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Abstract  

 

The use of LiDAR techniques for recording and analyzing tree and forest structural 

variables shows strong promise for improving established hyperspectral-based tree species 

classifications, but previous multi-sensoral projects have often been limited by error resulting 

from seasonal or flight path differences. NASA Goddard’s LiDAR, Hyperspectral, and Thermal 

imager is now providing co-registered data on experimental forests in the United States, which 

are associated with established ground truths from existing forest plots. Free, user-friendly data 

mining applications like the Orange Data Mining Extension for Python have recently simplified 

the process of combining datasets, handling variable redundancy and noise, and reducing 

dimensionality in remotely sensed datasets. Data mining methods are used here to achieve a final 

tree species classification accuracy of 68% on Howland Experimental Forest, a mixed 

coniferous-deciduous forest with ten dominant tree species. This accuracy is higher than that 

produced using LiDAR or hyperspectral datasets separately, suggesting that combined spectral 

and structural data have a greater richness of information than either dataset alone. This work 

was performed on data aggregated above the individual tree level, thus the high classification 

accuracy achieved is encouraging given that many researchers predict shifting environmental 

conditions will necessitate future work at such a scale. Overall, the data mining methodology 

described here shows promise for integrating and analyzing remotely sensed datasets, and opens 

the possibility of addressing large-scale forestry questions like deforestation and carbon 

sequestration on a species-specific level. 
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1. Introduction 

 

1a. History and Use of Light Detection and Ranging 

 

Management and inventory of forest resources has been an essential concern of 

Geographic Information Systems since the advent of the discipline, beginning with the early 

Canadian Geographic Information System (CGIS) developed in the 1960s to monitor one of 

North America’s most prolific natural resources (Foresman 1998). Since that time, the 

photogrammetric and other remote sensing techniques used to monitor global forests have 

undergone a technological revolution. Myriad satellite and airborne systems are employed by 

institutions and governments worldwide to monitor natural resources on a large scale. One of the 

most recent additions to the field of remote sensing has been the increasing use of single-

wavelength laser light pulses to calculate very precise point elevations of features on and above 

Earth’s surface. Initially conceived as a method for creating highly accurate, high-resolution 

topographic maps, Light Detection and Ranging (LiDAR) technologies are increasingly being 

employed to collect data on structural features of tree canopies and branching patterns, forest 

structure and succession, and even estimates of tree physiological metrics such as leaf area index 

(LAI), the ecological metric of total broadleaf surface area exposed to sunlight in a given area of 

forest (Korhonen et al. 2011). The use of LiDAR sensors, usually on airborne platforms such as 

small airplanes, has proved to be a boon to commercial forest resource monitoring and valuation. 

The ability to accurately assess the height and, in many cases, diameter at breast height (DBH) of 

each tree in a forest with a single flyover has greatly simplified the valuation of forests grown for 

timber (Schardt et al. 2002).  

However, whether a forest is assessed for conservation or commercial purposes, one key 

element of forest systems has remained difficult to quantify; individual LiDAR data points have 
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little to say about the species identity of a given tree, and few studies have so far used LiDAR 

sensors with sufficient point density to overcome this barrier. Species is a crucial attribute of 

trees, and one that is increasing in global relevance as climates shift and extreme weather events 

become more common. Changing weather patterns will reshape the ranges of species worldwide, 

and the ability to monitor the changes in community dynamics of trees and other plants, which 

play a fundamental role in overall ecosystem functioning and identity, will be key in 

understanding trends in terrestrial biomes and in creating effective strategies for conservation, 

resilience, and human livelihoods (Wulder et al. 2008).  

Airborne laser scanning is an active remote sensing method used to collect LiDAR data. 

The sensor emits pulses of light in the near-infrared range at a high frequency, ranging from 50 – 

300 kHz (or thousand pulses per second) depending on the instrument. Pulses are emitted from a 

laser mounted on an airborne platform, and may be directed along the flight path of the airplane 

or satellite in profiling LiDAR systems, or may move to scan a swath along a fixed angle beneath 

the platform in scanning LiDAR systems (Lim et al. 2003). Each laser pulse is emitted 

downward, and will reflect off any opaque surface in its direct path; in open terrain, the closest 

target may be the ground. In forested areas, tree tops, branches, or foliage may present a nearer 

target, though some laser pulses will still reach the forest understory or ground through gaps in 

the tree canopy. Depending on the number of targets off of which a single laser pulse is reflected 

on its way to the ground, a pulse of light may be reflected back to its source as a single point or 

as multiple returns of varying intensity. Using a rotating mirror, the airborne sensor collects 

returning laser pulses and records the round-trip travel time and intensity of each return. Using 

the known speed of light, round-trip travel time of each return can be converted into highly 

precise data on the elevation of the surface off which the laser pulse was reflected. Airborne laser 
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scanners are also equipped with an onboard global positioning system (GPS) unit in order to 

account for the distance traveled by the airplane or satellite since the emission of the original 

laser pulse and as a means of tracking the flight path of the recording session (Campbell and 

Wynne, 2011).  

The way in which this data on laser returns is recorded and stored depends on the model 

of the system and the intended method of future data analysis. Data may be stored onboard the 

sensor as discrete values potentially representing multiple returns from the same original pulse. 

Depending on the system, only the first and last return may be stored, or some or all of the 

intermediate returns may also be saved. Other systems record the entire waveform of a laser 

pulse, local maxima of which would correspond to the discrete returns recorded by the other 

system type. One benefit of these full-waveform systems is that the full duration of the reflection 

is recorded, and can be used to calculate the overall intensity of the signal. Recent studies have 

asserted that there is useful information to be gleaned from variation in waveform intensity and 

width beyond that provided by discrete amplitude values, and that this information could be 

useful in discriminating among tree species (Heinzel and Koch 2011). However, most available 

ALS systems are still constrained by a tradeoff between high pulse density, discrete-return 

systems that can discern detailed structural differences among individual trees and the ability to 

collect and record full-waveform data.  

