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Chapter 1 

Can racial disparities in birth outcomes be partially attributed to 
stress? A Mendelian randomization study 

  
SPECIFIC AIMS 

Infant mortality rates are consistently higher in the United States (US) than in Europe and 

in other high income peer nations.1 This mortality disadvantage is driven by poor birth outcomes 

such as low birth weight (LBW) defined as weighing 2,499 grams or less at birth.2 LBW has 

many potential causes – one of the causes gaining attention is exposure to maternal stress. Many 

studies have found a positive association of stress exposure with LBW.3-7 These previous studies 

have limitations, however, which may limit the validity of their findings. Extant literature relies 

on observational case-control and cohort studies, which may be subject to residual confounding. 

Furthermore, the majority of these studies have relied on self-reported measures of stress, which 

may be susceptible to recall bias, or may lead to misclassification due to differential perceptions 

of stress.8  

To address this reliance on observational studies I will apply a quasi-experimental 

method capable of estimating causal associations, under a different set of assumptions than 

traditional observational studies, without investigator assigned random assignment. There are 

three main pathways through which the body responds to stress: a neuroendocrine pathway, a 

maternal vascular disease pathway, and an immune-inflammatory pathway. I will use mendelian 

randomization (MR), a technique that applies measured variation in genetic variants, ideally of 

known function, to examine the causal effect of a modifiable exposure on disease in 

observational studies,9 to determine whether these stress pathways are causally linked to LBW. 

A deeper understanding of these relationships will allow for better targeting of interventions to 

reduce poor birth outcomes. 
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Aim 1: Does mother’s neuroendocrine stress marker levels (e.g., cortisol) cause low birth weight 

using mendelian randomization? 

Aim 2: Does mother’s vascular reactivity (e.g., blood pressure) cause low birth weight using 

mendelian randomization?  

Aim 3: Does mother’s immunosuppression (e.g., white blood cell count) cause low birth weight 

using mendelian randomization? 

 
BACKGROUND AND SIGNIFICANCE 
 

In the US, LBW is a leading cause of infant death overall, and the leading cause of death 

for Black infants.2 This poor birth outcome may have serious implications not only for infant 

survival, but also for childhood growth and development and some important health outcomes in 

adulthood. It is difficult to determine the true effects of LBW on later outcomes because LBW 

could also be caused by a range of socio-economic characteristics of families, but LBW is 

associated with cognitive deficits,10 poorer language,11 and lower academic achievement,12 and 

need for special education.13 LBW babies may also be less likely to graduate from high school 

than are those who were full term.14 Furthermore, poor birth outcomes may be associated with 

increased health risks in adulthood15 including for cardiovascular disease,16 hypertension,17 and 

non-insulin dependent diabetes mellitus.17 

Understanding and preventing adverse birth outcomes is a major public health priority in 

the US. The primary cause of low birth weight is preterm birth.18 The clinical causes of preterm 

birth are fairly well understood. In some cases, preterm delivery is indicated because of 

artificially conceived multiple pregnancies, pre-eclampsia or eclampsia, and intrauterine growth 

restriction.19 Some births lead to spontaneous preterm births resulting from multiple causes, 
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including infection or inflammation, vascular disease, and uterine overdistension.19 Other risk 

factors for preterm birth and low birth weight include a previous preterm birth, periodontal 

disease, and low maternal body-mass index.19 Finally, though not understood quite as well, there 

is consensus that social factors such as social class, income, and race are also drivers of preterm 

birth and LBW.19,20 

I am particularly interested in understanding the role that race places in determining birth 

outcomes in the US. Race includes phenotypic characteristics such as skin color, 

whereas ethnicity also encompasses cultural factors such as nationality, tribal affiliation, 

religion, language and traditions of a particular group. For the purposes of this study, I will be 

focusing on race independent of ethnicity. Black women in the US are more likely to give birth 

to preterm and low birth-weight infants than their white counterparts.21 One of the most 

prominent explanations for the disparity seen in birth outcomes between Black and non-Hispanic 

white is socioeconomic and behavioral differences during pregnancy. Poverty, limited education, 

less opportunity for optimal health behaviors, and poor access to health care are important 

factors associated with adverse health outcomes.22 Black women disproportionately experience 

social disadvantages, such as single parenthood and poverty, compared with non-Hispanic white 

women in the US.23 However, research suggests that while differences in socioeconomic status 

and behavior might partially explain these differences in birth outcomes, these unfavorable 

conditions do not fully explain the birth outcome disparity between Black and non-Hispanic 

whites. 

In fact, this disparity persists even when controlling for a series of social, economic, and 

behavioral factors, including income, maternal age, parity, marital status, smoking, alcohol use, 

and health insurance coverage.24 For example, one study examined using a case-control study of 
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very low birth weight infants found that without controlling for any variables, the odds ratio 

(OR) for very low birth weight among Black women compared to non-Hispanic white women 

was 3.7, but even after controlling for age, education, occupation, drug, alcohol, and tobacco use, 

financial support from the child's father, income, marital status, and grandparent's education, the 

OR remained 3.3.25 Another study looked at racial differences in birth weight in extremely low-

risk US samples, meaning women who were married, with an age of 20–34 years, and having 

more than 13 years of education, at least one successful pregnancy, average number of children 

for maternal age, adequate prenatal care, vaginal delivery, and no reports of medical risk factors, 

tobacco use, or alcohol use during pregnancy. The study found that Black mothers had 2.64 

(95% CI 2.51, 2.78) times a greater risk of having a baby with low birth weight as compared to 

non-Hispanic White mothers.26 In addition, limitations to this hypothesis have been 

demonstrated through studies conducted among enlisted soldiers living on military bases. 

Families living on military bases have virtually the same income, access to health care, and 

living conditions, regardless of race, and yet disparities in gestational age and birth weight 

persist.26 In summary, a variety of studies suggest that the socioeconomic and behavioral 

explanations for higher risk of LBW among Blacks compared to whites in the US are limited. 

After accounting for income, maternal age, education, substance use, prenatal care, and 

educational status, the disparity in adverse birth outcomes continues to be approximately twofold 

or greater.27 

Increasingly experts seem to agree that disparities in birth outcomes are rooted in racism. 

Structural racism in health care and social service delivery means that Black women often 

receive poorer quality care than white women.28,29 Additionally, it is well understood that the 

cumulative experience of racism triggers a chain of biological stress processes, known as 
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weathering, that undermine Black women’s physical and mental health.30 Numerous case-control 

and cohort studies have demonstrated an association of exposure to general and pregnancy 

related stress with LBW.5-7,31,32 Furthermore, studies have shown that pregnant women of color 

in the US experience greater levels of stress overall, as well as additional sources of stress due to 

experiences of discrimination and racism, which could partially explain racial disparities in rates 

of LBW.4,33-35 

In the absence of a direct measure of stress exposure or weathering, the concept of 

allostatic load, or the cumulative wear and tear on the body’s systems owing to repeated 

adaptation to stressors was created.36-38 Allostatic load is considered the physiological burden 

imposed by stress. High allostatic load is associated with higher rates of mortality, incidence of 

cardiovascular disease, and decline in cognitive and physical functioning.39 The allostatic load 

algorithm reflects the fact that the human stress response disrupts regulation of various systems 

throughout the body, the neuroendocrine, cardiovascular, and immune systems.37 Though one 

could choose to look at the effects of allostatic load more broadly on birth outcomes, it seems 

worthwhile to also explore the effects of each individual pathway.  A growing body of research, 

largely driven by Dr. Pathik Wadhwa, has built support for neuroendocrine, immune, and 

vascular mechanisms of preterm birth.40,41 However, by Dr. Pathik’s own admission, very little 

empirical research to date has examined the role of biological processes as mediators of the 

relationship of stress with preterm birth or low birth weight.40 

There is some evidence suggesting that cortisol, the primary stress hormone, is associated 

with LBW,42-45 and thus might be a mechanism through which stress affects birth outcomes. 

Within the neuroendocrine system, corticotropin stimulates secretion of cortisol by the adrenal 

cortex in response to stressors. Elevated cortisol inhibits release of corticotropin by the anterior 
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pituitary gland and inhibits release of corticotrophin releasing hormone (CRH) by the 

hypothalamus. Chronic emotional or physical stress can interrupt this negative feedback loop, 

resulting in an overproduction of cortisol46 - making cortisol a good metric for measuring stress. 

Maternal stress has been shown to be associated with increases in placental, decidual, and 

amniochorionic expression of CRH.40 In vivo studies have found significant correlations among 

maternal pituitary–adrenal stress hormones such as cortisol and placental CRH levels.47-50 CRH 

acts directly on the uterus and cervix and interacts with both prostaglandins and oxytocin, the 

two major uterotonics that mediate the stimulation and maintenance of myometrial contractility 

at term and during labor.51 Thus a potential mechanism may be that stress leads to elevated 

cortisol levels, which cause unregulated CRH levels, and in turn poor birth outcomes. 

Women who experience heightened vascular reactivity may also be at increased risk of 

low birth weight. Many observational studies have suggested that maternal BP is associated with 

offspring birth weight.52-70 However, these studies may be subject to residual confounding due to 

common causes of exposure and outcome such as socioeconomic position that were not 

comprehensively considered or that were not adjusted for, given the difficulty of capturing all 

aspects of such attributes. Several quasi-experimental MR studies, less open to confounding, 

have also demonstrated a relationship of higher maternal BP with lower offspring birth weight.71-

73 These findings, however, are limited by small sample size, use of data pertaining to both men 

and women, lack of adjustment for the effects of fetal genetics on birth weight, or focus limited 

to the independent effects of systolic and diastolic blood pressure, when these are related 

exposures. 

Additionally, preliminary research suggests that perhaps maternal stress and infection 

work in concert to cause poor birth outcomes. In a cross-sectional investigation of a sample of 72 
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pregnant women, Herrera et al. reported that high levels of maternal psychological stress and low 

levels of social support were associated with lower lymphocyte activity.74 Furthermore, greater 

stress during pregnancy is associated with urogenital infections,75 which increases women’s risk 

for LBW.76 Microbial colonization and inflammation in the maternal genital tract has emerged as 

a major risk factor for spontaneous preterm birth.77 Leukocytes participate in the maintenance of 

pregnancy and alteration in their function or abundance may lead to labor at term or preterm.78 

Neutrophil and eosinophil infiltration of the uteroplacental tissues and amniotic fluid have been 

associated with preterm labor.79-81 The most prevalent lower genital tract infection in women of 

reproductive age, bacterial vaginosis (BV), is associated with a higher risk of LBW and preterm 

labor.82-84 In addition, as an additional means of assessing effects of immune function, I also 

examined the associations with birth weight of two important aspects of immune function, 

corresponding to the cytokines interleukin-6 (IL6)85 and interleukin 1 receptor antagonism 

(IL1ra). These cytokines are also targeted by well-established anti-inflammatory drugs, i.e., 

tocilizumab and anakinra.86 

These findings suggest that the neuroendocrine, vascular, and immune pathways may 

each contribute to LBW, but there is still much to be learned. Observational studies have been 

immensely valuable in the field of public health; some of the most notable victories include 

identifying the role of smoking in health,87,88 the role of folic acid in pregnancy,89-91 and the 

benefits of babies sleeping on their backs.92 However, there have been some notable failures with 

observational studies leading to biased estimates and spurious findings,93,94 for example as 

regards diet. Extant literature on maternal stress and birth outcomes relies primarily on 

observational case-control and cohort studies. The internal validity of these studies may be 

threatened by residual confounding. For example, BMI95,96 and smoking97,98 are both causes of 
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cortisol and BP as well as infant birth weight. Incomplete control for these confounders could 

lead to biased findings. Lack of control for additional confounders that may be unknown or for 

which data may not exist could further bias findings. It is also possible that the management of 

pregnancy may induce stress, for example learning that a growing fetus is expected to be born 

underweight may cause maternal stress. Furthermore, the majority of studies have relied on self-

reported measures of stress, which may be susceptible to recall bias and systematic error or may 

lead to misclassification due to differential perceptions of stress.99 

Unbiased estimates may be derived from randomized control trials (RCTs), but these are 

not always feasible. For example, in this case it would be unethical to randomize pregnant 

women to stressful conditions, and logistically taxing to construct low stress conditions for 

women during pregnancy. In lieu of RCTs, quasi-experimental studies, including instrumental 

variable designs such as MR, are viable alternatives.100 MR uses naturally occurring differences 

in genetic make-up to reduce residual confounding, and produce unconfounded estimates that 

allow us to draw causal inferences about the effects of maternal stress exposure on LBW.101  

 More rigorous studies of the association of maternal stress with LBW are vital to help 

determine causes of poor birth outcomes. If we could better understand the effects of maternal 

stress on LBW, we might better understand racial disparities in birth outcomes. Thus, I propose 

to perform a large-scale MR study to comprehensively investigate the causal effects of maternal 

stress biomarkers (e.g., cortisol, blood pressure, white blood cell count) on birth weight. MR 

provides a means of obtaining unconfounded estimates from observational studies when all 

assumptions are met. Using this study design, which is subject to different types of biases and 

assumptions than the existing literature on this topic, will complement previous studies and help 

to triangulate the evidence.  
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Innovation 
The proposed study is innovative in that it would be among the first of its kind to study the 

effects of indicators of responses to stress on LBW using an MR study design. Previous studies 

on this topic have primarily relied on large observational case-control and cohort studies that are 

open to confounding and selection bias. In turn, these threats to internal validity may have led to 

biased estimates. Applying a quasi-experimental design reduces residual confounding, that allow 

us to have more confidence in drawing causal inferences for effects of maternal stress exposure 

on LBW, albeit cognizant that MR is open to selection bias. Although MR is subject to different 

types of biases and assumptions, it complements existing studies. If the results of this MR 

analysis support previous studies, it gives more confidence in these findings. Furthermore, this 

study would be one of the first to use MR to explore birth outcomes, opening the door to new 

applications for this increasingly popular research technique. 

 
STATISTICAL APPROACH 
 

It has long been understood that exposures in utero and during childhood have profound 

effects on long-term health and development.102-104 In 1995 David Barker wrote: “The fetal 

origins hypothesis states that fetal undernutrition in middle to late gestation, which leads to 

disproportionate fetal growth, programs later coronary heart disease.”105 Dr. Barker generated 

what has since become a much larger discussion about the importance of exposure events before 

birth for fetal development and lifetime health. Many studies show that specifically exposure to 

maternal stress during pregnancy poses an increased risk for her child to have a wide range of 

adverse outcomes as discussed above, including LBW. The general idea is that mothers are 

exposed to many different stressors. This may include, for example, major life events, pregnancy 

anxiety, socio-demographic factors, violence and abuse, and racism and discrimination.4-6,32,33,106 
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Exposure to these stressors leads to the experience of maternal stress. In turn, mothers then 

experience physiologic responses to this experience of stress, including a neuroendocrine 

response (cortisol released into the blood stream), a vascular response (maternal blood pressure 

increase) and an immune response (maternal immunity). Each of these responses, or any 

combination of three will lead to LBW. This conceptual framework is depicted in Figure 1.1. 

