transmission of
HIV [66, 70].

There is no established macaque model to simultaneously
evaluate the efficacy of anMPTagainst HIV, HSV-2, and HPV,
so surrogate markers of in vivo efficacy are typically used. In
our initial report, we showed that vaginal fluid from macaques
treated with the MZCL IVR prevented HPV infection in vitro
[23]. As in that study, in vivo CG levels herein were ∼1000
times the in vitro EC50 for CG [10, 17, 71] and sufficient to
block HPV pseudovirus infection in mice [10, 15, 17].

Rhesus macaques have irregular seasonal cycles and are
not the ideal subspecies for modeling women’s menstrual cy-
cles [31]. By contrast, pigtail macaques cycle monthly
throughout the year, and studies evaluating the role of female
sex hormone fluctuations on HIV acquisition have used the
pigtail macaque model [72]. Pigtail macaques are harder to
obtain than rhesus. We have also shown that we can detect
the menstrual cycle of some rhesus macaques [20, 73]. For
those reasons, we use rhesus macaques as our model species.
In the current study, we clearly demonstrated that rhesus ma-
caques were cycling during the ovulatory season, also show-
ing the impact of LNG-releasing IVRs on cycling as a corre-
late of contraceptive effect.

PK and cumulative IVR release data were collected to in-
form on the efficacy data and support the preclinical/clinical
development of a human-sized MZCL IVR. These data en-
abled us to identify drug–drug interactions or combinations
that influenced release of each drug, validate in vitro and ini-
tial in vivo release data, and identify potential design improve-
ments. An important caveat is that in vivo release characteris-
tics of the IVRs in the prior study did not parallel the in vitro
release kinetics and overall profile [23]. Based on the drug
levels remaining in the IVRs, we concluded that the amount
of each drug released in vivo exceeds estimates derived from
in vitro data. We are working to identify the in vitro release
condition that best mimics the in vivo profile, and it will be
used to characterize optimized IVRs before they are tested
in vivo.

As expected, in vivo release of the hydrophilic core com-
ponents ZA and CG but not the hydrophobic matrix compo-
nents MIV-150 and LNG was driven predominantly by pore
size [23]. However, in IVRs with the smaller 500 μm pore,
LNG reduced CG (and presumably ZA) release significantly.
This could potentially reflect LNG-driven changes in cervical
mucus [74] that may have impeded hydration of the core
through the smaller pore and/or the spread of hydrated core
components away from the smaller pore opening. Correlation
between drug levels in plasma and vaginal fluid and cumula-
tive release for CG but not MIV-150 or LNG is consistent with
CG being retained in the vaginal lumen and MIV-150 and
LNG being possibly accumulated in tissues, absorbed into
the systemic circulation, and eliminated. Despite having dif-
ferent in vivo ZC release profiles, the 500 and 800 μm pore
IVRs effectively prevented SHIV-RT infection and HSV-2
shedding. Although ZA levels in vaginal fluid could not be
measured in vivo due to lack of a validated analytical method,
we verified its release by quantifying the residual drug levels
in the IVRs after removal. As predicted from in vitro release
studies [23], overall ZA release mirrored overall CG release
in vivo. The consistent release of ZC from the MZCL IVRs
likely contributed to the significant reduction in HSV-2 shed-
ding and may also have contributed to the IVR’s anti-SHIV
efficacy, as was seen for MZC gel [10, 19]. However, we were
unable to include the additional IVR groups needed to test this
hypothesis in the current study. And because we could not
identify the time of HSV-2 infection, HSV-2 infection out-
comes and CG (and ZA) levels in vaginal fluid could not be
correlated. Thus, we were also unable to assess if the MZC-
containing IVRs increased the number of challenges needed to
result in HSV-2 infection.

Knowing semen’s potential for enhancing HIV infection
[75] and the suggested link between semen effects and failure
of microbicides in clinical trials [76], we evaluated the effect
of semen on the activity of the antiviral drugs released in vivo
from the MZC andMZCL IVRs. Here, we found that the anti-
HIV activity of vaginal fluid from MZCL/MZC IVR-treated
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macaques was unaffected by semen. This is in line with our
previous report on MZC gel in vaginal explants treated with
seminal plasma [77]. Other experiments not reported here
suggest that biological fluids do not interfere with the anti-
HSV-2 properties of the ZC combination (unpublished).
Seminal plasma actually increased the survival of HEC-
treated mice in the HSV-2 model compared to HEC alone,
consistent with what others had observed [78]. While we were
unable to measure the impact of semen or seminal plasma on
the anti-HPV activity of CG released from MZCL IVRs
in vivo, CG’s anti-HPV activity was previously confirmed in
mice co-exposed with seminal plasma [17].

Topically applied microbicides containing antiretroviral
drugs may induce the development of drug-resistant virus.
Screening for drug-resistance mutations in drug-treated ani-
mals that become infected in preclinical studies gauges the
likelihood of drug resistance emerging in clinical settings.
The I178V mutation that arose in plasma and PBMC virus
from EJ42 neither resulted in a divergent profile of SHIV
plasma viremia or HSV-2 shedding compared to other animals
nor reduced the susceptibility of either SHIV-RT or HIV to
NNRTI-mediated inhibition. One clone of the PBMC virus
contained the combination of I178V and K101R. K101E,
K101P, and K101H can reduce susceptibility to NNRTIs
[36], and K101 is an important amino acid in the interaction
of MIV-150 with the hydrophobic pocket of RT [79].
However, K and R both have a positively charged side chain
that provides the H-bonding necessary for MIV-150 to interact
with RT. While the presence of these mutations indicates the
influence of drug pressure on SHIV-RT in this animal, the
concentrations of MIV-150 achieved in vivo did not support
the establishment of NNRTI-resistant virus.

Unlike other MPTs in development, the MZCL IVR is
designed to simultaneously prevent HIV, HSV-2, HPV, and
unintended pregnancy. The data presented herein supports that
notion. MZC delivered from the IVR retained its potent anti-
viral activity in the presence of vaginal fluid and seminal
components, significantly preventing SHIV infection and re-
ducing HSV-2 shedding. Its anti-HPV activity was inferred
from CG levels in vaginal fluid. LNG delivered from the
IVR suppressed cycling in rhesus macaques. By integrating
PK, IVR release, and efficacy data into one model, we can
identify the IVR’s critical performance parameters and inform
development of the optimized MZCL IVR, a product that has
the potential to safely and effectively protect millions of wom-
en worldwide from three incurable viral infections and unin-
tended pregnancy.
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