 

1b. Deriving Structural Information from LiDAR Point Clouds 

 

Before processing, discrete-return LiDAR is stored as a point cloud representing 

elevations of individual returns throughout the flight path. Various methods including single or 

variable elevation thresholds, segmentation algorithms, and other computational techniques can 

be used to separate out vegetation and canopy points from ground returns. In forest sites, 
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understory, shrub layers, and accumulated snowfall may also be separated out into another 

category. As early as 1985, LiDAR sensors were being used to trace the height profile of tree 

canopies and differentiate between ground and tree returns (Schreier et al. 1985). Subsequent 

work focused mainly on commercial applications including the recording of accurate tree heights 

for use in calculating timber value, a problem that continues to challenge researchers using 

LiDAR for commercial forestry purposes. Although LiDAR data can provide elevation data with 

a very high precision, the chance that even high-density laser pulses will hit each tree exactly at 

its highest point during a whole-forest flyover is slim (Brandtberg 2007). Furthermore, LiDAR 

data collected during leaf-on conditions typically record leaf canopy height more accurately than 

stem height. Several models have been proposed for minimizing the error between these two 

metrics (Magnussen et al. 1999).  

Counter intuitively, though small-footprint scanning laser systems had been in use for 

gathering data on the structure of individual trees, overall canopy structure is more easily 

determined using large-footprint laser scanning. The advent of the National Aeronautics and 

Space Administration (NASA)’s Scanning LiDAR Imager of Canopies by Echo Recovery 

(SLICER) sensor allowed for three-dimensional canopy modeling by gathering laser echoes from 

within an area larger than a tree crown, thus allowing for the identification of gaps in the tree 

canopy. This method proved more useful than attempting classifications on spectral data from 

NASA’s Landsat and Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) satellite 

sensors in distinguishing canopy structural characteristics (Lefsky et al. 2001). Though SLICER 

data proved useful in examining vegetative strata and canopy properties, it was discovered that 

internal tree geometry affected models’ ability to predict gaps, implying that important data on 

branching patterns also exists within LiDAR point clouds (Ni-Meister et al. 2001). 
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The overall branching pattern, or bifurcation ratio, of growing trees has been shown to be 

generally characteristic of a plant species (Whitney 1976, Borchert and Slade 1981). Though 

plants show phenotypic plasticity in branch and leaf arrangement in response to limited light or 

other competitive stress (Canham 1988), trees of the same species growing in the same area 

(such as a forest stand) could be assumed to have a similar and identifiable branch arrangement. 

The development of species-specific branching patterns in heterogeneous forest stands has even 

been proposed as an adaptive mechanism for successful species co-existence (Ishii et al. 2003). It 

should thus be possible to take advantage of high-density LiDAR data to examine branching 

patterns and other architectural data on a single-tree or tree stand basis, and to relate this to the 

species of the individual or the predominant species in a stand. This technique has been used to 

differentiate between species in conifer forests with success (e.g. Donoghue et al. 2007), but 

methods for the optimal use of LiDAR on deciduous and mixed forests are still developing. 

Though no system yet exists with sufficient point density to map the exact branching details of 

each tree in a forest, it is possible to analyze the tree height information in a LiDAR point cloud 

and to calculate a variety of summary metrics that serve as a reasonable proxy for the variability 

of branch heights and angles within a given area. Some early LiDAR studies attempted this kind 

of analysis by calculating standard deviation, skewness (asymmetry of distribution), and kurtosis 

(peakedness of distribution) of height values, as well as segmenting the point cloud into three or 

more layers (e.g. Holmgren and Persson 2004). However, the utility of such metrics in creating 

accurate species-level classifications was limited, possibly because of the lower point-density 

afforded by sensors at the time. Researchers also noted the potential for error from differences in 

reflectance due to different bark colors of trees sampled in leaf-off conditions (Brandtberg et al. 

2003) and the limitations of LiDAR’s utility in accurately detecting smaller trees in dense 
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understory (Maltamo et al. 2004). Though current allometric models of the relationship between 

tree height and diameter do not predict an exact linear relationship (Pretzsch 2013), it is still 

clear that larger trees have exponentially more biomass than shorter trees, due to the geometric 

relationship between height and volume of a three-dimensional structure like the central stem of 

a tree. Thus, the tendency of LiDAR data to omit information on small trees may be negligible 

for commercial assessments of overall timber volume, but it naturally presents a problem for 

accurate species classifications using LiDAR data alone. 

 

1c. Discrete-Return LiDAR and Summary Metrics 

 

As the use of LiDAR data for analyzing vegetative structure became more common, 

processing methods for summarizing LiDAR height values eventually proliferated into a variety 

of metrics, many of them specific to one article or team. In response, a set of recommendations 

and standards for LiDAR data collection and processing, including definitions of common 

metrics, was published (Evans et al. 2009). These are the standards used and referenced in the 

following work (see Methods section for further details and definitions). A number of studies 

performed since this time have generally taken advantage of the structural information 

summarized in these standard metrics to attempt classifications of tree species distributions in 

forest sites. Though the final accuracy of some of these classifications has been limited by the 

point density of the LiDAR data, many groups have succeeded in distinguishing between at least 

major taxonomic groups (i.e. conifers vs. deciduous trees) and even among individual tree 

species. Recent studies carried out with airborne laser scanners capable of recording six or more 

returns per square meter have been able to achieve considerable success using only summary 

metrics on point elevations. Korpela et al. (2009) were able to classify the distributions of three 

Scandinavian tree species with accuracies up to 93%. Other groups have reported similar 
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accuracies in separating out spruce trees from birches (Ørka et al. 2009) and in distinguishing 

among coniferous, deciduous, and mixed-forest stands (van Aardt et al. 2008), with an emphasis 

on the power of point density deciles in explaining between-group variability. Such metrics give 

information on the vertical distribution of branches and foliage in a single tree crown or within a 

tree stand, depending on the resolution of the final processed raster. Even rasters with a 

relatively large pixel size have proved useful in sites with single-species or known mixed-

species plots with historical management regimes. Analysis of vegetation strata, with a focus on 

density metrics, was successfully used to classify even multi-layered canopies among managed 

tree plots (Morsdorf et al. 2010). 