 
Study Design  

This study will use a MR design. MR is an instrumental variable analysis (IVA) using 

genetic variants as instruments. IVA can be used to estimate causal relationships before 

controlled experiments or when they are not feasible. Instrumental variables must satisfy three 

core assumptions: the instrument cannot be associated with potential confounders of the 

relationship between exposure and outcome, the instrument should not affect the outcome 

through a pathway other than affecting the exposure (also known as the exclusion restriction 

assumption), and the instrument must be associated with the exposure, although obviously not 

identical or it would be subject to the same biases.107 

Most commonly single-nucleotide polymorphisms (SNPs) are employed as instruments 

when conducting an MR analysis. In this study I propose to use maternal genetics as instruments 

for the exposures to ascertain how they are related to poor birth outcomes free from confounding. 

There is, however, concern that maternal genetics might lead to poor birth outcomes through 

fetal genetics, which would violate the exclusion restriction assumption, so this has been 

addressed by using information from a study that implemented structural equation modeling to 

isolate infant genetics from maternal genetics. The proposed directed acyclic graph (DAG) for 

this study can be seen in Figure 1.2. 

 
Study Population 
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Outcome 
This study will use data from several sources and thus will include several populations. Genetic 

associations of maternal genetic effects on birth weight were extracted from the Early Growth 

Genetics Consortium (EGGC) genome-wide association study (GWAS) of birth weight. Genetic 

associations representing mother's genetic effect on offspring birth weight, after adjusting for 

offspring's genotype,72 are the genotype most closely corresponding to maternal exposures 

during pregnancy. The EGGC GWAS included 264,498 women of European descent, 179,360 

for whom offspring birth weight was also available, given not all have offspring, from the EGGC 

and the UK Biobank data (released May 2017). The 12 studies from the EGGC conducted 

genome-wide association analysis of z-score transformed offspring birth weight adjusted for sex, 

gestational duration and ancestry informative principal components where necessary. The UK 

Biobank included 502,655 participants.108 Of the 273,467 women, 216,839 reported the birth 

weight of their first child at one assessment center visit, bearing in mind that not all women bear 

children. Respondent	reported	birth	weight	is	considered	a	reliable	alternative	to	chart	

obtained	birth	weight.109	Values were recorded to the nearest whole pound, and converted to 

kilograms. Where women reported the birth weight of the first child at multiple time points these 

were averaged and women were excluded if the mean difference between any 2 offspring BW 

measurements was >1kg (N=31). Women who reported BW of their first child <2.2kg or >4.6kg 

were also excluded (N=6,333). Genetic estimates in EGGC were imputed to the 1000 Genomes 

Project (Phase 1 v3) reference panel and in the UK Biobank were imputed to the HRC reference 

panel.72 Genetic associations with maternally determined birth weight were obtained using linear 

regression in the EGG consortium and a linear mixed model in the UK Biobank, with adjustment 

for gestational age, where available, and study specific covariates, such as non-confounders that 

might add variability and thereby impact precision, including batch and genetic analysis chip.72 
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Warrington et al. used a  structural equation modeling (SEM) approach to estimate maternal and 

fetal effects independent of the fetal and maternal genotype respectively including the observed 

participant’s genotype, their own self-reported BW, and the BW of their first child, and two 

latent (unobserved) variables, for the genotype of the participant’s mother and for the genotype 

of the participant’s offspring.72 	

 
Exposures 
Published genetic predictors of morning plasma cortisol were obtained from Crawford et 

al. (2019)110 based on a genome wide association study (GWAS) of morning plasma cortisol 

conducted by the CORtisol NETwork (CORNET) consortium (n=12,597) largely in people of 

European descent. Sex-specific genetic associations with blood pressure and leukocyte count 

were extracted from the UK Biobank genetic summary statistics for women only. The UK 

Biobank is one of the largest biobanks globally. It recruited over 500,000 participants (intended 

to be aged 40–69 years) in England, Scotland and Wales from 2006 to 2010. Participants 

completed a questionnaire and a comprehensive assessment at baseline, genotyping, and 

longitudinal follow-up via record linkage to medical and mortality records is ongoing, as 

described in detail elsewhere.111-113 Genotyping was performed using two very similar arrays, 

including Affymetrix UK BiLEVE, Axiom array, and Affymetrix UK Biobank Axiom array. 

Further information on the genotyping process is available on the UK Biobank website 

(http://www.ukbiobank.ac.uk/scientists-3/genetic-data).114 Summary sex-specific genetic 

associations adjusted for age, age2, and the first 20 principal components are publicly available 

(http://www.nealelab.is/uk-biobank) and were used to obtain genetic instruments for the 

exposures. 

 
Data Sources, collection and management  
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All data used for this research are previously collected and were obtained from existing 

GWAS or the UK Biobank. No data collection or management of any kind took place. All data w 

de-identified and can simply be pulled from peer-reviewed articles or downloaded from websites 

without the need to establish a data use agreement (DUA). All datasets have implemented 

genomic control by adjusting for principal components in kinship matrices in an attempt to 

eliminate confounding due to population stratification. Below is a description of the data sources 

used here. 

 
1. To provide genetic associations with birth weight the EGG Consortium (2019) was 

utilized for each of the three aims. It contains mother's genetic effect on offspring birth weight, 

after adjusting for offspring's genotype, sex, gestational duration, and ancestry informative 

principal components. Birth weight was selected as an outcome primarily because no such 

GWAS exists for gestational age. However, it also in part because birth weight is more reliably 

measured than gestational age.115 Although, low birth weight is conceptually distinct from 

preterm birth, the two concepts overlap. Among low-birth-weight infants, approximately two-

thirds are born preterm.115 Birth weight was thus also selected as my outcome measure because it 

captures a larger swath of newborns. Regardless of whether a baby is born preterm, research 

shows that the lower the baby’s birth weight, the greater the risk for complications.116 As 

gestational age is not a cause of maternal stress, and in fact is more likely a result of maternal 

stress, gestational age is probably a mediator of the relationship of maternal stress with LBW, 

rather than a confounder. In addition, adjusting for heritable covariates, i.e., consequences of 

genetic make-up, can bias estimates in genome-wide association studies.117 I therefore am not 

sure gestational age should have been adjusted for, but am limited to using the data currently 

available, which does not adjust for gestational age. Other covariates, such as maternal age, have 
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also not been adjusted for but again are not always common causes of maternal genetics and 

LBW. 

   
2. To provide genetic predictors of cortisol for aim 1 (Crawford et al. (2019)) was used. 

Morning plasma cortisol was collected from participants between 700 and 1100 AM and was 

operationalized as a continuous variable and analyzed as such. Cortisol comes from blood 

samples supplied by study participants that were then analyzed for concentration of metabolic 

byproducts. 

 
3. To provide sex-specific genetic predictors of blood pressure for aim 2 UK biobank 

data was used. Blood pressure was assessed using digital blood pressure monitors (HEM-

7015IT; Omron Healthcare Inc) during the initial assessment visit (2006-2010). The average of 

two blood pressure measurements taken at least 1-minute apart was used. Participants were 

classified as having hypertension if systolic BP ≥140 mmHg, diastolic BP ≥90 mmHg, self-

reported use of antihypertensive medication, or self-reported doctor-diagnosed hypertension. 

Genetic associations with BP were not adjusted for medication use, because it is more likely to 

be a consequence than a cause of genetic make-up. 

 
4. To provide sex-specific genetic predictors of white blood cell counts for aim 3 the UK 

biobank was used. WBC counts were measured on fresh samples as an absolute number per unit 

volume, and their component leukocytes (lymphocytes, monocytes, neutrophils, eosinophils, and 

basophils) as absolute measures and proportions of the overall white blood cells. Complete blood 

cell counts (cells/L) were measured using a Coulter LH 750 System (Beckman Coulter, Brea, 

CA) as per manufacturer’s procedures.  To provide genetic predictors of IL6 and IL1ra, well-

established variants were used.85,86 
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An application for this research was submitted to the Human Research Protections 

Program Office of the Graduate School of Public Health and Health Policy (GSPHHP) at the 

City University of New York (CUNY), which included a detailed study protocol. This 

application was submitted as “Exempt Human Subjects Research”. This Human Subjects 

Research falls under Exemption 4 because the research uses data from the UK Biobank, which 

means that is will rely on existing data that is publicly available and which is recorded in such a 

manner that subjects cannot be identified, directly or through identifiers linked to the subjects. 

 
Data analysis plan (applies to each aim) 
 
The first step of MR analysis is to evaluate that the core assumptions are being met. The 

first assumption, the relevance assumption - that an association exists of instrument on exposure 

- can be tested by using a rigorous p-value, i.e., genome wide significance. Smith et al. for 

example used the genome wide significant p value of 5 x 10^-8.118 Given, correlated genetic 

predictors of the exposures may exist, i.e., (due to linkage disequilibrium) independent predictors 

of each exposure (r2<0.001) was obtained using ld_clump from MRbase 

(https://mrcieu.github.io/ieugwasr/reference/ld_clump.html). The second (independence) and 

third (exclusion-restriction) assumptions are not empirically verifiable. However, one can test 

whether any instruments are associated with confounders using Phenoscanner 

(http://www.phenoscanner.medschl.cam.ac.uk) or MR-Base Phewas 

(https://gwas.mrcieu.ac.uk/phewas/) that have comprehensively curated associations of SNPs 

with many phenotypes and so provide potential associations of the SNPs used with specific 

confounders. Many researchers consider that this assumption is met simply because of the 

random allocation of alleles to gametes.101 The third assumption can be tested by assessing 

whether there is a known association of the SNPs used as genetic instruments (and the gene on 
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which it is located) with the outcome of interest other than via the exposure, i.e., the instruments 

are free from pleiotropic effects, again using curated genotype to phenotype cross references. 

Despite the stringent assumptions of MR studies, the violation of which may cause bias, this 

study design has been able to replicate findings from RCTs.119,120 

Once assumptions have been tested, the actual analysis can be carried out. The causal 

effect of the exposure (X) on the outcome (Y) via the instrument (G) can then be estimated by: 

 ,  

where  (i.e., a Wald estimate) represents the causal effect estimate obtained 

from  and , the regression coefficients obtained from the regression of the outcome 

on the genetic instrumental variable and the regression of the exposure on the genetic instrument 

respectively.121 This approach is equivalent to the commonly used two-stage least squares 

approach used in instrumental variable analysis.107,122 The process of generating regression 

coefficients for  and  can be done using the same study, or can be done using 

multiple studies if necessary, meaning using one study to obtain genetic variants on exposure, 

and another study to obtain genetic variants on outcome.123,124 There are advantages to a two-

sample MR study such as increased statistical power and decreased risk of bias due to weak 

instruments or “winner’s curse”. However, two-sample MR studies are also limited in their 

ability to support sub-group analyses, to test for non-linear effects, and to test whether the risk 

factor-outcome association is related to the genetic instruments.125 

If multiple genetic instruments are used, multiple Wald estimators need to be summarized. One 

popular method is to meta-analyze the Wald estimates together using inverse variance weighting 

(IVW) with an approximation for the variance. One may also consider conducting sensitivity 

analysis to check the validity of the meta-analyzed Wald estimator. This can be done using a 
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weighted median approach, which assumes that ‘instruments’ representing over 50% of the 

weight are valid instrumental variables, or MR Egger method, which is able to assess whether 

genetic variants have pleiotropic effects on the outcome that differ on average from zero.126,127 I 

will consider applying MR-Presso and MR-RAPs, which each have the advantage of addressing 

possible pleiotropy and giving a revised estimate.128,129 Finally, I used the contamination mixture 

model (conmix) which has a contrasting plurality valid assumption and may be the best method, 

judged by mean squared error.130 These processes were carried out for each aim. This means that 

for each aim, the three specific assumptions of MR were tested, genetic associations with birth 

weight were extracted for SNPs predicting each stress marker, Wald estimates were meta-

analyzed together using inverse variance weighting with random effects, and sensitivity analysis 

were conducted using MR Egger, the weighted median, conmix and other methods as 

appropriate. Some multivariable analyses were also conducted where exposures were thought to 

be correlated, so as to obtain independent effects of each exposure. All analyses conducted using 

R version 4.0.2 (R Foundation for Statistical Computing, Vienna, Austria), and the 

“MendelianRandomization”, “TwoSampleMR”, and “MVMR” packages.  

 
 
Statistical power and sample size 
 In order to calculate power in an MR study the following formula can be used: 
 

131 
 
where b is the effect size, α is the desired significance level of the test (conventionally 

0.05), Φ is the cumulative distribution function of the standard normal distribution, zδ is the 

value which satisfies  and  ⁠, the ratio of the sample variance in Y due to factors 

other than X to the sample variance of X.131 
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Essentially the power for a MR study depends on the proportion of the variance explained 

by the genetic instruments and the sample size for the outcome, because the sample size required 

for a MR study can be approximated by the sample size for exposure on outcome divided by the 

variance explained for genetic instruments on exposure.131 In general, MR studies need large 

samples. The data sources that I used have a large sample size and thus were well powered to 

detect associations between physiological markers of stress and low birth weight. The strength of 

the genetic instruments was obtained from the F-statistic, obtained using an approximation.127 

 
A. Generalizability and Transportability 
MR studies should be free of confounding by design. MR studies are open to selection 

bias, because of the gap between randomization at conception and recruitment in later life. 

However, there is no particular reason to think that people in any of the studies used have been 

recruited based on their genetic propensity to stress and their birth weight, even because of 

selective survival. As such, MR studies can have high internal validity.  One must consider, 

however the possibility that stress could reduce fertility and lead to a greater likelihood of 

miscarriage among those who do get pregnant. 

External validity, as generalizability to the rest of the population from which the study 

sample came, depends on study design and the representativeness of the sample of the 

underlying population. The GWAS used in this study almost entirely relate to people of 

European descent, whereas the target population here encompasses a wider range of 

backgrounds. External validity, as transportability to new population, beyond the studied 

population, can be thought of depending on the relevance of the mechanism in a different 

population.132 This research is designed to test for a specific biological mechanism. It is 

commonly understood that biological pathways work consistently for most people, although they 
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could be less relevant in some groups than others. If I can understand the causal effects of 

physiological markers of stress on poor birth outcomes in this population, the findings can likely 

be extended to most populations.  