Though classifications of relatively homogenous forests have achieved success, some 

limitations in the utility of summary LiDAR metrics have been found when attempting to extend 

similar classifications to a larger number of tree species (a phenomenon documented and 

investigated by Alonzo et al. 2014). Classifications performed on Scandinavian forests with 

only a few tree species have achieved greater total accuracy than those attempted on tropical 

forests with both higher diversity and a more heterogeneous canopy and sub-canopy structure 

(Gillespie et al. 2004). This challenge has also been confronted in non-tropical forests that are in 

an intermediate stage of forest succession; small trees in the forest sub-canopy may be primarily 

composed of a less dominant species that is being suppressed or outcompeted. This poses a 

double problem in that such trees may be both less common and more difficult for segmentation 

algorithms to find in the point cloud, meaning that errors in individual tree detection and uneven 

distribution in the absolute number of trees in each species category may be simultaneously 

detrimental to classification accuracy (Ørka et al. 2009). Furthermore, debate continues over the 

optimal resolution of LiDAR data, at least in comparison to individual crown size. While some 

javascript:searchAuthor('%C3%98rka,%20H.%20O.')
javascript:searchAuthor('%C3%98rka,%20H.%20O.')
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researchers warn against trying to characterize species distribution data on anything other than 

the individual tree level (Yu et al. 2010), others have asserted that there is unavoidable within-

species variability due to an individual-tree effect that explains up 65% of intraspecies 

variability (Hovi et al. 2016). The latter researchers therefore highlight the necessity of applying 

classification methods to aggregated tree groups for large-scale forest inventory or 

classification.  

 

1d. Full-Waveform LiDAR 

 

In an attempt to address the potential shortcomings of discrete-return LiDAR, some 

studies have incorporated the additional data offered by full-waveform LiDAR readings. 

Though acquiring such datasets may necessitate the purchase of another sensor that can record 

such readings, full-waveform measurements offer up the possibility of calculating total intensity 

values of each return. Such measurements are favored by some researchers because full-

waveform readings measure total backscatter, thus providing information on all canopy and sub-

canopy levels, as well as potentially on smaller tree components like cones or flowers, and even 

on tree-dwelling epiphytes or bromeliads that contribute to forest biodiversity (Korpela et al. 

2010). Though this type of dataset may represent an untapped well of information, others have 

claimed that recording every echo will bury information useful to species classification inside 

unnecessary noise. Similarly, some worry that full-waveform recordings reduce the 

comparability of LiDAR datasets by introducing a seasonal effect related to budding and 

flowering, even in leaf-off data (Kim et al. 2011). 

Despite these potential confounding factors, return intensity information derived from 

full-waveform measurements has been used in combination with a targeted set of summary 
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metrics from discrete-return data to produce accurate classification results (Heinzel and Koch 

2011). Other researchers have incorporated intensity measurement as estimates of biomass and 

single-tree DBH values, thereby linking carbon budget estimates with species information (Yao 

et al. 2012). Full-waveform data have also been used to perform more robust analysis of internal 

structural features of tree canopies than point elevation alone can facilitate, for example by 

calculating co-occurrence matrices representing density of LiDAR points as 3-D voxels within 

each tree (Li et al. 2013). 

 

1e. Optical and Spectral Remote Sensing  

  

Data on the differences in the intensity and wavelengths of light reflected off various 

structures on or near Earth’s surface have historically constituted the bulk of remotely sensed 

information. Sensors attached to airplanes or satellites are able to passively record the 

reflectance of sunlight off of surfaces below their flight path and to separate this reflectance data 

into distinct ranges of wavelengths or bands. This allows researchers to manipulate the visual 

display of such data and to examine differential reflectance patterns recorded similar or adjacent 

material in more detail or in different ways than photographs can provide. Optical remote 

sensors, for example, may use panchromatic sensors record data on brightness of all light 

reflected in the visible spectrum to create black and white images that may represent more 

spatial detail than an equivalent color image could reproduce. Multispectral sensors take 

advantage of digital image displays, which represent images as combinations of three primary 

colors. By recording in more than three channels, multispectral datasets contain more bands than 

available colors on, for example, a computer monitor. These data can therefore be visualized in 

a non-standard way with the goal of emphasizing characteristics not normally visible, for 
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example by choosing band combinations that provide information on relative water 

concentration across an area of vegetation. While multispectral datasets typically contain fewer 

than ten bands, hyperspectral datasets are recorded in dozens or hundreds of distinct channels, 

each producing bands that may be separated by as little as one or two nanometers. Both 

multispectral and hyperspectral datasets typically contain reflectance data from visible and 

infrared wavelengths, thereby further improving the capability of these datasets to represent 

details of non-visible characteristics of the terrain (Campbell and Wynne 2011). 

Multispectral and hyperspectral datasets have widely been used for characterizing and 

classifying individual tree species. The basis for these classifications arises from the small 

differences in light reflectance off of leaves with distinctive pigment concentrations 

characteristic of one species (e.g. Blackburn 2007). Particularly detailed distinctions can be 

made with hyperspectral datasets, but multispectral data has also been used with success, 

particularly when it is combined with structural information from LiDAR measurements of the 

same forest (Holmgren et al. 2008). Fused LiDAR and remotely sensed optical datasets (e.g. 

from WorldView-2) have also been used to link carbon budget parameters and species ranges, 

thus opening the possibility for species-level carbon budgeting, with obvious important 

implications for valuing and maintaining forest resources (Karna et al. 2015). Combined LiDAR 

and optical datasets have also been used to create predictive models of North American tree 

species distribution and relative abundance (van Ewijk et al. 2014). Hyperspectral data have 

also been used on their own for tree species classifications. Because of the high dimensionality 

of hyperspectral datasets and the inherent likelihood of collinearity among readings produced by 

similar wavelengths, most articles present an analysis of a reduced set of hyperspectral variables 

produced by dimensionality reduction methods like principal components analysis or 
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independent components analysis. Even if all bands are kept for analysis, the use of spectral 

libraries or the identification of a few pure pixels existing in the dataset are needed as ground 

truths (e.g.  Plourde et al. 2007). 

 

1f. Fused Hyperspectral and LiDAR Datasets 

 

 The level of detail contained in spectral datasets means that the explanatory power they 

offer may be quite high. Because of the wealth of information contained in hyperspectral 

datasets in particular, some analyses have found that the addition of other remotely sensed data 

like LiDAR measurements provides little improvement to classification accuracies. In mixed 

forest types, researchers have found that, while LiDAR metrics other than absolute height are 

able to explain a significant portion of variability on their own, they provide little benefit when 

added into a hyperspectral-based classification (Dalponte et al. 2012). Similar results have been 

found in studies using vegetative indices derived from hyperspectral datasets, even when 

LiDAR data are of a very high point density (12 points/m2) that should contain robust structural 

information (Ghosh et al. 2014). However, when testing their results by resampling their data, 

this same study found that the optimal set of spectral and LiDAR metrics for distinguishing 

among tree species was different for each scale they tested, and the authors end by leaving open 

the question of how best to account for this interaction between scale and “best” classifiers. 

Similarly, some studies that claim that LiDAR data have limited utility in forest classifications 

that employ unsupervised classification methods to identify classes of forest types, rather than 

distributions of individual species. However, the ambiguous definition of a “forest type” leaves 

open the possibility that a classifier may not take advantage of an optimal set of metrics for the 

tree species that were actually present in the forest site in question (Hill and Thomson 2005). 
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On the other hand, some recent studies have found that the incorporation of LiDAR data 

is able to provide a major improvement. The calculation from LiDAR point clouds of 

volumetric canopy profiles designed to capture species- and growth stage-specific structural 

information has been shown to produce high classification accuracies. Additionally, the 

combination of this LiDAR data with hyperspectral datasets has yielded an improved species-

level tree classification in comparison to classifications produced by either dataset alone (Jones 

et al. 2010). Datasets using discrete-return LiDAR data collected at a relatively low point 

density have leveraged the existing data in order to examine the relationship between canopy 

height and more basic structural characteristics like canopy cover, rather than species-level 

differences. Such studies have found that the use of LiDAR data to remove the influence of 

canopy gaps on hyperspectral-based classification improves the ability to find a relationship 

between reflectance and leaf pigment concentrations (Blackburn 2002), implying that fused 

datasets have the potential to greatly improve classifications of most of the world’s forest area. 

Combined LiDAR and hyperspectral datasets have also been used for ecological and 

vegetation-related surveys other than forest tree classification. For example, predictive modeling 

studies on invasive plant species distributions and ranges have relied on LiDAR mostly for 

analyzing ground features for habitat suitability. Those that have incorporated LiDAR to look at 

invasive shrubs and other low vegetation, however, have tapped into LiDAR’s potential dual use 

in modeling both species distributions and underlying habitat features (Andrew and Ustin 2009). 

Combined LiDAR and hyperspectral datasets have also been used in evaluating the risk of forest 

fires based on vegetative properties, with a large improvement in accuracy achieved with either 

dataset alone (Koetz et al. 2008). 
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1g. Analytical Challenges and Data Mining Methods 

 

The development of remote sensing technologies has given researchers the opportunity 

to work with unprecedented volumes of information on large areas of forest or other terrain. 

However, the high dimensionality of large datasets, and of hyperspectral datasets in particular, 

introduces new challenges into the process of analyzing and utilizing these data. The Hughes 

phenomenon describes the problem of decreasing predictive power of additional variables that 

contain information on a fixed number of known classes. In the case of tree species prediction, 

hyperspectral data on a forest for which the researcher has information on only a small number 

of ground truth areas might be more redundant than insightful (Dalponte et al. 2009). For this 

reason, machine learning and data mining techniques for dimensionality reduction and pattern 

finding are often employed in species classification studies, as well as for predictive models of 

species distributions or habitat suitability. Data mining methods are designed to take advantage 

of cases where a few known cases or ground truths are being used to characterize a larger area 

or dataset. For this reason, they are recommended above, for example, linear regression models 

when attempting to find explanatory patterns in data without preexisting rules or assumptions 

(Franklin 2009).  

 Decision trees split a dataset at nodes that represent whichever value of a variable is 

determined to best partition cases into groups with high internal similarity. The dataset is first 

divided in two at some optimal separation point, and each group is further subdivided into ever-

smaller categories (Olden et al. 2008). Such trees have been widely used in data mining studies, 

but concerns that standard decision trees may overfit data and be less generalizable to the wider 

problem of interest has lead to the use of other data mining techniques as well. The random 

forest method avoids overfitting by constructing multiple decision trees on random subsets of 
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one dataset (Cutler et al. 2007, Prasad et al. 2006). This method has been favored when creating 

species-specific classifications, due to the option of incorporating categorical data directly into 

the classification (Yu et al. 2011).  

In addition to decision trees, support vector machines and k-nearest neighbors techniques 

also rely on the identification or assembly of similar groups of data points. Support vector 

machines iterate through a dataset to assign cases to categories determined by training data, 

eventually creating an optimal divider among categories, or hyperplane, with one fewer degree 

of dimensionality as the original dataset (Vapnik 1982). Many previous hyperspectral-based 

studies have preferred support vector machines because of their ability to handle problems in 

which there is no single clear solution (ill-posed problems) and to operate well on datasets with a 

limited number of ground truths (Mountrakis et al. 2011). The k-nearest neighbors method 

identifies cases that are either spatially or informationally proximal to training cases, and weights 

the known identity of the neighbor more heavily when determining a classification for unknown 

cases (Dudani 1976).  

Other data mining methods rely on the development of rules for classification based on 

training data. The CN2 Rules algorithm is designed to induce rules from training data. Its main 

distinguishing feature is its ability to create rules that it can apply to unknown data that fit one 

category well, but imperfectly, rather than excluding all imperfect matches (Clark and Nibblet 

1989). Neural networks consist of a system of individual learners designed to communicate like 

neurons in living organisms. Each “neuron” in a neural network learner tests a case against rules 

learned from training data and passes information to the next. These rules can shift and change as 

the network handles more data, similar to learning in the brain (Haykin 2004). The naïve Bayes 

learner is an algorithm that employs Bayesian probabilistic rules for making predictions about 
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the value of one variable based on known information on other, related variables (Zhang 2004). 

The naïve Bayes learner assumes independence between these variables, and thus may not be 

well suited to a dataset such as the one used here, where values in one hyperspectral band are 

likely to be very similar to those in a band with a similar wavelength range (Rennie et al. 2003).   

Ensemble data mining methods are used to combine several of the above described 

methods. Random forests, for example, are in fact an ensemble method applied to classification 

trees; a similar principle can be used to implement several different classifiers at once with the 

goal of minimizing misclassifications by comparing the overlapping predictions of each 

algorithm (Polikar 2006). The use of data mining methods to refine a set of variables for use in 

further classification and prediction work has been documented in several recent studies using 

remote sensing data for tree species classification (Holmgren and Persson 2004, Næsset 2007, 

Morsdorf et al. 2010, Kim et al. 2010, Vauhkonen et al. 2010) and shows strong promise for use 

in future work. 

 

1h. Addressing a Gap  

 

 Though significant work has been done using LiDAR and spectral data collected on the 

same area, few studies have used co-registered hyperspectral and LiDAR data for plant species 

classifications. One exception is a study reporting classification accuracies up to 89% when 

using co-registered data to map the distribution of a single sagebrush species (Mundt et al. 