 
B. Limitations 
This study has some overarching limitations. First, I must consider potential for selection 

bias in that the validity of the findings of an MR study are dependent upon the integrity of the 

underlying GWAS. Those who participate in large scale genetic studies may be healthier than the 

general population, leading to a healthy volunteer effect.133 However, a healthy volunteer effect 

will only bias the findings if it creates an open pathway from genetic make-up to the exposures 

and outcomes of interest, for example if the participants were selected on genetics and blood 

pressure. Genetics could affect health and hence taking part in a study of healthy volunteers, 

such as the UK Biobank, effects of selecting on healthy survivors are probably most marked at 

older ages, particularly as fertility trades-off against survival. Conversely, it is possible that many 

considerations, including health status may have determined participation in studies used here, 

such as the UK Biobank. Additionally, genetic studies are open to bias from survival, which is 

compounded if common causes of survival and outcome exist.134 The GWAS I intend to use are 

in relatively young people, however, and study exposures that do not share many common causes 

with conditions that cause death at earlier ages making such selection bias less likely. In the case 

that selection bias does exist due to miscarriage, should those who are missing be women who 

experienced high stress and were going to have a small baby, then the study will be biased 

towards the null or even reversed. Due to data availability limitations the study contains only 

participants of European descent who may not even be mothers. Genetic studies that include 

many Americans or that can be subsetted to a black population either do not exist or are not sex-
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specific. Nonetheless, valid assessment of the relationship of maternal stress with offspring birth 

weight may not require participants to be representative of the population at large. Causes are 

generally expected to act consistently, but may not be relevant to all populations.135 As such, the 

findings are not only generalizable to white, European populations, but could also be 

transportable to non-European populations of color. In other words, I have no reason to believe 

that stress pathways would affect LBW differently in different geographical or racial 

populations. 

Next, I must consider the limitations related to the study design. MR, presents several 

challenges and limitations. First, an issue to consider is lack of power related to the modest 

effects of genotype for most complex phenotypes. It is recommended that to avoid this issue one 

use genotypes with reliably established association with exposures, meaning that they have been 

replicated in several independent studies, and ideally can be confirmed within the MR study.101 I 

attempted to do this whenever possible as given in the relevant chapters.  

One must also consider that unreliable study estimates can result from a number of 

genotyping errors, including poor quality or quantity of DNA, biochemical artifacts, faulty 

equipment and human error in reading outputs and entering data,136 which are usually excluded 

during quality control. Though I am unable to verify the quality of study data, whenever 

possible, I conducted sensitivity analyses using several different data sources to validate my 

findings. 

 Population stratification, differences in allele frequencies between subpopulations as a 

result of non-random mating between individuals, can occur when specific subgroups within the 

population experience different rates of diseases and have different frequencies of the alleles of 

interest. This can lead to genetic estimates biased by confounding of the associations of genotype 
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on disease in the study population.137 This may be of particular concern when the genetic 

associations for the exposure were obtained from a different study population than the genetic 

associations with the outcomes. In this study, however, bias from population stratification is 

unlikely because the samples largely from people of European descent with appropriate genomic 

control. 

Pleiotropy is another biological phenomenon of potential concern. Pleiotropy is the 

potential for genetic polymorphisms to have more than one specific phenotypic effect. If the 

genetic variant displays pleiotropic effects that directly influence the outcome of interest, then 

the exclusion-restriction assumption will be violated leading to biased findings. Sensitivity 

analyses using analytic methods designed to account for potential pleiotropy (e.g., MR-PRESSO) 

can help address this issue.  

Finally, canalization, or developmental compensation, should be considered as well. This 

refers to the buffering of the effects of either environmental or genetic forces attempting to 

perturb development.138 This buffering likely occurs through several mechanisms including 

genetic redundancy, feedback regulation and cooperative biochemical interactions.139 This 

phenomenon may invalidate findings from MR studies by changing the effect of genotype on the 

outcome of interest in adulthood without any effect of the association of genotype with the 

exposure of interest. This could mean an invalid estimate and a biased IV estimate of causal 

effect.  

Other limitations include the potential difficulty of interpreting the findings, specifically 

potential inability to assess the magnitude of causal associations. MR may also give us the effect 

of total endogenous exposure rather than stress specific exposures. For example, high blood 

pressure or immunosuppression could affect other underlying causes rather than stress. Finally, 
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new GWAS, such as a recent release by Crawford et al. which contained more participants and 

SNPs than their original analysis,140 continue to become available, which may lead to different 

findings. Thus, these analyses should continue to be replicated.  
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Figure 1.1. Conceptual Framework 
 
 
 

 
Figure 1.2. Directed acyclic graph (DAG) considering relationship between maternal/fetal genetics 
as it pertains to stress and birth outcomes 
 
  

Key:  
---> = not associated 
à = associated 
à = association between genetic  
         instrument and exposure 
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Chapter 2 

Can racial disparities in birth outcomes be partially attributed to 
stress: a Mendelian randomization study of cortisol as a cause of 

low birth weight  
 
Abstract 
 
In the United States, low birth weight (LBW) is a leading cause of infant death overall, and the 

leading cause of death for Black infants. Understanding and preventing adverse birth outcomes is 

a major public health priority. Observationally, there is some evidence to support the hypothesis 

that plasma cortisol may be associated with LBW. To clarify the effect of cortisol exposure on 

LBW, we used separate-sample instrumental variable analysis with genetic instruments 

(Mendelian randomization) based on 3 single nucleotide polymorphisms (SNP), from a genome 

wide association study, strongly (p-value < 5 × 10−6) and independently associated with morning 

plasma cortisol. These SNPs were applied to a large, extensively genotyped study of birth weight 

conducted by the Early Growth Genetics Consortium (EGGC), which contains mother's genetic 

effect on offspring birth weight, after adjusting for the correlated offspring's genotype (n 

=179,360). SNP-specific Wald estimates were meta-analyzed to obtain inverse variance 

weighted and MR-Egger estimates, taking into account correlations between SNPs. Higher 

genetically instrumented plasma cortisol was associated with lower birth weight using inverse 

variance weighting and contamination mixture. Birth weight decreased by about 19 grams (0.057 

standard deviation (SD), beta = -.057 (95% confidence interval (CI) -0.103, -0.021) and 21 

grams (.06 SDs, beta = -.06 (95% confidence interval (CI) -.13, -.01) for every unit increase of 

log transformed effect size of plasma cortisol. More investigation is required into the role of 

cortisol in LBW, a leading cause of morbidity and mortality among infants, as a potential target 

of intervention. 
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Introduction 

In the United States (US), low birth weight (LBW), defined as weighing 2,499 grams or 

less at birth, is a leading cause of infant death, particularly affecting Black infants.2 LBW is 

inversely associated with cognition,10 language development,11 and academic achievement,12,14 

and with greater need for special education.13 Furthermore, poor birth outcomes may be 

associated with health risks in adulthood15 including of cardiovascular disease,16 hypertension,17 

and non-insulin dependent diabetes mellitus.141 However, LBW could also be the result of socio-

economic characteristics, and associated disadvantages, which also lead to these health 

outcomes. 

Understanding and preventing adverse birth outcomes is a major public health priority in 

the US. Numerous case-control and cohort studies have demonstrated an association of exposure 

to general and pregnancy related stress with LBW.5-7,31,32 Furthermore, studies have consistently 

shown that Black women experience greater levels of general stress and pregnancy-related 

stress.4,33 Additionally, Black women are more likely to experience stress due to racism and 

discrimination, which is associated with worse birth outcomes.34,35,142 Increased exposure to 

stress during pregnancy may begin to partially explain racial disparities in birth outcomes in the 

US.143,144 

Limited research has attempted to explore the effect of various intervention strategies on 

maternal stress and birth outcomes. Randomized control trials support that stress reduction 

techniques such as counseling,145,146 mindfulness and relaxation,147-149 and psychotherapy150,151 

can all significantly reduce stress and anxiety during pregnancy. There is also evidence from 

randomized control trials that social support as a form of stress reduction reduces the incidence 
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Table 2.1. Mendelian randomization estimates for associations of plasma cortisol with birth 
weight  
 

Mendelian 
Randomization Method 

Beta 95% confidence 
interval 

p-value MR Egger 
intercept 

Cochran’s Q 
statistic (p-value) 

Inverse variance weighted -0.057 -0.105 to -0.008 0.021  0.21 (.89) 

MR-Egger -0.023 -0.965 to 0.919 0.962 -0.023 0.18 (.67) 

Conmix -0.06 -0.13 to -0.01 0.0417  N/A 

 
 
Supplementary Table 2.1. Associations of individual SNPs with cortisol and birth 
weightError! Bookmark not defined.,Error! Bookmark not defined.   

 
 Cortisol birth weight 

rsid effect 
allele 

beta se p-value effect 
allele 

Beta se p-value 

rs12589136 T 0.103 0.014 3.32E-12 T -0.007 0.005 0.157 
rs2749527 T -0.081 0.012 5.21E-11 T 0.0034 0.004 0.351 
rs11621961 T -0.077 0.014 3.97E-08 T 0.006 0.004 0.189 

 
 
Supplementary Table 2.2. Correlations among individual SNPS of interest from ldlink 
 

 rs12589136 rs2749527 rs11621961 

rs12589136 1.00 -0.233 0.437 
rs2749527 -0.233 1.00 0.491 
rs11621961 0.437 0.491 1.00 

 
 
 
 
 
 
 
 
 
 
 
 

Deleted: 51

Deleted: 52



 44 

 
Chapter 3 

Can racial disparities in birth outcomes be partially attributed to 
stress: a Mendelian randomization study of maternal blood 

pressure as a cause of low birth weight  
 

Abstract 
 
In the United States (US), low birth weight (LBW) is a leading cause of infant death overall, and 

the leading cause of death for Black infants. Understanding and preventing adverse birth 

outcomes is a major public health priority in the US. Observationally, some evidence supports 

the hypothesis that the maternal vascular stress pathway may be associated with LBW. We used 

two-sample instrumental variable analysis using genetic instruments (Mendelian randomization) 

from genome wide association studies strongly (p-value < 5 × 10−8) and independently associated 

with diastolic blood pressure (BP), systolic blood pressure (BP), hypertension, applied to a large, 

extensively genotyped study of birth weight conducted by the Early Growth Genetics 

Consortium (EGGC), which gives mother's genetic effect on offspring birth weight, after 

adjusting for offspring's genotype (n =179,360). SNP-specific Wald estimates were combined to 

obtain inverse variance weighted (IVW), weighted median, MR-Egger and contamination 

mixture model (commix) estimates. Systolic BP was associated with birth weight using the 

weighted median and conmix. More investigation is required into the role of systolic BP in 

LBW, a leading cause of morbidity and mortality among infants, as a potential target of 

intervention. 
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Introduction 

In the United States (US), low birth weight (LBW), defined as weighing 2,499 grams or 

less at birth, is a leading cause of infant death, particularly affecting Black infants.2 LBW is 

inversely associated with cognition,10 language development,11 and academic achievement,12,14 

and with greater need for special education.13 Furthermore, poor birth outcomes may be 

associated with health risks in adulthood15 including of cardiovascular disease,16 hypertension,17 

and non-insulin dependent diabetes mellitus.141 However, LBW could also be the result of socio-

economic characteristics, and associated disadvantages, which also lead to these health 

outcomes. 

Understanding and preventing adverse birth outcomes is a major public health priority in 

the US. Numerous case-control and cohort studies have demonstrated an association of exposure 

to general and pregnancy related stress with LBW.5-7,31,32 Furthermore, studies have consistently 

shown that Black women experience greater levels of general stress and pregnancy-related 

stress.4,33 Additionally, Black women are more likely to experience stress due to racism and 

discrimination, which is associated with worse birth outcomes.34,35,142 Increased exposure to 

stress during pregnancy may begin to partially explain racial disparities in birth outcomes in the 

US.143,144 

Acute psychological stressors evoke cardiovascular responses as the result of 

neurological changes typically characterized by increases in sympathetic and parasympathetic 

activity, which lead to changes in outflow to the heart and vascular system.Error! Bookmark 

not defined. Typically this leads to an elevated blood pressure (BP). This was initially viewed as 

a function of the body’s reaction to deal with perceived threats.171 For most individuals, these 

vascular reactions are acute so BP drops once a stressor has been removed, or once an individual 

Deleted: 63
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has adjusted to the stressor.171 However, individuals who experience exaggerated or chronic 

stress may also experience prolonged stressor-evoked cardiovascular reactions.171 These 

reactions can lead to sizable and sustained rises in BP.  

 Women who experience heightened vascular reactivity may be at increased risk of low 

birth weight. Many observational studies have suggested that higher maternal BP is associated 

with lower offspring birth weight.52-70 However, these studies may be subject to residual 

confounding due to common causes of exposure and outcome such as socioeconomic position 

that were not considered or that were not adjusted for, given the difficulty of comprehensively 

capturing such information. Unfortunately, an experimental randomized control trial (RCT) 

cannot ethically be conducted on this topic. Instead, several quasi-experimental studies using 

Mendelian randomization which takes advantage of naturally existing random variation in 

maternal genetics and is thus less open to confounding, have also demonstrated a relationship of 

higher maternal BP with lower offspring birth weight.71-73 These findings, however, are limited 

by small sample size, use of data pertaining to both men and women, lack of adjustment for the 

effects of fetal genetics on birth weight, or focus limited to the independent effects of systolic 

and diastolic blood pressure, when these are related exposures. 

To clarify the effect of stress induced vascular reactivity on LBW, we conducted a two-

sample Mendelian randomization (MR) study, i.e., an unconfounded study design using genetic 

variants as instruments.101 Vascular reactivity was measured here as blood pressure (BP), a 

known outcome of stress that has additionally been studied as a potential cause of low birth 

weight.  This study fills a current gap in the quasi-experimental literature by using sex-specific 

genetically instrumented BP and adjusting for offspring genetics. We also implemented a 

multivariable MR analysis in order to assess independent effects of several vascular attributes 
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(e.g., diastolic BP, systolic BP). We also used ischemic heart disease (IHD) as a positive control 

outcome because blood pressure is known to cause IHD. 

 

Methods 

We conducted a two-sample univariable and multivariable MR study to assess the effect of 

systolic BP and diastolic BP on birth weight. Additionally, we included history of hypertension 

as an exposure, which accounts not only for the participants BP measure at time of assessment, 

but also whether the participants reported use of antihypertensive medication or doctor-

diagnosed hypertension. As is described by Greenland154 and others155, MR is dependent on the 

assumptions of instrumental variable (IV) analysis: a) relevance, i.e., the instrument predicts the 

exposure, b) exclusion restriction, i.e., the instrument affects the outcome only through affecting 

the exposure, i.e., there is no selection bias from selecting on common effects of the instrument 

and outcome c) independence, i.e., the instrument does not share common causes with the 

outcome.  