2006). The use of datasets collected concurrently on the same flyover presents obvious benefits 

for avoiding error due to seasonality, tree growth between data collection campaigns separated 

by years, resampling to normalize pixel size, and differences in flight paths. For this reason, 

NASA Goddard created the LiDAR, Hyperspectral, and Thermal Imager (G-LiHT), an airborne 
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sensor that came online in 2012. In the article detailing the specifications and goals of this 

imager (Cook et al. 2013), the authors stated:  

 

“The complimentary nature of LiDAR, optical and thermal data provide an 

analytical framework for the development of new algorithms to map plant species 

composition, plant functional types, biodiversity, biomass and carbon stocks and 

plant growth.”  

 

This mission statement underscores the suitability of data collected by G-LiHT for use in 

tree species classification. The G-LiHT data currently available includes flyovers of several 

experimental forests in the Northeastern United States. Some recent articles (e.g. Morsdorf et al. 

2010) have recommended the use of data from experimental forests as ground truths or training 

classes because of the possibility for directly connecting classification results to preexisting 

ecological research. A field campaign undertaken in 2009 surveyed trees in the same 

experimental forests as the flyovers, generating species-level information that can be used in 

exactly this way. Thus, it is clear that there are existing datasets that are ideally suited to respond 

to a gap in the literature. In doing so, this study seeks to investigate efficient and novel methods 

for monitoring plant species ranges, for inventorying natural resources, and for tracking the 

effects of shifting climate patterns on forest health and composition. This work will help to 

assess how refined LiDAR data can help to improve hyperspectral-based classifications, and will 

compare several data mining techniques in order to investigate the suitability of the available 

methods to generating species-level tree classifications using co-registered remotely sensed data 

of different types. The overall purpose of this study was to explore the use data mining 

techniques to refine a list of available LiDAR metrics into a smaller subset of those with the 

most explanatory power, and to combine this subset with hyperspectral-based classifications in 

order to optimize the contribution of structural information to a fused dataset classification. 
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2. Methods 

 

2a. G-LiHT Specifications 

 

 The G-LiHT imager is composed of several off-the-shelf remote sensing products that 

were selected for their compact size, high resolution, and compatibility. These components 

include the following: an RT4041 (Oxford Technical Solutions, Oxfordshire, UK) GPS/ Inertial 

Navigation System (INS), a VQ-480 (Riegl USA, Orlando, FL) scanning LiDAR sensor, a 

LD321-A40 (Riegl USA, Orlando, FL) profiling LiDAR sensor, a HyperspecTM VNIR 

Concentric Imaging Spectrometer (Headwall Photonics, Fitchburg, MA), a ruggedized 

RA1000m/D digital fine gain imaging camera (Adimec, Stoneham, MA), an Ocean Optics USB 

4000-VIS-NIR spectrometer (Dunedin, Fl, USA) for measuring downwelling radiance, a Gobi-

384 thermal imaging camera (Xenics, Leuven, Belgium), and an onboard PC for data storage 

during flyovers (Cook et al. 2013). For further details on instrument calibration and attachment 

to the Cessna 206, NASA UC-12B (King Air), or Piper Cherokee aircraft used for flyovers, see 

the G-LiHT White Paper (Cook and Corp 2012). 

 

2b. Remotely Sensed Data 

 Data from flyovers conducted in June 2012 can be found at the G-LiHT data archive at 

ftp://fusionftp.gsfc.nasa.gov/G-LiHT. The scanning LiDAR sensor produces point clouds that 

have been processed into standard metrics (as described in Evans et al. 2009). Definitions for 

each of these metrics can be found in Table 1. Data from the profiling LiDAR sensor were used 

to create a canopy height model available for each site. All LiDAR data are available on the G-

LiHT data archive in geotiff format, with data aggregated to 13m2 pixels.  
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Table 1: List of LiDAR Metrics and Abbreviations 

 

Name and Description of Metric Units Abbreviation 

Mean Absolute Deviation =                                                   

mean(|height – mean height|) of tree returns 

meters AAD 

Canopy Relief Ratio  =                                                                       

(mean-min:max-min) of tree returns 

unitless CRR 

Density deciles (10% increments) of tree returns fraction D0 – D9 

Fraction of first returns intercepted by tree fraction FCover 

Fraction of all returns classified as tree fraction Fract_All 

Interquartile range (P75 - P25) of tree returns meters IQR 

Kurtosis of tree return heights meters Kurt 

Median Absolute Deviation = 

median(|height - median height|) of tree returns 

meters MAD 

Mean of tree return heights meters Mean 

Height percentiles (10% increments) of tree returns meters P10 – P100 

Rugosity                                                                                     

(Standard deviation of gridded canopy height model values) 

meters Rug 

Quadratic mean of tree return heights meters QMean 

Skewness of tree return heights meters Skew 

Standard deviation of tree return heights meters StDev 

Vertical Distribution Ratio  =                                           

[P100 - P50] / P100 

unitless VDR 

 

Hyperspectral data for the Howland Experimental Forest site can also be found on the G-

LiHT data archive. Available data include at-sensor reflectance data covering a spectrum 

between 418 – 918 nm, with an approximately 4.5-nm interval between bands for a total of 114 

individual bands. A total of 44 different vegetative indices calculated from these reflectance 

measurements are also available. Also recorded are data on radiance along each swath, as well as 

ancillary data on flight path, atmospheric conditions, potential errors in data collection, and other 

data acquisition conditions. Reflectance and vegetative index data are available for each swath as 

well as in a mosaicked version, which is the version used in the following analysis. Table 2 

presents a list of vegetative indices used in further analysis.  
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Many vegetative indices are designed to emphasize the concentration or exact reflectance 

of plant leaf pigments (Agapiou et al. 2012, Verrelst et al. 2008). The Anthocyanin Reflectance 

Indices 1 and 2 (Gitelson et al. 2001) and Carotenoid Reflectance Index 2 (Gitelson et al. 2002) 

look particularly at carotenoid and anthocyanin pigments related to plant stress and senescence. 

The Photochemical Reflectance Index measures xanthophyll pigment content in order to estimate 

photosynthetic activity and efficiency (Gamon et al. 1992). Other indices compare the 

concentrations of leaf pigments: the Red Green Ratio Index calculates the ratio of anthocyanin 

concentration to chlorophyll concentration to determine the source of leaf redness, as a proxy for 

plant type and life stage (Gamon and Surfus 1999). Similarly, the Structure Insensitive Pigment 

Index compares the ratio of carotenoid concentration to chlorophyll a concentration as another 

proxy for plant life stage (Peñuelas et al. 1995).  

Chlorophyll is the key photosynthetic pigment, and is unsurprisingly the subject of 

numerous vegetative indices. Leaf chlorophyll content is estimated by several indices, mostly by 

performing calculations on bands in the red or infrared ranges of the electromagnetic spectrum 

(referred to as the red edge), since these are the wavelengths most dramatically absorbed by 

green foliage, thus showing the strongest spectral signature in vegetated areas (Filella and 

Peñuelas 1994). The Red Edge Inflection Point quantifies the exact wavelength at which this 

effect appears in a specific area or species of vegetation (Broge and Leblanc 2000). Total 

chlorophyll content is estimated in the Gitelson and Merzlyak 1 and 2 indices by calculating a 

ratio of reflectance values for wavelengths in the near infrared and red ranges (Gitelson and 

Merzlyak 1997), and in the Greenness Index by comparing two wavelengths on the red edge of 

the visible spectrum (Zarco-Tejada et al. 2005). The derivative of values recorded in a single red 

band is used to calculate chlorophyll content in the Datt 2 index (Datt 1999). A ratio involving 
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three red bands is used to characterize chlorophyll content in the MERIS Terrestrial Chlorophyll 

Index (Dash and Curran 2004). The Vogelmann index uses as similar calculation on red 

wavelength values to examine both chlorophyll content and water content (Vogelmann 1993). 

Vegetation cover and density, which are often used in estimates of total photosynthetic activity 

in an area, can be estimated via the Renormalized Difference Vegetation Index, which compares 

near infrared wavelength reflectance values to those in the visible spectrum (Roujean and Breon 

1995). 

Table 2: Select List of Hyperspectral Vegetative Indices and Abbreviations 

List of full names and abbreviations of vegetative indices used in later analysis. For further 

justification, see methods section and Table 5.  

 

Name of Vegetative Index Abbreviation 

Anthocyanin Reflectance Index 1 ARI1 

Anthocyanin Reflectance Index 2 ARI2 

Carotenoid Reflectance Index 2 CRI2 

Datt 2 DATT2 

Gitelson and Merzlyak 1 GM1 

Gitelson and Merzlyak 2 GM2 

Greenness Index GI 

MERIS Terrestrial Chlorophyll Index MTCI 

Photochemical Reflectance Index PRI 

Renormalized Difference Vegetation Index RDVI 

Red Edge Inflection Point REIP 

Red Green Ratio Index RGRI 

Structure Insensitive Pigment Index SIPI 

Vogelmann VOG 

 

During analysis, two datasets were removed because of incomplete data. The rugosity file 

for Howland Experimental Forest contained no data, so the matching rugosity file from the 

Penobscot site was removed in the interest of an equal comparison between sites. There were 

also two missing values in the MRESR dataset. The neural network data mining method is 

incompatible with missing data values, so this index was also removed. 
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2c. Field Campaign 

Data on tree species and locations were collected in NASA-funded field campaigns to 

Penobscot Experimental Forest and Howland Experimental Forest in Maine, USA in 2009. These 

experimental forests are predominantly evergreen forests. Howland Experimental Forest is a 

558-acre forest with a centroid at 45°12'00'' N, 68°44'00'' W. Penobscot Experimental Forest is 

an approximately 3,900-acre forest with a centroid at 44°85'20'' N, 68.62'00'' W. Data were 

collected in forest plots of 50 m × 200 m, each of which is divided into 16 subplots of 

approximately 25 m x 25 m, arranged as shown in Figure 1. During the summer 2009 field 

campaign, data on the species, diameter at breast height, and estimates of aboveground biomass 

(AGB) calculated using the formula described by Jenkins et al. 2003 were recorded for each tree 

in these plots (Montesano et al. 2013). However, exact coordinates were not recorded for 

individual trees, meaning that they can be located with only the precision of the subplot in which 

they reside.  

Figure 1: Layout of Subplots Within Whole Plots 

L1 L2 L3 L4 L5 L6 L7 L8 

R1 R2 R3 R4 R5 R6 R7 R8 

 

 

 

 

2d. Data Preparation 

 

 In order to account for this spatial limitation, the dominant species in each subplot was 

determined using Excel pivot tables. The species with the greatest number of individual trees 

was chosen as the dominant species. In cases a tie between two or more species, the tie was 

resolved by picking the dominant species for the whole plot to which the subplot belonged. A list 

of tree species abbreviations is given in Table 3.  
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Table 3: Tree Species Abbreviations 

 

  Howland Experimental 

Forest 

Penobscot Experimental 

Forest 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dominant Tree Species: 

Abbreviation, Common Name, 

and Latin Name 

ABBA = balsam fir  

(Abies balsamea) 

ABBA = balsam fir  

(Abies balsamea) 

ACRU = red maple  

(Acer rubrum) 

ACRU = red maple  

(Acer rubrum) 

FAGR = American beech  

(Fagus grandifolia) 

ACSA = silver maple  

(Acer saccharinum) 

FRAM = white ash  

(Fraxinus Americana) 

ACSP = mountain maple  

(Acer spicatum) 

PIAB = Norway spruce  

(Picea abies) 

BEAL = yellow birch  

(Betula alleghaniensis) 

PIMA = black spruce  

(Picea mariana) 

BEPA = paper birch  

(Betula papyrifera) 

PIRU = red spruce  

(Picea rubens) 

BEPO = gray birch  

(Betula populifolia) 

PIST = eastern white pine  

(Pinus strobus) 

FAGR = American beech  

(Fagus grandifolia) 

THOC = northern white-

cedar (Thuja occidentalis) 

PIRE = red pine  

(Pinus resinosa) 

TSCA = eastern hemlock  

(Tsuga Canadensis) 

PIRU = red spruce  

(Picea rubens) 

PIST = eastern white pine  

(Pinus strobus) 

POGR = bigtooth aspen  

(Populus grandidentata) 

POTR = quaking aspen  

(Populus tremuloides) 

THOC = northern white-cedar 

(Thuja occidentalis) 

TSCA = eastern hemlock  

(Tsuga Canadensis) 

 

 

 

 

 

 

Additional Tree Species: 

Abbreviation, Common Name, 

and Latin Name 

ACPE = striped maple  

(Acer pensylvanicum) 

FRAM = white ash  

(Fraxinus Americana) 

BEAL = yellow birch  

(Betula alleghaniensis) 

FRPE = green ash  

(Fraxinus pennsylvanica) 

BEPA = paper birch  

(Betula papyrifera) 

OSVI = eastern hophornbeam 

(Ostrya virginiana) 

BEPO = gray birch  

(Betula populifolia) 

POBA = balsam poplar  

(Populus balsamifera) 

LALA = tamarack  

(Larix laricina) 

QURU = northern red oak 

(Quercus rubra) 

POGR = bigtooth aspen  TIAM = American basswood 
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(Populus grandidentata) (Tilia americana) 

POTR = quaking aspen  

(Populus tremuloides) 

ULAM = American elm  

(Ulmus americana) 

 

In four cases, none of the species involved in the tie was the dominant species in the 

corresponding whole plot. These four ties were resolved as discussed in Table 4. 