 

Exposures. 

Genetic associations with systolic BP, diastolic BP and hypertension were extracted from the UK 

Biobank summary statistics for women only. The UK Biobank is one of the largest biobanks 

globally. It recruited over 500,000 participants (intended to be aged 40–69 years) in England, 

Scotland and Wales from 2006 to 2010. Participants completed a questionnaire and a 

comprehensive assessment at baseline, genotyping, and longitudinal follow-up via record linkage 

to medical and mortality records is ongoing, as described in detail elsewhere.111-113 Genotyping 

was performed using two very similar arrays, including Affymetrix UK BiLEVE, Axiom array, 
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and Affymetrix UK Biobank Axiom array. Further information on the genotyping process is 

available on the UK Biobank website (http://www.ukbiobank.ac.uk/scientists-3/genetic-data).114 

Summary sex-specific genetic associations adjusted for age, age2, and the first 20 principal 

components are publicly available (http://www.nealelab.is/uk-biobank) and were used to obtain 

genetic instruments for the exposures. 

 

Diastolic BP and SBP. Blood pressure was assessed using digital blood pressure monitors 

(HEM-7015IT; Omron Healthcare Inc) during the initial assessment visit (2006-2010). The 

average of two blood pressure measurements taken at least 1-minute apart was used. Diastolic 

BP data was available for 182,647 women and systolic BP was available for 157,514 women. 

 

Hypertension. Participants were classified as having hypertension if systolic BP ≥140 mmHg, 

diastolic BP ≥90 mmHg, self-reported use of antihypertensive medication, or self-reported 

doctor-diagnosed hypertension. Hypertension data were available for 194,153 women. 

 

Outcome 

Genetic associations with maternal genetic effects on birth weight were extracted from the Early 

Growth Genetics Consortium (EGGC) genome-wide association study (GWAS) of birth weight. 

Genetic associations representing mother's genetic effect on offspring birth weight, after 

adjusting for offspring's genotype,72 are the genotype most closely corresponding to maternal 

exposures during pregnancy. The EGGC GWAS included 264,498 women of European descent, 

179,360 for whom offspring birth weight, measured as a continuous variable, was also available, 

from the EGGC and the UK Biobank data (released May 2017). The 12 studies from the EGGC 
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conducted genome-wide association analysis of z-score transformed offspring birth weight 

adjusted for sex, gestational duration and ancestry informative principal components where 

necessary. The UK Biobank included 502,655 participants.108 Of the 273,467 women, 216,839 

reported the birth weight of their first child at one assessment center visit, given not all women 

have children. Values were recorded to the nearest whole pound, and converted to kilograms. 

Where women reported the birth weight of the first child at multiple time points these were 

averaged and women were excluded if the mean difference between any 2 offspring BW 

measurements was >1kg (N=31). Women who reported BW of their first child <2.2kg or >4.6kg 

were also excluded (N=6,333). Genetic estimates in EGGC were imputed to the 1000 Genomes 

Project (Phase 1 v3) reference panel and in the UK Biobank were imputed to the HRC reference 

panel.72 Genetic associations with maternally determined birth weight were obtained using linear 

regression in the EGG consortium and a linear mixed model in the UK Biobank, with adjustment 

for gestational age, where available, and study specific covariates.72 A structural equation 

modeling (SEM) approach was used to estimate maternal and fetal effects independent of the 

fetal and maternal genotype respectively including the observed participant’s genotype, their 

own self-reported BW, and the BW of their first child, and two latent (unobserved) variables, for 

the genotype of the participant’s mother and for the genotype of the participant’s offspring. We 

have assumed a linear relationship between BW and measures of exposure. 

 

Statistical analysis.  

In order to ensure the relevance assumption was met, we used all single nucleotide 

polymorphisms (SNPs) which strongly (p-value < 5 × 10−8) and independently (r2<0.05) 

predicted each exposure.  We checked the strength of genetic instruments from the F-statistic 
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using an approximation - the SNP-exposure association squared divided by the variance of the 

SNP-exposure association squared.172 An F-statistic < 10 indicates a weak instrument.161 We 

ensured palindromic SNPs were aligned on allele frequency, or replaced by highly correlated 

proxy. To assess the independence assumption was met, we assessed whether any of these SNPs 

were associated with potential confounders based on confounders that have been controlled for 

in the existing observational literature, including body mass index (BMI), weight, height, overall 

health status, maternal birth weight and smoking, using a curated genotype to phenotype cross-

reference, Phenoscanner http://www.phenoscanner.medschl.cam.ac.uk. To address the exclusion-

restriction assumption, we also searched PhenoScanner for paths by which the SNPs might affect 

birth weight other than by causing BP, or hypertension and removed any SNPs that met this 

criterion.  

To obtain an MR inverse variance weighted (IVW) estimate, SNP-specific Wald 

estimates (SNP on outcome divided by SNP on exposure) were meta-analyzed with 

multiplicative random effects, which assumes balanced pleiotropy.173 Additionally, we used a 

weighted median estimate, which assumes that instruments representing over 50% of the weight 

are valid instrumental variables, MR Egger, which assess pleiotropic genetic effects on the 

outcome that differ on average from zero, and contamination mixture model (commix), which 

has a contrasting plurality valid assumption and may be the best method, judged by mean 

squared error.126,130,172 Given diastolic and systolic BP are highly correlated, to identify their 

independent effects, we conducted a multivariable MR analysis using IVW, weighted median 

and MR-Egger estimates. Multivariable MR is designed to identify the independent effects of 

two or more exposures on the same outcome.174  In order to select SNPs for the multivariable 

MR, first, all SNPs for diastolic BP and systolic BP that were significantly associated with the 
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respective exposures at p-value < 5 × 10−8 were retained. Any correlated SNPs were removed 

using the lower of the two p-values. Multivariable MR estimates were obtained using, IVW, 

weighted median, and MR-Egger. 

We calculated the corresponding multivariable conditional F and Q statistics to test for 

instrument strength and pleiotropy.174 Given, we used summary data with the same sample for 

the exposures, the conditional F-statistic likely represents a lower bound and the Q-statistic an 

upper bound.174 

Power analysis.  The sample size needed for an MR study can be approximated by the sample 

size needed for exposure on outcome divided by the r2 for instrument on exposure,131 which was 

estimated using an online calculator https://sb452.shinyapps.io/power.157 

 

Ethics. All data used in this study is publicly available with no direct involvement of participants 

in the study. CUNY SPH IRB deemed this research exempt from formal review. 

 

Data availability. The datasets analyzed in this study are publicly available summary statistics 

available at https://egg-consortium.org/ and http://www.nealelab.is/uk-biobank. 

 

Statistical packages. All analyses conducted using R version 4.0.2 (R Foundation for Statistical 

Computing, Vienna, Austria), and the “MendelianRandomization”, “TwoSampleMR”, and 

“MVMR” packages.  

 

Results 

Genetic associations with exposures.  
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One hundred fifty-seven, 47, and 83 SNPs strongly predicted (p-value < 5 × 10−8) systolic 

BP, diastolic BP, and hypertension, respectively (see Table 1). All of these SNPs had F-

statistics > 20. Of these SNPs, 57 associated with systolic BP, 18 associated with diastolic BP, 27 

associated with hypertension were found to be associated with potential confounders based on 

confounders that have been controlled for in the existing observational literature, including BMI, 

weight, height, overall health status, maternal birth weight, and smoking, or were associated with 

other factors that might affect birth weight and lead to pleiotropic effects using Phenoscanner 

(see Table 2). Estimates were calculated both including and excluding the aforementioned SNPs. 

The SNPs selected for blood pressure were all significantly associated with the positive control 

IHD (systolic IVW Beta = -0.014, p-value = .007, diastolic IVW Beta = -0.014, p-value < .001). 

Given the SNPs explained ~0.018% of the variance of blood pressure, with a sample size 

of 157,514 for diastolic blood pressure and 182,647 for systolic blood pressure at 80% power 

and 5% alpha, the study could detect an effect size of about 0.05 (OR = 1.05). Given the SNPs 

explained ~0.003% of the variance of hypertension, with a sample size of 179,360, at 80% power 

and 5% alpha the study could detect an effect size of about 0.12 (OR = 1.13).  

 

Univariable associations with birth weight. Table 3.1 and 3.2 show systolic BP was inversely 

associated with birth weight using the weighted median and conmix, but not using IVW or MR-

Egger. Hypertension was not clearly associated with birth weight in table 3.2 and diastolic blood 

pressure was not associated with birth weight in either analysis.  

 

Multivariable associations with birth weight. No independent associations of systolic or 

diastolic BP with birth weight were evident. The conditional F statistics for the MVMR model 
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are 12.7 and 21.5 and the Cochran’s Q statistic was 423.6 (p<.001). These associations were the 

same including and excluding confounding or potentially pleiotropic SNPs and when orienting 

on systolic and diastolic BP.  

 

Discussion 

This study suggests that mother’s systolic blood pressure may have an effect on infant 

birth weight. This finding is in line with the hypothesis that stress might act through blood 

pressure to cause low birth weight and supports the findings of existing MR studies on this topic, 

which found maternal systolic BP reduced birth weight.71-73 Unlike the existing MR studies on 

this topic, this study 1) used sex-specific genetically instrumented BP and adjusted for offspring 

genetics 2) implemented a multivariable MR analysis in order to assess independent effects of 

several vascular attributes (e.g., diastolic BP, systolic BP) and 3) used a positive control outcome 

to validate our instrument selection.71-73 Unlike Warrington et al. 72, who found a causal 

relationship between systolic BP and LBW, we also did not adjust for BMI in the selection of our 

instruments  because adjusting for heritable covariates, such as BMI, may bias the genetic 

estimates for blood pressure if common causes of BMI and blood pressure exist.117 This type of 

adjustment is known to lead to false positives. The fact that we obtained a similar result despite 

not controlling for this covariate suggests that we cannot exclude an effect of systolic BP on birth 

weight.	

If blood pressure has a causal effect on fetal growth and development, this knowledge 

might affect clinical guidelines pertaining to stress management during pregnancy, both from the 

perspective of lived experiences and medical management. Many effective interventions exist to 

regulate BP.175 Some evidence suggests that decreasing maternal blood pressure during 
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pregnancy prevents poor birth outcomes.176,177 However, other findings suggest that benefit is 

unlikely to result from treating hypertension in pregnancy.178  Multiple RCTs how shown that 

behavioral interventions during pregnancy can also reduce stress.24,25,26,27,27,29,30 Yet, the US is 

unique among developed countries in having minimal maternity leave and no universal provision 

of care in pregnancy. As a result, many expectant mothers in the US receive no prenatal care, or 

initiate care late in pregnancy, despite evidence that birth outcomes are better in countries with 

increased access to and use of prenatal care.179 Additional research and funding should be 

dedicated to the development and evaluation of blood pressure management and stress reduction 

strategies during pregnancy and to the creation of universal prenatal care programs within the 

US.	

This study’s primary strength is that is used an MR design, which has the advantage of 

providing unconfounded estimates, re-using existing resources and providing estimates even 

when no study including comprehensive information on exposure and outcome exists.  An MR 

study, however, is limited by three underlying assumptions. First, the relevance assumption, 

which assumes each instrument strongly predicts each exposure. However, our average F-

statistics were over 20. Second, the independence assumption, no confounders of genetic 

predictors on outcome should exist, but using Phenoscanner, we identified and eliminated any 

SNPs associated with potential confounders. Lastly, the exclusion-restriction assumption - 

genetic instruments should only affect birth weight via affecting the exposure. To assess for 

potential horizontal pleiotropy, where a genetic variant influences the outcomes through an 

independent pathway, Phenoscanner was used to identify direct associations of any of the SNPs 

for DBP, SBP, or hypertension with birth weight, or factors that might affect birth weight. 

Analysis was conducted with and without these SNPs. Finally, although less commonly stated, 
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MR assumes that the association of SNPs with exposure and outcome are free from selection 

bias, particularly bias arising from the recruiting participants who have survived the exposure 

and competing risk of the outcome.163 The GWAS of exposures and birth weight were conducted 

in relatively young people, however, among women who know they are pregnant, the 

miscarriage rate is thought to be between 10% to 20%.180 Conceptions of smaller infants 

miscarried due to maternal BP would bias the estimates towards the null.  

  Bias from population stratification, differences in allele frequencies between 

subpopulations as a result of non-random mating between individuals, is unlikely because the 

underlying studies included samples largely from people of European descent with genomic 

control. Canalization, or the ability of a population to produce the same phenotype regardless of 

variability of its genotype, is also possible.181 However, the extent to which it occurs, if any is 

unknown. Causes are generally expected to act consistently, but may not be relevant to all 

populations.135 As such, the findings are not only generalizable to white, European populations, 

but also transportable to non-European populations of color. In other words, we have no reason 

to believe that blood pressure would affect LBW differently in different geographical or 

racial/ethnic populations. 

 There are some additional limitations to this study. First, these instruments used in this 

study have not been replicated, so we used ischemic heart disease, which is known to be 

associated with blood pressure, as a control outcome and found that ischemic heart disease was 

significantly associated with blood pressure.  Second, our estimates are not adjusted for whether 

study participants are currently taking any BP medication, which some participants likely were 

based on how the hypertension variable was operationalized, which might lead to imprecision, 

likely, biasing towards the null. Third, we have assumed that genetic variants identified in these 
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large GWAS of our exposures variables in non-pregnant women are similarly associated in 

pregnant women. Fourth, we have assumed that the critical period of exposure to maternal 

indirect genetic effects is pregnancy, and that the estimates do not reflect pre-pregnancy effects 

on primordial oocytes or post-natal effects.182 Fifth, despite large sample sizes, as any other 

instrumental variable approach, this MR study suffers from limited statistical power. In particular 

the lack of association with hypertension could be a power issue. Dichotomous outcomes have 

the advantage of representing a specific condition, but do not take advantage of the full 

variability in the underlying condition, such as duration and severity. Sixth, a practical difficulty 

of determining which variants to include in a MR analysis is that of multiple testing. Though we 

could have used a Bonferroni-corrected p-value threshold to take into account the number of 

comparisons made, we opted not to because an approach that adjusts for multiple comparisons 

may lead to a lack of power to detect any specific association. Additionally, as several genetic 

variants may be correlated, a simple Bonferroni correction may be an over-

correction.122 Seventh, we have presented three types of MR estimates, each of which represents 

a different approach for combining data, but we have no way of knowing the “right” answer, and 

there is no hierarchy in terms of robustness or reliability or estimates. However, current advice 

suggests that conmix might be most informative. Regardless of method used, the validity of our 

findings is still dependent on the integrity of the underlying GWAS. Finally, this study is limited 

in scope in that it only looks at one possible pathway between stress and LBW, and also does not 

consider other drivers of BP than stress. 