 

 

Table 4: Justification For Resolving Dominant Species Ties in Four Subplots  
In this table, H indicates a plot in Howland Experimental Forest and P indicates a plot in 

Penobscot Experimental Forest.  

Subplot Classification and Justification 

H02R2 TSCA chosen – dominant for several other subplots in plot H02 

P10R7 ACSA chosen – neighboring subplot P10R8 is dominantly ASCA 

P14L2 POGR chosen – dominant in other subplots in plot P14, unlike tied option ACRU 

P14R5 PIST chosen – dominant for several other subplots in plot P14 

 

A spreadsheet of dominant species information was then joined to the original shapefile 

of plot locations using the Table Join tool in ArcGIS. The original shapefile for each 

experimental forest site represented plots as multipolygons, each composed of its 16 constituent 

subplots. In order to create separate subplot shapefiles for use in further analysis, a custom tool 

was created using the ArcGIS ModelBuilder. This tool was designed to iterate through the 

original plot shapefile and create a new shapefile from each row (representing a subplot) using 

the Feature Class to Shapefile (Multiple) tool (Figure 2).  

 

Figure 2: ModelBuilder Tool for Exporting Rows as Individual Shapefiles 
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 The resulting subplot shapefiles were then combined with the information contained in 

the LiDAR and hyperspectral geotiffs. The LiDAR geotiffs were directly downloaded from the 

G-LiHT data archive. The hyperspectral geotiffs were created using the Save File As > 

TIFF/GeoTIFF function in ENVI Classic (version 5.2) to save each band as a separate geotiff. 

Further data processing steps were performed using the ArcPy package for Python 

(Python Software Foundation). The different pixel size of the LiDAR metric geotiffs and the 

hyperspectral geotiffs necessitated the use of two different methods for obtaining the mean value 

for each subplot. For the LiDAR data, a set of points representing the centroid of each subplot 

was created using the Feature To Point tool in ArcGIS. These centroids could then be used as 

points for interpolation of pixels in the underlying LiDAR geotiff layers containing data on 

LiDAR metrics.  Using the Extract MultiValues To Points tool while iterating through the list of 

geotiffs, a new column containing the interpolated value for each subplot centroid was added to 

the shapefile. The Extract MultiValues To Points tool uses a bilinear interpolation method (ESRI 

n.d.), which calculates a mean value using the value of the pixel underlying the centroid as well 

as the values of the four pixels bordering it in a “T” or plus shape. This method was identified as 

generating the most representative mean values for each shapefile by visual comparison with 

other interpolation methods, such as the Zonal Statistics method described below. Using the 

ArcPy ListValues and InsertCursor methods, the attribute tables of all shapefiles were exported 

as comma separated value tables for use in data mining work. All Python code can be found in 

Appendix 1. 

 For the hyperspectral geotiffs of both vegetative indices and reflectance bands, the Zonal 

Statistics as Table function (ESRI 2011) was used to create an average of all the pixels the 

majority of whose area overlaps with the subplot shapefile. A custom Python script was used to 
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run this function on all hyperspectral geotiffs, thereby generating an ESRI info table with the 

mean value for each subplot. Using the Feature Class to Table (Multiple) function in ArcCatalog, 

these info tables were saved as dbase tables, which were then opened in Microsoft Excel and 

concatenated, resulting in tables containing the mean value for each subplot of each vegetative 

index or reflectance band. These two tables were saved as comma separated value tables for use 

in data mining work. 

 

2e. Data Mining Methods, Accuracy, and Validation 

 

All data mining work was carried out using the Orange data mining toolbox for Python 

(Demsar et al. 2013). In addition to being compatible with Python for batch processing and the 

creation of custom tools, Orange offers a visual programming interface that can be downloaded 

at http://orange.biolab.si/. Initially, available data mining methods including naïve Bayes 

learner, k-nearest neighbors, neural network, classification tree, random forest, support vector 

machine, and CN2 rules methods, along with an ensemble method for combining multiple 

methods, were tested simultaneously to determine which produced the best classifications. 

Further information on algorithm implementation in Orange can be found at the Docs link on the 

above cited Orange webpage. A sample workflow is reproduced in Figure 3.  
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Figure 3: Sample Orange Workflow for Comparing Data Mining Methods 

 

  
 

All the above listed data mining methods assess the performance of the classifications 

they produce by calculating the validity of the results the classification produces. Validity is 

assessed using several metrics to quantify potential sources of error. In addition to correctly 

classifying cases in a given category and rightfully excluding other cases from this category, it is 

also possible for error to be introduced in two ways: commission error (also referred to as Type I 

error or the false positive rate) quantifies the percentage of cases incorrectly classified in each 

possible category, while omission error (also known as Type II error or the false negative rate) 

quantifies the percentage of cases left out of the category in which they should have been 

included. In remote sensing datasets, known ground truth measurements are used to construct 

classification rules. These same cases are “blindly” classified according to these rules and the 

resulting differences are used to produce assessments of classifier performance and measures of 

classification accuracy. Overall accuracy or classification accuracy is determined by summing 

the number of correctly classified pixels (true positives and true negatives) and dividing by the 

total number of pixels to produce a ratio or percentage.  
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Similarly, classifications can be assessed for their accuracy for certain applications. 