  

Conclusion  
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The effect of maternal systolic BP cannot be excluded. More investigation is required into the 

role of the maternal vascular stress pathway in preventing LBW, a leading cause of morbidity 

and mortality among infants, particularly infants of color. In the meantime, based on existing 

intervention research, clinicians should consider implementing comprehensive prenatal care 

programs including the prescription of stress reduction strategies to help mitigate the effects of 

stress during pregnancy and reduce rates of LBW. 
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Table 3.1. Mendelian randomization estimates for associations of maternal vascular 
reactivity with birth weight 
 

Exposure 
Method Beta 95% CI p-

value 
MR Egger 
intercept 
p-value 

Cochran’s Q 
statistic (p-
value) 

Diastolic BP 
(157 SNPs) 

Inverse variance 
weighted 

0.010  -0.047, 0.068 0.724  506.6 (<.001) 

Weighted median 0.040 -0.013, 0.093 0.141   

MR-Egger -0.040  -0.259, 0.179  0.721 0.640  

Conmix .04 -0.03, 0.10 .439   

Systolic BP 
(47 SNPs) 

Inverse variance 
weighted 

-0.069 -0.174, 0.035 .192  169.9 (<.001) 

Weighted median -0.133 -0.226, -0.041 0.005   

MR-Egger 0.219 -0.151, 0.589 0.246 0.112  

Conmix -0.19 -0.29, -0.11 <.001   

Hypertension 
(83 SNPs) 

Inverse variance 
weighted 

0.041 -0.162, 0.244 0.693  351.3 (<.001) 

Weighted median 0.149  -0.021, 0.319 0.086   

MR-Egger 0.183  -0.551, 0.916 0.626 0.693  

Conmix 0.26 -0.04, 0.44 0.131   
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Table 3.2. Mendelian randomization estimates of blood pressure and hypertension with 
birth weight (SNPS associated with confounders or thought to have pleiotropic effects 
excluded) 
 
 

Exposure 
Mendelian 
Randomization 
Method 

Beta 95% 
confidence 
interval 

p-
valu
e 

MR Egger 
intercept 
p-value 

Cochran’s Q 
statistic (p-
value) 

Diastolic BP 
(100 SNPs) 

Inverse variance 
weighted 

-
0.038 

-0.099, 0.024 0.22
8 

 225.1(<.001) 

Weighted median -
0.049 

-0.113, 0.015 0.13
7 

  

MR-Egger 0.007    -0.229, 0.243   0.95
6 

0.702  

 Conmix -0.03 -0.13,	0.05 0.31
3 

  

Systolic BP 
(29 SNPs) 

Inverse variance 
weighted 

-
0.084      

-0.185, 0.017 0.10
3 

 61.95 (<.001) 

Weighted median -
0.135 

-0.242, -0.028 0.01
3 

  

MR-Egger 0.049      -0.324, 0.423   
0.79
5 

0.468  

 Conmix 0.19 0.10, 0.28 <.00
1 

  

Hypertension 
(56 SNPs) 

Inverse variance 
weighted 

0.012  -0.168, 0.193 0.89
4 

 124.5(<.001) 

Weighted median -
0.148 

-0.343, 0.046 0.13
5 

  

MR-Egger 0.132 -0.539, 0.804 0.69
9 

0.716  

 Conmix 0.30 0.01, 0.63 .047
8 
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Table 3.3. Multivariable mendelian randomization estimates for associations of systolic and 
diastolic blood pressure with birth weight 
 

Mendelian 
Randomization 
Model 

Exposure 
Beta 95% 

confidence 
interval 

p-value 

IVW Diastolic BP 0.005     -0.070, 0.081 0.891 
Systolic BP -0.007 -0.112, 0.099 0.902 

Weighted 
Median 

Diastolic BP -0.020 -0.090, 0.049 0.567 
Systolic BP -0.038 -0.141, 0.064 0.460 

MR Egger Diastolic BP 0.001 -0.204, 0.109 0.550 
 Systolic BP -0.048 -0.076, 0.078 0.986 
 Intercept  0.001 -0.002, 0.004 0.485 
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Chapter 4 

Can racial disparities in birth outcomes be partially attributed to 
stress: a Mendelian randomization study of immune response as 

a cause of low birth weight  
 

Abstract 

In the United States (US), low birth weight (LBW) is a leading cause of infant death overall, and 

the leading cause of death for Black infants. Understanding and preventing adverse birth 

outcomes is a major public health priority in the US. Observationally, some evidence supports 

the hypothesis that maternal immune function may be associated with LBW. To clarify the effect 

of maternal immune function on LBW, we used two-sample instrumental variable analysis using 

genetic instruments (Mendelian randomization) from genome wide association studies strongly 

(p-value < 5 × 10−8) and independently associated with white blood cell count (WBC), eosinophil 

count, neutrophil count, IL6 and IL1ra in women, applied to a large, extensively genotyped study 

of birth weight conducted by the Early Growth Genetics Consortium (EGGC), which gives 

mother's genetic effect on offspring birth weight, after adjusting for offspring's genotype (n 

=179,360). SNP-specific Wald estimates were combined to obtain inverse variance weighted 

(IVW), weighted median, MR-Egger estimates and contaminated mixed method (commix) 

estimates. Eosinophil count was inversely associated with birth weight using IVW and MR 

Egger methods and positively associated with WBC count using weighted median and commix 

after removing SNPS associated with potential confounders. More investigation is required into 

the role of maternal immunity in LBW, a leading cause of morbidity and mortality among 

infants, as a potential target of intervention. 
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Introduction 
In the United States, LBW, defined as weighing 2,499 grams or less at birth, is a leading 

cause of infant death, particularly affecting Black infants.2 LBW is inversely associated with 

cognition,10 language development,11 and academic achievement,12,14 and with greater need for 

special education.13 Furthermore, poor birth outcomes may be associated with health risks in 

adulthood15 including of cardiovascular disease,16 hypertension,17 and non-insulin dependent 

diabetes mellitus.141 However, LBW could also be the result of socio-economic characteristics, 

and associated disadvantages, which also lead to these health outcomes.183,184 

Understanding and preventing adverse birth outcomes is a major public health priority in 

the US. Numerous case-control and cohort studies have demonstrated an association of exposure 

to general and pregnancy related stress with LBW.5-7,31,32 Furthermore, studies have consistently 

shown that Black women experience greater levels of general stress and pregnancy-related 

stress.4,33 Additionally, Black women are more likely to experience stress due to racism and 

discrimination, which is associated with worse birth outcomes.34,35,142 Increased exposure to 

stress during pregnancy may begin to partially explain racial disparities in birth outcomes in the 

US.143,144 

Stress and distress are increasingly reported to be associated with immunosuppression. 

Just as the body may adjust blood pressure in a “fight or flight” response to stress, the body may 

also produce an adaptive immune response because fighting and fleeing carries the risk of injury 

and subsequent entry of infectious agents into the bloodstream or skin.185,186Error! Bookmark 

not defined. However, research has also shown that when stressors become chronic, components 

of the immune system begin to be affected in a potentially detrimental way,186 which may impair 

cellular immunity.187 
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Chronic stress and stress hormones appear to be associated with immunosuppression and 

changes in the normal pattern of cellular and humoral responses to antigens.188 This compounds 

the effects of pregnancy, which compromise a woman’s immunity. In a typical pregnancy 

alterations are produced in the maternal immune system to tolerate paternal major 

histocompatibility antigens and yet also to maintain adequate immune competence for defense 

against microorganisms.189,190 Changes that the mother experiences include a decline over the 

course of gestation in the ability of lymphocytes to proliferate in response to stimuli189 and a shift 

in the normal pattern of cytokine production from a T-helper cell 1 profile to a Th2 cytokine 

profile in pregnancy.190 

Very little research has been conducted to understand the stress–infection– immune system 

relationship in human pregnancy. 

Preliminary research suggests that perhaps maternal stress and infection work in concert 

to predict poor birth outcomes. In a cross-sectional investigation of a sample of 72 pregnant 

women, Herrera et al. reported that high levels of maternal psychological stress and low levels of 

social support were associated with lower lymphocyte activity.74 Furthermore, greater stress 

during pregnancy is associated with urogenital infections,75 which increases women’s risk for 

LBW.76 Microbial colonization and inflammation in the maternal genital tract has emerged as a 

major risk factor for spontaneous preterm birth.77 Leukocytes participate in the maintenance of 

pregnancy and alteration in their function or abundance may lead to labor at term or preterm.78 

Neutrophil and eosinophil infiltration of the uteroplacental tissues and amniotic fluid have been 

associated with preterm labor.79-81 The most prevalent lower genital tract infection in women of 

reproductive age, bacterial vaginosis (BV), is associated with a higher risk of LBW and preterm 

labor.82-84  



 64 

Assessment of immune status most frequently involves the measurement of various leukocytes 

numbers in the blood stream, including total number of WBCs and the proportion of each 

subclass.191 Neutrophil counts for example are one possible of immune function. These cells are 

part of our innate immunity and are typically the most prevalent type of WBC. They are part of 

the body’s first line of immune defense and are responsible for immune response against 

invading pathogens as well as acting as part of the response to injury-induced inflammation.192 

Neutrophilia,  an increase in circulating neutrophils, is a classical indicator of acute 

inflammation, while neutropenia, an abnormally low number of neutrophils, predisposes one to 

infections.193 Eosinophils are also an interesting marker of immune function, as they are 

primarily responsible for destroying foreign substances194 Eosinophilia, or elevated levels of 

eosinophils, similarly indicates infection or inflammation.195 Finally, cytokines, specifically IL6 

and IL-1ra may also play an important role in immune/inflammatory responses during 

pregnancy.196-198and these can be targeted with well-known drugs, i.e., tocilizumab and anakinra 

respectively. 

 To the authors’ knowledge, however, no study has directly examined the effect of 

maternal white blood cell (WBC) count, eosinophil count, neutrophil count, IL6 or IL1ra on 

child’s birth weight. To clarify this relationship, we conducted a two-sample Mendelian 

randomization (MR) study, i.e., an unconfounded study design using genetic variants as 

instruments.101 This study fills a current gap in the literature and  produces robust estimates by 

using a quasi-experimental MR design, sex-specific genetically instrumented white blood cell 

counts, adjusting for offspring genetics, and assessing independent effects of several measures of 

WBC count (e.g., all leukocytes, eosinophils, neutrophils) and key cytokines. We also used 



 65 

asthma and rheumatoid arthritis (RA) as positive control outcomes because WBC count, IL6 and 

IL1ra are known to be associated with these conditions.199-201 

 

 

Methods 

We conducted a two-sample univariable MR study to assess the effect of total WBC count, 

eosinophil count, neutrophil count, IL6 and IL-1ra on birth weight. As is described by 

Greenland154 and others155, MR is dependent on the assumptions of IV analysis: a) relevance, 

i.e., the instrument predicts the exposure, b) exclusion restriction, i.e., the instrument affects the 

outcome only through affecting the exposure, c) independence, i.e., the instrument does not share 

common causes with the outcome. 

 

Exposures. 

Genetic associations with WBC count, eosinophil count, and neutrophil count were extracted 

from the UK Biobank summary statistics for women only. The UK Biobank is one of the largest 

biobanks globally. It recruited over 500,000 participants (intended to be aged 40–69 years) in 

England, Scotland and Wales from 2006 to 2010. Participants completed a questionnaire and a 

comprehensive assessment at baseline, genotyping, and longitudinal follow-up via record linkage 

to medical and mortality records is ongoing, as described in detail elsewhere.111-113 Genotyping 

was performed using two very similar arrays, including Affymetrix UK BiLEVE, Axiom array, 

and Affymetrix UK Biobank Axiom array. Further information on the genotyping process is 

available on the UK Biobank website (http://www.ukbiobank.ac.uk/scientists-3/genetic-data).114 

Summary sex-specific genetic associations adjusted for age, age2, and the first 20 principal 
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components are publicly available (http://www.nealelab.is/uk-biobank) and were used to obtain 

genetic instruments for the exposures. 

WBC counts were measured on fresh samples as an absolute number per unit volume, 

and their component leukocytes (lymphocytes, monocytes, neutrophils, eosinophils, and 

basophils) as absolute measures and proportions of the overall white blood cells. Complete blood 

cell counts (cells/L) were measured using a Coulter LH 750 System (Beckman Coulter, Brea, 

CA) as per manufacturer’s procedures. Further details of these measurements can be found in the 

UK Biobank online showcase and protocol (http://www.ukbiobank.ac.uk). Leukocyte count data 

were available for 188,074 women.  

Genetic predictors of IL6 and IL1ra were extracted from a MR study conducted by 

Schooling et al.202. We included one SNP (rs7529229) for IL6, and two SNPs (rs6743376 and 

rs1542176) for IL1ra. Other measures of immune function such as neutrophil to lymphocyte ratio 

and platelet to lymphocyte ratio have shown to be associated with pregnancy outcomes,203-210 but 

were not included in this study because ratio measures are open bias in the context of MR as they 

include two phenotypes that may share genetic predictors.117 

 

Outcome 

Genetic associations with maternal genetic effects on birth weight were extracted from the Early 

Growth Genetics Consortium (EGGC) genome-wide association study (GWAS) of birth weight. 

Genetic associations representing mother's genetic effect on offspring birth weight, after 

adjusting for offspring's genotype,72 are the genotype most closely corresponding to maternal 

exposures during pregnancy. The EGGC GWAS included 264,498 women of European descent, 

179,360 for whom offspring birth weight, measured as a continuous variable, was also available, 
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from the EGGC and the UK Biobank data (released May 2017). The 12 studies from the EGGC 

conducted genome-wide association analysis of z-score transformed offspring birth weight 

adjusted for sex, gestational duration and ancestry informative principal components where 

necessary. The UK Biobank included 502,655 participants.108 Of the 273,467 women, 216,839 

reported the birth weight of their first child at one assessment center visit. Values were recorded 

to the nearest whole pound, and converted to kilograms. Where women reported the birth weight 

of the first child at multiple time points these were averaged and women were excluded if the 

mean difference between any 2 offspring BW measurements was >1kg (N=31). Women who 

reported BW of their first child <2.2kg or >4.6kg were also excluded (N=6,333). Genetic 

estimates in EGGC were imputed to the 1000 Genomes Project (Phase 1 v3) reference panel and 

in the UK Biobank were imputed to the HRC reference panel.72 Genetic associations with 

maternally determined birth weight were obtained using linear regression in the EGG consortium 

and a linear mixed model in the UK Biobank, with adjustment for gestational age, where 

available, and study specific covariates.72 A structural equation modeling (SEM) approach was 

used to estimate maternal and fetal effects independent of the fetal and maternal genotype 

respectively including the observed participant’s genotype, their own self-reported BW, and the 

BW of their first child, and two latent (unobserved) variables, for the genotype of the 

participant’s mother and for the genotype of the participant’s offspring. We have assumed a 

linear relationship between BW and measures of exposure. 

 

Statistical analysis.  

In order to ensure the relevance assumption was met, we used all single nucleotide 

polymorphisms (SNPs) which strongly (p-value < 5 × 10−8) and independently (r2<0.005 
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predicted each exposure.  We checked the strength of genetic instruments from the F-statistic 

using an approximation - the SNP-exposure association squared divided by the variance of the 

SNP-exposure association squared.172 An F-statistic < 10 indicates a weak instrument. We 

ensured palindromic SNPs were aligned on allele frequency, or replaced by highly correlated 

proxy. To ensure the independence assumption was met, we assessed whether any of these SNPs 

were associated with potential confounders using a curated genotype to phenotype cross-

reference, Phenoscanner http://www.phenoscanner.medschl.cam.ac.uk. To satisfy the exclusion-

restriction assumption, we also searched PhenoScanner for paths by which the SNPs might affect 

birth weight other than by causing WBC count, eosinophil count, or neutrophil count and 

removed any SNPs that met this criterion. SNP-specific MR Wald estimates (SNP on outcome 

divided by SNP on exposure) were meta-analyzed using inverse variance weighting (IVW), 

which assumes balanced pleiotropy.173 Additionally, we used a weighted median estimate, which 

assumes that instruments representing over 50% of the weight are valid instrumental variables, 

MR Egger, which assess pleiotropic genetic effects on the outcome that differ on average from 

zero, and contamination mixture model (commix), which has a contrasting plurality valid 

assumption and may be the best method, judged by mean squared error.126,130,172 Multivariable 

MR was not conducted because each immune markers is thought to represent a distinct 

phenotype, unlike systolic and diastolic blood pressure in the previous study. 

Power analysis.  The sample size needed for an MR study can be approximated by the sample 

size needed for exposure on outcome divided by the r2 for instrument on exposure,131 using an 

online calculator for MR studies available at https://sb452.shinyapps.io/power.157 

 



 69 

Ethics. All data used in this study is publicly available with no direct involvement of participants 

in the study. CUNY SPH IRB deemed this research exempt from formal review. 

 

Data availability. The datasets analyzed in this study are publicly available summary statistics 

available at https://egg-consortium.org/ and http://www.nealelab.is/uk-biobank.  

 

Statistical packages. All analyses conducted using R version 4.0.2 (R Foundation for Statistical 

Computing, Vienna, Austria), and the “MendelianRandomization”and “TwoSampleMR” 

packages.  

 

Results 

Genetic associations with exposures.  

One hundred seventy-four, 169, and 159 SNPs were strongly and independently 

associated (p-value < 5 × 10−8) with WBC count, eosinophil count, and neutrophil respectively 

(see Table 1). All of these SNPs had F-statistics > 20. Of these SNPs, 33 associated with WBC 

count, 25 associated with eosinophil count, and 32 associated with neutrophil count were found 

to be associated with potential confounders based on confounders that have been controlled for 

in the existing observational literature, including BMI, weight, height, overall health status, and 

alcohol consumption, or were associated with other factors that might affect birth weight and 

lead to pleiotropic effects using Phenoscanner (see Table 2). Estimates were calculated both 

including and excluding the aforementioned SNPs. The SNPs selected for WBC count were all 

significantly associated with the positive control asthma (IVW Beta = 0.020, p-value = 0.001) 

and RA (IVW Beta = -0.005, p-value 0.024). 
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Given the SNPs explained ~0.04% of the variance of WBC count, with a sample size of 

188,074 at 80% power and 5% alpha, the study could detect an effect size of about 0.032. Given 

the SNPs explained ~0.02% of the variance of eosinophil and neutrophil counts, with sample 

sizes of 187,7580, at 80% power and 5% alpha the study could detect an effect size of about 

0.033.  

Associations with birth weight. Table 4.1 shows eosinophil count was inversely associated with 

birth weight using IVW and MR Egger estimates. Table 4.2 shows WBC count was associated 

with birth weight using weighted median and commix after excluding SNPS associated with 

confounders or thought to have pleiotropic effects. Neutrophil counts, IL6 and IL1ra were not 

associated with birth weight.  

 

Discussion 

This study suggests that an effect of eosinophil count or WBC count on infant birth 

weight cannot be excluded, but that neutrophil count, IL6, and IL1ra are not a cause of birth 

weight. This is in line with our hypothesis that an imbalance in leukocytes could lead to preterm 

labor and thus LBW. It is not surprising that eosinophils, but not neutrophils were causally 

related to LBW because some research suggests that eosinophils are a key marker of infection 

and can be found as the predominant cell in the amniotic fluid of women with preterm labor.80  

These findings may suggest that the relationship between stress and eosinophil cell counts is 

mediated by infection. Eosinophils are responsible for releasing cytokines to trigger an 

inflammatory response, and research suggests that preterm labor in the setting of infection results 

from the actions of proinflammatory cytokines secreted as part of the maternal host response to 

microbial invasion.80,211 This would support a theory proposed by Wahdwa et al. that maternal 
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stress may modulate characteristics of immunity to increase susceptibility to infection and 

thereby promote parturition through pro‐inflammatory mechanisms.40 And as we know preterm 

birth is highly correlated with LBW.212 Finally, IL6 and IL1ra are more markers of inflammation 

and auto-immunity than infection. Their lack of association with LBW along with the other 

findings is suggestive of infection playing more of a role.  

To the authors’ knowledge, this is the first MR study to explore the relationship between 

maternal immunity and birth weight. The results of this study provide a better understanding of 

the relation of the maternal immune-stress pathway with birth outcomes, knowledge that is 

currently lacking due to the dearth of existing studies that have been conducted on this subject. 

Chronic stress and stress hormones appear to be associated with immunosuppression and 

changes in the normal pattern of cellular and humoral responses to antigens.188 Thus, 

understanding how WBC count and eosinophil counts effect LBW may help us to better 

understand how stress is linked to LBW. This information may be valuable in preventing poor 

birth outcomes overall. Additionally, though this study included primarily white women of 

European descent, these findings may have transportability to non-white populations since 

causes are generally expected to act consistently135, particularly those with an understood 

biological mechanism. Immune systems do seem to vary by population, however, thus the 

association of eosinophil count and LBW should be tested in other groups. If stress-induced 

changes in WBC and eosinophil count cause LBW, then these findings might have particular 

relevance for populations experiencing extreme stress. For example, Black women in the US are 

more exposed or more susceptible to general and pregnancy-related stress than non-Hispanic 

White women, and may additionally face stress due to experience of racial prejudice and 

discrimination.4,33,34,35,142 Future research should focus on these causal relationships specifically 



 72 

among this subset of women – though currently there are no large GWAS including this 

population. 

Causal knowledge of the effects of maternal immunity on fetal growth and development 

might pave the way for clinical guidelines during pregnancy. Multiple RCTs how shown that 

behavioral interventions during pregnancy can reduce stress.24,25,26,27,27,29,30 These interventions 

may, in turn, affect WBC or eosinophil counts and improve birth outcomes. Prenatal care which 

may detect and treat infections might also prevent immune response and have a positive impact. 

Finally, interventions which have shown to effectively treat conditions such as asthma by 

depleting eosinophils might be effective in preventing preterm birth and LBW and should be 

studied further.213 

MR studies have the advantage of providing unconfounded estimates, re-using existing 

resources and providing estimates even when no study including comprehensive information on 

exposure and outcome exists. We also used genetic associations with birth weight controlled for 

offspring genetics, eliminating the possibility that the association of maternal genetics with birth 

weight was acting through offspring genetics.  

An MR study, however, is limited by three underlying assumptions. First, the relevance 

assumption, which assumes each instrument strongly predicts each exposure. The average F-

statistics were over 70, when a value greater than 10 is taken as adequate strength.161 Second, the 

independence assumption, no confounders of genetic predictors on outcome should exist. Using 

Phenoscanner, we identified and eliminated any SNPs associated with potential confounders, 

including based on confounders that have been controlled for in the existing observational 

literature, i.e., BMI, weight, height, overall health status, and alcohol consumption. Lastly, the 

exclusion-restriction assumption - genetic instruments should only affect birth weight via 
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affecting the exposure. To assess for potential horizontal pleiotropy, where a genetic variant 

influences the outcomes through an independent pathway, Phenoscanner was used to identify 

direct associations of any of the SNPs for WBC count, eosinophil count, or neutrophil count with 

birth weight, or factors that might affect birth weight. Analysis was conducted with and without 

these SNPs. Finally, although less commonly stated, MR assumes that the association of SNPs 

with exposure and outcome are free from selection bias, particularly bias arising from the 

recruiting participants who have survived the exposure and competing risk of the outcome.163 

The GWAS of exposures and birth weight were conducted in relatively young people, however, 

among women who know they are pregnant, the miscarriage rate is thought to be between 10% 

to 20%.180 Conceptions of smaller infants miscarried due to maternal stress would bias the 

estimates towards the null. Miscarriage rates vary by race in the US, with black women more 

likely to experience a spontaneous abortion.214  

  Bias from population stratification, differences in allele frequencies between 

subpopulations as a result of non-random mating between individuals, is unlikely because the 

underlying studies included samples largely from people of European descent with genomic 

control. Canalization, or the ability of a population to produce the same phenotype regardless of 

variability of its genotype, is also possible.181 However, the extent to which it occurs, if any is 

unknown.  

 There are some additional limitations to this study. First, these instruments used in this 

study have not been replicated, so we used asthma and rheumatoid arthritis, which are known to 

be associated with WBC count, as control outcomes and found that both were significantly 

associated with WBC count. Positive controls were not tested for the remaining exposures. 

Second, we have assumed that genetic variants identified in these large GWAS of our exposures 
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variables in non-pregnant women are similarly associated in pregnant women. Third, we have 

assumed that the critical period of exposure to maternal indirect genetic effects is pregnancy, and 

that the estimates do not reflect pre-pregnancy effects on primordial oocytes or post-natal 

effects.182 Fourth, despite large sample sizes, as any other instrumental variable approach, this 

MR study suffers from limited statistical power. Fifth, a practical difficulty of determining which 

variants to include in a MR analysis is that of multiple testing. Though we could have used a 

Bonferroni-corrected p-value threshold to take into account the number of comparisons made, 

we opted not to because an approach that adjusts for multiple comparisons may lead to a lack of 

power to detect any specific association. Additionally, as several genetic variants may be 

correlated, a simple Bonferroni correction may be an over-correction.122 Finally, this study is 

limited in that it does not consider non-stress related drivers of eosinophil or WBC count, such as 

an acquired infection not related to stress.  

 

 

Conclusion  

We found maternal immunity, specifically WBC count and eosinophil count, may affect birth 

weight. More investigation is required into the role of the maternal immuno-stress pathway in 

preventing LBW, a leading cause of morbidity and mortality among infants, particularly infants 

of color. In the meantime, based on existing intervention research and the findings of our study, 

clinicians should consider implementing comprehensive prenatal care programs that manage 

stress and test for and treat infection during pregnancy to reduce rates of LBW. 
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Table 4.1. Mendelian randomization estimates for associations of maternal WBC count 
with birth weight 
 

Exposure 

Mendelian 
Randomization 
Method 

Beta 95% 
confidence 
interval 

p-value MR 
Egger 
interce
pt p-
value 

Cochran’s Q 
statistic (p-
value) 

WBC count 
(174 SNPs) 

Inverse variance 
weighted 

-0.007 -0.043, 
0.030 

0.720  425.5(<.001) 

Weighted median 0.034  -0.009, 
0.077 

0.121   

MR-Egger 0.021  -0.070, 
0.112 

0.649 0.513  

 Conmix 0.06 -.07,.11 .100   

Eosinophil 
count 
(169 SNPs) 

Inverse variance 
weighted 

-0.057 -0.102, -
0.012 

.012  370.6 (<.001) 

Weighted median -0.034  -0.085, -
0.018 

.205   

MR-Egger -0.163 -0.269, -
0.557 

0.003 0.031  

 Conmix -0.03 -0.08, 0.02 .297   

Neutrophil 
count 
(159 SNPs) 

Inverse variance 
weighted 

-0.016 -0.053, 
0.021 

0.399  381.6(<.001) 

Weighted median -0.020 -0.065, 
0.024 

0.366   

MR-Egger 0.010  -0.096, 
0.076 

0.827 0.870  

Conmix -0.01 -0.09, 0.05 .823   

IL6 (1 SNP) Inverse variance 
weighted 

0.064 -0.066, 
0.195 

0.334   

IL1ra (2 
SNPs) 

Inverse variance 
weighted 

0.004 -0.024, 
0.031 

.799   
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Table 4.2. Mendelian randomization estimates for associations of maternal WBC count 
with birth weight (SNPS associated with confounders or thought to have pleiotropic effects 
excluded) 
 
 

Exposure 
Mendelian 
Randomization 
Method 

Beta 95% 
confidence 
interval 

p-
valu
e 

MR Egger 
intercept 
p-value 

Cochran’s Q 
statistic (p-
value) 

WBC count 
(141 SNPs) 

Inverse variance 
weighted 

0.025 -0.012, 0.061 0.18
1 

 282.81(<.001) 

Weighted median 0.056 0.023, 0.011 0.01
4 

  

MR-Egger 0.068   -0.019, 0.155   0.12
5 

0.283  

 Conmix -0.07 -0.11, -0.02 .039
8 

  

Eosinophil 
count 
(144 SNPs) 

Inverse variance 
weighted 

-
0.040    

-0.085, 0.005 0.08
0 

 370.6 (<.001) 

Weighted median -
0.034 

-0.090,0.023 0.24
1 

  

MR-Egger -
0.051     

-0.162, 0.060   
0.37
0 

0.833  

 Conmix -0.02 -0.07, 0.03 .459   

Neutrophil 
count 
(127 SNPs) 

Inverse variance 
weighted 

0.003  -0.032, 0.037 0.88
5 

 233.3(<.001) 

Weighted median -
0.001 

-0.049, 0.046 0.95
8 

  

MR-Egger 0.008 -0.069, 0.084 0.84
5 

0.884  

 Conmix -0.01 -0.09, 0.05 0.82
3 
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Chapter 5: Discussion 
Summary 

Stress response disrupts regulation of systems throughout the body, including the 

neuroendocrine, cardiovascular, and immune systems.37 A growing body of research, largely 

driven by Dr. Pathik Wadhwa, has built support for neuroendocrine, immune, and vascular 

mechanisms of low birth weight (LBW).40,41 However, by Dr. Pathik’s own admission, very little 

empirical research to date has examined the role of biological processes as mediators of the 

relationship of stress with low birth weight.40 This study addresses this gap in the literature. 

These Mendelian randomization (MR) studies have shown that among the maternal stress 

biomarkers in question, cortisol, systolic BP, WBC count and eosinophil count are possible 

causes of birth weight. My findings generally support extant literature. My findings on cortisol 

are consistent with previous observational studies, which concluded that increased maternal 

cortisol levels are associated with restricted intrauterine growth and lower fetal weight.42-45  The 

findings, however, contradict another observational study that found maternal cortisol levels 

were negatively related to offspring birth weight but that this association was not significant after 

adjustment for gestational age at birth, infant sex, ethnicity, maternal age, parity, body mass 

index (BMI), and smoking.45 However, the validity of adjusting birth weight for gestational age 

is questionable. The internal validity of these observational studies may also be threatened by 

residual confounding and may thus produce biased findings. Unbiased estimates may be derived 

from experimental or quasi-experimental studies but, to my knowledge, there have been no such 

studies on this topic, making my study the first of its kind. 

My finding that systolic BP may affect infant birth weight is in line with the existing MR 

studies on this topic, which found maternal systolic BP reduced birth weight.71-73 The study fills a 

current gap in the quasi-experimental literature by 1) using sex-specific genetically instrumented 
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BP and adjusting for offspring genetics 2) implementing a multivariable MR analysis in order to 

assess independent effects of several vascular attributes (e.g., diastolic BP, systolic BP) and 3) 

using a positive control outcome to validate the instrument selection.71-73 Unlike Warrington et 

al. 72, who found a causal relationship of systolic BP with LBW, I also did not adjust for BMI in 

the selection of our instruments as doing so may lead to the exclusion of BMI related phenotypes 

and may bias the genetic estimates for blood pressure if common causes of BMI and blood 

pressure exist,117 as they undoubtedly do. The fact that we obtained a similar result despite not 

controlling for this covariate suggests that we cannot exclude an effect of systolic BP on birth 

weight. 

Little work has been done to look at the immune pathway in LBW, so few similar studies 

exist. Nevertheless, the conclusion that WBC count and eosinophil count may cause birth weight 

is in line with our hypothesis that an imbalance in immune cells, indicating immune response, 

could lead to LBW. The results of this study provide a better understanding of the relation of the 

maternal immune-stress pathway with birth outcomes, knowledge that is currently lacking due to 

the dearth of existing studies that have been conducted on this subject.  

 

Cortisol 

Within the neuroendocrine system, corticotropin stimulates secretion of cortisol by the 

adrenal cortex in response to stressors. Elevated cortisol inhibits release of corticotropin by the 

anterior pituitary gland and inhibits release of corticotrophin releasing hormone (CRH) by the 

hypothalamus. Chronic emotional or physical stress can interrupt this negative feedback loop, 

resulting in an overproduction of cortisol46 - making cortisol a good metric for measuring stress. 

Maternal stress has been shown to be associated with increases in placental, decidual, and 
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amniochorionic expression of CRH.40 In vivo studies have found significant correlations among 

maternal pituitary–adrenal stress hormones such as cortisol and placental CRH levels.47-50 CRH 

acts directly on the uterus and cervix and interacts with both prostaglandins and oxytocin, the 

two major uterotonics that mediate the stimulation and maintenance of myometrial contractility 

at term and during labor.51 Thus it seems logical that the potential mechanism may be that stress 

leads to elevated cortisol levels, which cause unregulated CRH levels, and in turn LBW. 

These findings are biologically plausible as there is evidence from human and animal 

models that cortisol crosses the placenta from the mother to the fetus.164 It has also been found 

that despite the effects of placental 11β hydroxysteroid dehydrogenase type 2, which deactivates 

cortisol, trans-placental transfer of cortisol is sufficient to affect fetal growth and physiology.165 

Analogous studies in sheep concluded that hydrocortisone infusion, the name for cortisol in 

medication form, during pregnancy in sheep affects fetal growth.166 Additionally, exposure to 

antenatal dexamethasone treatment, a steroid similar to cortisol prescribed to promote fetal lung 

maturation results in decreased birth weight adjusted for gestational age.167 

 

Systolic BP 

Fetal growth is dictated by placental function, with the placenta serving the critical 

respiratory, hepatic and renal functions of the fetus.215 Reduced utero-placental function has been 

suggested as one possible mechanism through which systolic BP might cause low birth weight 

because this has been found to occur in women with concurrent pre-eclampsia and fetal growth 

restriction.215  

 

WBC count and Eosinophils 



 80 

Preterm birth is highly correlated with LBW.212 In fact,  the primary cause of low birth 

weight is preterm birth.18 White blood cells participate in the maintenance of pregnancy and 

alteration in their function or abundance may lead to labor at term or preterm.78 Microbial 

colonization and inflammation in the maternal genital tract has emerged as a major risk factor for 

spontaneous preterm birth and thus is relevant to the discussion of the etiology of LBW.77 

Eosinophil infiltration of the uteroplacental tissues and amniotic fluid have been have been 

associated with preterm labor79-81 and the most prevalent lower genital tract infection in women 

of reproductive age, bacterial vaginosis (BV), is associated with a higher risk of LBW.82-84 

Eosinophils are responsible for releasing cytokines to trigger an inflammatory response, and 

research suggests that preterm labor in the setting of infection results from the actions of 

proinflammatory cytokines secreted as part of the maternal host response to microbial 

invasion.80,211 This would support a theory proposed by Wahdwa et al. that maternal stress may 

modulate characteristics of immunity to increase susceptibility to infection and thereby promote 

parturition through pro‐inflammatory mechanisms.40  

 

Generalizability and transportability 

The results of these three studies in conjunction add to our understanding of the relation 

of the maternal stress pathway with birth outcomes, knowledge that is currently lacking due to 

the dearth of existing studies that have been conducted on this subject and the limitations of the 

existing studies. Understanding the mechanism through which stress affects LBW may be 

valuable in preventing poor birth outcomes overall. Additionally, though these studies included 

primarily white women of European descent, these findings may have transportability to non-

white populations since most causes are expected to act consistently,135 particularly those with an 
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understood biological mechanism. Cortisol is not known to function differently among different 

subgroups. Immune systems do seem to vary by population, however, thus the association of 

eosinophil count and LBW should be tested in other groups. If stress-induced changes in cortisol 

levels or eosinophil count cause LBW, then these findings might have particular relevance for 

populations experiencing extreme stress.  

In this country, Black non-Hispanic (NH) women are more likely to give birth to low 

birth-weight infants than their white NH counterparts.21 Poverty, educational disadvantage, less 

opportunity for optimal health behaviors, and poor access to health care are important factors 

associated with adverse health outcomes,22 and experienced at a greater rate by Black NH 

women than non-Hispanic white American women.23 However, research suggests that while 

structural disadvantage might partially explain racial differences in birth outcomes, this disparity 

persists even when controlling for a series of social, economic, and behavioral factors, including 

income, maternal age, parity, marital status, smoking, alcohol use, and health insurance 

coverage.24-27 

Increasingly disparities in birth outcomes are seen as rooted in racism.27,216-222 Structural 

racism in health care and social service delivery means that Black women often receive poorer 

quality care than white women.28,29 Additionally, it is well understood that the cumulative 

experience of racism triggers a chain of biological stress processes, known as weathering, that 

undermine Black women’s physical and mental health.30 Numerous case-control and cohort 

studies have demonstrated an association of exposure to general and pregnancy related stress 

with LBW.5-7,31,32 Furthermore, studies have shown that pregnant women of color in the US 

experience greater levels of stress overall, as well as additional sources of stress due to 
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experiences of discrimination and racism.4,33-35 Consequently, the findings of these studies might 

help to explain the observed racial disparity in birth outcomes.  

Clinical Implications 

Causal knowledge of the effects of maternal stress on fetal growth and development 

might pave the way for clinical guidelines during pregnancy. Multiple RCTs how shown that 

behavioral interventions during pregnancy can reduce stress, though none of these studies have 

assessed the effect on birth weight.145-151 These interventions may, in turn, affect cortisol levels, 

systolic BP, WBC count or eosinophil counts and improve birth outcomes. Some preliminary 

research suggests that chemical interventions may be successful in reducing cortisol levels 168-170 

and BP.175 Additionally, prenatal care which may detect and treat infections might also prevent 

immune response and have a positive impact, though both the underlying cause of an treatment 

for bacterial vaginosis are but not completely understood.223 Interventions which have shown to 

effectively treat conditions such as asthma by depleting eosinophils might be effective in 

preventing preterm birth and LBW and should be studied further.213 Finally, further 

consideration should be given to social and environmental determinants that might improve birth 

outcomes, such as improving living conditions to reduce risk of infectious disease.224 

 
Strengths and limitations 

MR studies have the advantage of providing unconfounded estimates, re-using existing 

resources and providing estimates of association even when no study including comprehensive 

information on both exposure and outcome exists. We also used genetic associations with birth 

weight controlled for offspring genetics, eliminating the possibility that the association of 

maternal genetics with birth weight was acting through offspring genetics. In using MR these 

studies fill meaningful gaps in the existing literature on this subject. 
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An MR study, however, is limited by three underlying assumptions. First, the relevance 

assumption, which assumes each instrument strongly predicts each exposure. The average F-

statistics were over 70, when a value greater than 10 is taken as adequate strength.161 I also 

attempted to use SNPs of known phenotype when possible (aim 1) or to validate my instrument 

selection through the use of a positive control (aims 2 and 3). Second, the independence 

assumption, no confounders of genetic predictors on outcome should exist. Using Phenoscanner, 

we identified and eliminated any SNPs associated with potential confounders based on 

confounders that have been controlled for in the existing observational literature, including BMI, 

weight, height, overall health status, and alcohol consumption. Lastly, the exclusion-restriction 

assumption - genetic instruments should only affect birth weight via affecting the exposure, 

which excludes selection bias for instrument on outcome. To assess for potential horizontal 

pleiotropy, where a genetic variant influences the outcomes through an independent pathway, 

Phenoscanner was used to identify direct associations of any of the SNPs for cortisol, BP, WBC 

count, eosinophil count, or neutrophil count with birth weight, or factors that might affect birth 

weight. Analysis was conducted with and without these SNPs. Finally, although less commonly 

stated, MR assumes that the association of SNPs with exposure and outcome are free from 

selection bias, particularly bias arising from the recruiting participants who have survived the 

exposure and competing risk of the outcome.163 The GWAS of exposures and birth weight were 

conducted in relatively young people, however, among women who know they are pregnant, the 

miscarriage rate is thought to be between 10% to 20%.180 Conceptions of smaller infants 

miscarried due to maternal stress would bias the estimates towards the null. Miscarriage rates 

vary by race in the US, with black women more likely to experience a spontaneous abortion.214 

There is also a possibility some smaller babies who would have been LBW did not survive to 
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live birth because of maternal stress which would attenuate the relation of maternal stress with 

LBW. 

Bias from population stratification, differences in allele frequencies between 

subpopulations as a result of non-random mating between individuals, is unlikely because the 

underlying studies included samples largely from people of European descent with genomic 

control. Canalization, or the ability of a population to produce the same phenotype regardless of 

variability of its genotype, is also possible.181 However, the extent to which it occurs, if any is 

unknown.  

There are some additional limitations to this dissertation. First, some of the instruments 

used in these studies have not been replicated. Second, we have assumed that genetic variants 

identified in these large GWAS of our exposure variables in non-pregnant women are similarly 

associated in pregnant women. Third, we have assumed that the critical period of exposure to 

maternal effects is pregnancy, and that the estimates do not reflect pre-pregnancy effects on 

primordial oocytes or post-natal effects.182 Fourth, despite large sample sizes, as any other 

instrumental variable approach, these MR studies suffer from limited statistical power. Finally, 

due to data availability, the study contains only participants of European descent who may not 

even be mothers. Genetic studies that include many Americans or that can be subsetted to a black 

population either do not exist or are not sex-specific.   

 
 
Conclusion and Suggestion for Further Research 

I found that the maternal cortisol levels, systolic BP, WBC count, and eosinophil count 

may lower birth weight. More investigation is required into the role of the maternal stress 

pathway in preventing LBW, a leading cause of morbidity and mortality among infants, 
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particularly infants of color. In order to generate additional support for our findings, further 

research should focus on creating GWAS that are more inclusive of and/or specific to our 

primary populations of interest, such as Black individuals and pregnant women. Then similar 

MR studies could be replicated to triangulate our conclusions. Mediation analysis should also be 

conducted to understand the possible link between stress, infection, eosinophil count, and LBW. 

Additionally, future research should consider exploring how each of the stress pathways might 

work in concert to effect LBW. In the meantime, based on existing intervention research and the 

findings of our study, clinicians should consider implementing comprehensive prenatal care 

programs that manage stress and test for and treat infection during pregnancy to reduce rates of 

LBW. 

 

Key Messages 

• Mendelian randomization can determine causal associations between exposures and 

outcomes, if appropriate instruments are identified and adequate sample sizes are 

available.  

• These MR studies showed that cortisol levels (a neuroendocrine marker), systolic BP (a 

vascular marker), and WBC count and eosinophil count (immune markers) could cause 

LBW. 

• Further research should be conducted to explore how the neuroendocrine, vascular, and 

immune stress pathways might work in concert to affect LBW. 

• Additional GWAS including Black individuals and/or pregnant women would be 

valuable for future research on this topic.  
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Appendix 1: R Code 
 
Specific Aim 1: 
 
#install MR 
install.packages("devtools") 
devtools::install_github("MRCIEU/TwoSampleMR") 
 
#for MR PRESSO 
if (!require("devtools")) { install.packages("devtools") } else {} 
devtools::install_github("rondolab/MR-PRESSO") 
 
library(devtools) 
library(MRPRESSO) 
library(MendelianRandomization) 
library(readr) 
 
#import outcome dataset  
BW <- 
read.delim("/Users/madelinetravers/Desktop/CUNY/Dissertation/data/Maternal_Effect_Europea
n_meta_NG2019 (1).txt") 
#reformat the RSID variable so it will match with the exposures aka trim white space 
cols_to_be_rectified <- names(BW)[vapply(BW, is.character, logical(1))] 
BW[,cols_to_be_rectified] <- lapply(BW[,cols_to_be_rectified], trimws) 
 
 
#import specific aim 1 exposure dataset from Crawford et al. 
cortisol <- 
read.delim("/Users/madelinetravers/Desktop/CUNY/Dissertation/data/gwama_1_fixed (1).out") 
 
##eliminate all SNPs expect for those used by Crawford et al. 
cortisol <- subset(cortisol, rs_number %in% c("rs12589136", "rs2749527", "rs11621961")) 
 
#extract the SNPs I plan to use from outcome dataset 
BW1 <- subset(BW, RSID %in% c("rs12589136", "rs2749527", "rs11621961")) 
 
library(tidyverse) 
BW1 <- rename(BW1, beta.outcome = beta) 
BW1 <-rename(BW1, se.outcome = se) 
BW1 <-rename(BW1, effect_allele.outcome = ea) 
BW1 <-rename(BW1, other_allele.outcome = nea) 
BW1 <-rename(BW1, eaf.outcome = eaf) 
cortisol<- rename(cortisol, beta.exposure = beta) 
cortisol<- rename(cortisol, se.exposure = se) 
cortisol <- rename (cortisol, effect_allele.exposure = reference_allele) 
cortisol <- rename (cortisol, other_allele.exposure = other_allele) 
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cortisol <- rename (cortisol, eaf.exposure = eaf) 
 
# merge exposure and outcome 
SA1 <- merge (cortisol, BW1, by.x ='rs_number', by.y = 'RSID', all.x = TRUE ) 
 
# visual check on allele alignment and pallindromic SNPs (A/T or C/G) that must match on EAF 
as well 
check<-data.frame(SA1$effect_allele.exposure,SA1$other_allele.exposure,SA1$eaf.exposure, 
                  SA1$effect_allele.outcome,SA1$other_allele.outcome,SA1$eaf.outcome) 
check 
#check was succesful - alligned the same way 
 
 
# Calculate total F-statistic for all SNPs assuming standardized co-efficients 
cortisol1$r2<-2*cortisol1$eaf.exposure * (1-cortisol1$eaf.exposure) * (cortisol1$beta.exposure) 
* (cortisol1$beta.exposure) 
#cortisol1$r2 
#sum(cortisol1$r2) 
#length(cortisol1$r2) 
Fstat<-sum(cortisol1$r2)*(mean(cortisol1$n_samples) - length(cortisol1$r2)-1)/((1-
sum(cortisol1$r2))*length(cortisol1$r2)) 
Fstat 
cortisol1$f1<-
(cortisol1$beta.exposure*cortisol1$beta.exposure)/(cortisol1$se.exposure*cortisol1$se.exposure
) 
cortisol1$f1 
 
#make correlation matrix for three SNPs 
snps<-c("rs11621961", "rs12589136", "rs2749527") 
library(TwoSampleMR) 
matrix<-ld_matrix(snps, with_alleles = TRUE, pop = "EUR") 
 
#need to rewrite this because the ld_matrix flipped one of the signs 
matrix1 <- matrix(c(1.000000, -0.233301, 0.437229, -0.233301, 1.000000, 0.491219, 0.437229, 
0.491219, 1.000000), nrow = 3, ncol = 3,byrow = TRUE, 
                ) 
matrix1 
 
#put data into format for MendelRandomization 
MRprep<-data.frame(bx=SA1$beta.exposure, 
                   bxse=SA1$se.exposure, 
                   by=SA1$beta.outcome, 
                   byse=SA1$se.outcome, 
                   exposure="cortisol", 
                   outcome="LBW", 
                   snps=SA1$rs_number) 
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MRInputObject <- mr_input(MRprep$bx, MRprep$bxse, MRprep$by, MRprep$byse, matrix1) 
mr_ivw(MRInputObject) 
mr_median(MRInputObject) 
mr_egger(MRInputObject) 
mr_conmix(MRInputObject) 
 
Speicifc Aim 2:  
 
#import expsoure dataset 
SBP <- 
read.delim("/Users/madelinetravers/Desktop/CUNY/Dissertation/data/UKbiobank_systolicBP_fe
male") 
 
#read in variants file from ben neale lab 
variants <- read.delim("/Users/madelinetravers/Desktop/CUNY/Dissertation/data/variants.tsv 
(1).bgz") 
 
ifl<-NA 
ifl<-BW  
ifl 
 
sl<-variants[variants$rsid %in% ifl$RSID,] #find the variant number for the relevant SNPs 
bennm <- SBP 
sll<-bennm[bennm$variant %in% sl$variant, ] #look up the variant in the UKBB data file 
benna<-merge(sl,sll,by="variant") #merge together variants info and exposure data info  
 
vkf<-benna[benna$pval<0.00000005,] #select pvalue<5x10-8 
nrow(vkf) 
write.csv(vkf,"/Users/madelinetravers/Desktop/CUNY/Dissertation/data/vkf.csv", row.names = 
FALSE) 
vk1<-vkf[!is.na(vkf$rsid),] #fixes clump issue when 0 snps are returned  
 
#vkf[1,] 
#put data into format for MRbase 
vta<-data.frame(SNP = vk1$rsid, 
                beta.exposure = vk1$beta, 
                se.exposure = vk1$se, 
                effect_allele.exposure = vk1$ref, 
                other_allele.exposure =vk1$alt, 
                pval.exposure = vk1$pval, 
                eaf.exposure = vk1$AF, 
                samplesize.exposure = vk1$n_complete_samples) 
 
library(TwoSampleMR) 
vtas<-clump_data(vta) 
nrow(vtas) 
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vtas$SNP 
 
# Calculate total F-statistic for all SNPs assuming standardized co-efficients 
vtas$r2<-2*vtas$eaf.exposure * (1-vtas$eaf.exposure) * (vtas$beta.exposure) * 
(vtas$beta.exposure) 
#vtas$r2 
#sum(vtas$r2) 
#length(vtas$r2) 
Fstat<-sum(vtas$r2)*(mean(vtas$samplesize.exposure) - length(vtas$r2)-1)/((1-
sum(vtas$r2))*length(vtas$r2)) 
Fstat 
 
# calculate F-statistic for each SNP 
vtas$f1<-(vtas$beta.exposure*vtas$beta.exposure)/(vtas$se.exposure*vtas$se.exposure) 
#vtas$f1 
vtas$f1 
 
#merge exposure with outcome 
comb5<-merge(vtas,ifl,by.x="SNP",by.y="RSID") 
comb5 
 
#throw out SNPs we think might be associated with confounders or pleiotropic 
comb5<-subset(comb5, SNP !="rs10193706"   
      & SNP != "rs11065898"  
      & SNP != "rs117539635"  
      & SNP != "rs1229984"  
      & SNP != "rs12416331" 
      & SNP != "rs1290790"  
      & SNP != "rs1476781"  
      & SNP != "rs16930710"  
      & SNP != "rs16992771"  
      & SNP != "rs17011002"  
      & SNP != "rs2161356"  
      & SNP != "rs2193950"  
      & SNP != "rs2240980"  
      & SNP != "rs2274224"  
      & SNP != "rs2303083"  
      & SNP != "rs35021474"  
      & SNP != "rs35085068"  
      & SNP != "rs42038"  
      & SNP != "rs4768882"  
      & SNP != "rs4932373"  
      & SNP != "rs4986172"  
      & SNP != "rs507506"  
      & SNP != "rs557462"  
      & SNP != "rs55857306"  
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      & SNP != "rs56013326"  
      & SNP != "rs58452693"  
      & SNP != "rs6449"  
      & SNP != "rs6456469"  
      & SNP != "rs68054037"  
      & SNP != "rs6919225" 
      & SNP != "rs6923947" 
      & SNP != "rs7107356" 
      & SNP != "rs72995085" 
      & SNP != "rs73026246" 
      & SNP != "rs73046792" 
      & SNP != "rs752268" 
      & SNP != "rs78862806" 
      & SNP != "rs79098424" 
      & SNP != "rs908671" 
      & SNP != "rs9636202") 
 
# visual check on allele alignment and pallindromic SNPs (A/T or C/G) that must match on EAF 
as well 
check<-data.frame(comb5$effect_allele.exposure,comb5$other_allele.exposure, 
comb5$ea,comb5$nea) 
check 
 
#change sign of one beta if effect alleles do not match 
for (i in 1:length(comb5$nea)) 
{ 
  comb5$swap[i]<-
as.numeric(identical(as.character(comb5$effect_allele.exposure[i]),as.character(comb5$nea[i]))) 
} 
comb5$swap <- -1.0  
data.frame(comb5$nea,comb5$effect_allele.exposure, comb5$swap)[1:4,] #check alignment 
comb5$beta.exposure<-comb5$beta.exposure*comb5$swap #reverse beta for exposure if effect 
alleles do not match 
comb5 
 
library(MendelianRandomization) 
 
MRprep<-data.frame(bx=comb5$beta.exposure, 
                   bxse=comb5$se.exposure, 
                   by=comb5$beta, 
                   byse=comb5$se, 
                   exposure="DBP", 
                   outcome="BW", 
                   snps=comb5$SNP) 
write.table(MRprep, "MRprepSBP.txt") 
detach(package:TwoSampleMR, unload = TRUE) 
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MRInputObject <- mr_input(MRprep$bx, MRprep$bxse, MRprep$by, MRprep$byse) 
mr_ivw(MRInputObject) 
mr_median(MRInputObject) 
mr_egger(MRInputObject) 
mr_conmix(MRInputObject) 
 
Specific aim 3: 
#import expsoure dataset 
WBC <- 
read.delim("/Users/madelinetravers/Desktop/CUNY/Dissertation/data/WBC_female_UKbiobank
") 
 
#read in variants file from ben neale lab 
variants <- read.delim("/Users/madelinetravers/Desktop/CUNY/Dissertation/data/variants.tsv 
(1).bgz") 
 
ifl<-NA 
ifl<-BW  
ifl 
 
sl<-variants[variants$rsid %in% ifl$RSID,] #find the variant number for the relevant SNPs 
bennm <- WBC 
sll<-bennm[bennm$variant %in% sl$variant, ] #look up the variant in the UKBB data file 
benna<-merge(sl,sll,by="variant") #merge together variants info and exposure data info  
 
vkf<-benna[benna$pval<0.00000005,] #select pvalue<5x10-8 
nrow(vkf) 
vk1<-vkf[!is.na(vkf$rsid),] #fixes clump issue when 0 snps are returned  
 
#vkf[1,] 
#put data into format for MRbase 
vta<-data.frame(SNP = vk1$rsid, 
                beta.exposure = vk1$beta, 
                se.exposure = vk1$se, 
                effect_allele.exposure = vk1$ref, 
                other_allele.exposure =vk1$alt, 
                pval.exposure = vk1$pval, 
                eaf.exposure = vk1$AF, 
                samplesize.exposure = vk1$n_complete_samples) 
 
library(TwoSampleMR) 
vtas<-clump_data(vta) 
nrow(vtas) 
vtas$SNP 
 
# Calculate total F-statistic for all SNPs assuming standardized co-efficients (=77.5) 
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vtas$r2<-2*vtas$eaf.exposure * (1-vtas$eaf.exposure) * (vtas$beta.exposure) * 
(vtas$beta.exposure) 
vtas$r2 ##average is .0004 
#sum(vtas$r2) 
#length(vtas$r2) 
Fstat<-sum(vtas$r2)*(mean(vtas$samplesize.exposure) - length(vtas$r2)-1)/((1-
sum(vtas$r2))*length(vtas$r2)) 
Fstat 
 
# calculate F-statistic for each SNP 
vtas$f1<-(vtas$beta.exposure*vtas$beta.exposure)/(vtas$se.exposure*vtas$se.exposure) 
#vtas$f1 
vtas$f1 
 
#merge exposure with outcome 
comb5<-merge(vtas,ifl,by.x="SNP",by.y="RSID") 
comb5 
 
#throw out SNPs we think might be associated with confounders or pleiotropic 
comb5<-subset(comb5, SNP !="rs10822168"   
              & SNP != "rs3184504"  
              & SNP != "rs2445754"  
              & SNP != "rs12941356"  
              & SNP != "rs11650692" 
              & SNP != "rs8108722"  
              & SNP != "rs1260326"  
              & SNP != "rs9876650"  
              & SNP != "rs337637"  
              & SNP != "rs723585"  
              & SNP != "rs7143806"  
              & SNP != "rs2476601"  
              & SNP != "rs2925979"  
              & SNP != "rs12755338"  
              & SNP != "rs2303083"  
              & SNP != "rs2807742"  
              & SNP != "rs1631174"  
              & SNP != "rs174548"  
              & SNP != "rs1151512"  
              & SNP != "rs1362965"  
              & SNP != "rs1975371"  
              & SNP != "rs28621809"  
              & SNP != "rs12453682"  
              & SNP != "rs851612"  
              & SNP != "rs1047891"  
              & SNP != "rs7578666"  
              & SNP != "rs139419"  
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              & SNP != "rs7684253" 
              & SNP != "rs2631367"  
              & SNP != "rs72796106" 
              & SNP != "rs566465" 
              & SNP != "rs12363256" 
              & SNP != "rs8044524" 
              & SNP != "rs11150589") 
               
# visual check on allele alignment and pallindromic SNPs (A/T or C/G) that must match on EAF 
as well 
check<-data.frame(comb5$effect_allele.exposure,comb5$other_allele.exposure, 
comb5$ea,comb5$nea) 
check 
 
#change sign of one beta if effect alleles do not match 
for (i in 1:length(comb5$nea)) 
{ 
  comb5$swap[i]<-
as.numeric(identical(as.character(comb5$effect_allele.exposure[i]),as.character(comb5$nea[i]))) 
} 
comb5$swap <- -1.0  
data.frame(comb5$nea,comb5$effect_allele.exposure, comb5$swap)[1:4,] #check alignment 
comb5$beta.exposure<-comb5$beta.exposure*comb5$swap #reverse beta for exposure if effect 
alleles do not match 
comb5 
 
library(MendelianRandomization) 
 
MRprep<-data.frame(bx=comb5$beta.exposure, 
                   bxse=comb5$se.exposure, 
                   by=comb5$beta, 
                   byse=comb5$se, 
                   exposure="DBP", 
                   outcome="BW", 
                   snps=comb5$SNP) 
write.table(MRprep, "MRprepWBC.txt") 
detach(package:TwoSampleMR, unload = TRUE) 
MRInputObject <- mr_input(MRprep$bx, MRprep$bxse, MRprep$by, MRprep$byse) 
mr_ivw(MRInputObject) 
mr_median(MRInputObject) 
mr_egger(MRInputObject) 
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