User’s accuracy is calculated by dividing the number of correctly classified pixels in each 

category by the total number of pixels assigned to that category, and summing across all 

categories, thus summarizing the probability that the user of a classification will obtain a valid 

result. Producer’s accuracy compares the number of pixels correctly classified into each category 

to the original number of ground truth pixels used to characterize that category, thus 

summarizing the probability that the producer of a classification was able to train the classifier 

effectively for future applications. These metrics are calculated using a confusion matrix 

summarizing how each pixel was classified. These confusion matrices can also be used to 

calculate a summary statistic known as Cohen’s Kappa coefficient (Cohen 1960), which 

represents the degree of overall agreement between ground truth pixels and the classification 

being summarized. This metric is preferred to overall accuracy when comparing among studies 

or classification methods because it takes into account both user’s and producer’s accuracy 

(Congalton and Green 2009). 

In addition to assessing the performance of a single classification method for any given 

dataset, different data mining methods used on the same dataset may be compared using several 

available indicators of performance. In this case, two such indicators were used: the area under 

the curve of the receiver operating characteristics graph (AUC-ROC) and the Brier Score. These 

methods of assessment rely on error metrics that are the related to the Type I and Type II error 

metrics discussed above; sensitivity (or the true positive rate) is the inverse of Type I error and 

specificity (or the true negative rate) is the inverse of Type II error. An ROC graph plots the rates 

of true positives against false positives, which is to say specificity versus the rate of Type I error. 

This comparison creates a curved hull, the area underneath which can be calculated and 
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compared across different classifiers. Since the area under the curve represents the probability 

that a random case will be classified as true positive rather than a false positive, a larger AUC-

ROC score indicates better performance (Fawcett 2005). Brier curves accomplish a similar goal 

to ROC graphs, except that the curve it displays represents a metric of the cost of an incorrect 

classification across different operating parameters. As in an ROC graph, the area under this 

curve can be calculated, and is referred to as the Brier score (Hernandez-Orallo 2011). These two 

metrics are automatically calculated by Orange when comparing different data mining methods.  

Three methods of resampling are also built in to the Orange visual programming 

interface. Resampling is a method of validation for data mining methods and can be carried out 

in several ways. Cross-validation resampling is performed by splitting the dataset into groups or 

“folds,” one of which is held out and compared to a classifier induced from the rest of the cases. 

This process is typically repeated several times. Leave-one-out resampling uses a similar 

technique, but holds out one case at a time instead of one group. Random sampling divides the 

dataset into two groups, for example by holding out 30% of cases as training data to be used for 

testing the remaining 70% of the cases. As with cross-validation resampling, this process is 

usually repeated several times, with a different random sample being held out in each repeat 

(Demsar et al. 2013). Each of these methods requires different computational time to 

accomplish, with the leave-one-out method being the most time-consuming.  

 

2f. Refining LiDAR Metrics and Hyperspectral Data for Further Work 

 

 All previously discussed data mining method assessments were carried out on the outputs 

of classifiers run on the full lists of 32 LiDAR metrics, 43 vegetative indices, and 114 reflectance 

bands. However, one main goal of this study was to refine this list into a subset with high 

explanatory power. This was made possible using the Classification Tree Viewer widget in 
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Orange. This widget shows a list of details of each node in the classification tree created on a 

dataset. Since these nodes are chosen to break a dataset into smaller categories, they were 

assumed to be explanatory of the variability in the dataset as a whole. This method has 

previously produced promising results on a full-wavelength LiDAR dataset being used for tree 

species classification (Heinzel and Koch 2011). A similar method for variable reduction using 

the results of random forest-generated trees produced good results in a study using LiDAR data 

for forest inventory (Vauhkonen et al. 2010).  

To apply this method here, a classification tree was run on each dataset, and the resulting 

list of variables used as nodes in the first five levels of each tree was kept for further work. This 

was done for the LiDAR metrics at each forest site and individually for the vegetative indices 

and for the reflectance bands at the Howland site. For the Howland site, another simplified list 

was produced from a combined input of all LiDAR and hyperspectral data. A sample workflow 

of the classification tree step can be found in Figure 4. 

Figure 4: Sample Classification Tree Workflow  

 

 
 

 

The results of the initial test of all data mining classifiers and resampling methods were 

used to determine the best settings for each dataset. These simplified and optimized settings and 

the refined list of metrics, indices, or bands were used to rerun the data mining procedure. A 
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sample simplified workflow can be found in Figure 5. In the case of the LiDAR metrics, a 

shared, or generic, set of metrics repeated across the simplified lists from the two forest sites, 

was generated and used as input for another set of classifiers. Classifier performance was again 

assessed by comparing AUC-ROC, Brier scores and classification accuracy generated by 

Orange. In all cases, the resampling method that produced the best results in the initial 

comparison was used for this assessment.  

Orange does not provide built-in functionality for calculating the Kappa coefficient, so 

the confusion matrices generated by the Confusion Matrix widget were used as inputs for a 

custom Python script designed to calculate Kappa (see Appendix 1) for further classifier 

comparison. This script was designed to take advantage of the specific functionality of NumPy 

arrays (see van der Walt et al. 2013). This functionality allows for calculations to be performed 

simultaneously on the whole array or on a particular slice thereof, which is particularly useful 

for the conversion of data from confusion matrix to intermediate values used to calculate 

Cohen’s Kappa. 

 

Figure 5: Sample Simplified Orange Workflow 

 

 
 



   
 

34 

 As a baseline for comparison, principal components analyses were also performed on the 

vegetative indices and reflectance hyperspectral files, using the Forward PC Rotation function in 

ENVI Classic. The resulting principal components with eigenvalues greater than one (nine total 

for the vegetative indices file and ten total for the reflectance file) were exported as geotiffs, 

processed in the same way as the original hyperspectral data, and used as inputs for data mining 

in Orange.  

 

3. Results 

 

 In order to confirm a relationship between structural variables and tree species, the 

diameter at breast height (DBH) data collected in the field campaign were plotted for each 

species class. Though individual tree heights were also recorded in some cases, there were too 

many missing values in the Penobscot dataset for a robust analysis or comparison. The trends in 

DBH by species can be seen as scatterplots in Figure 6 or as boxplots in Figure 7. While some 

patterns can be detected between overall tree size and species classification, DBH values alone 

do not seem to provide sufficient data to classify tree species on their own. An unexpected 

frequency of 10 cm as the recorded value for DBH also suggests that this value may have been 

used as a default measurement for small trees, and may be skewing distributions toward lower 

values overall. Additionally, DBH measurements are necessarily associated with the age of 

individual trees as well as their species. Nonetheless, the weak trends that can be detected 

suggest that further examining structural information on trees in the form of the LiDAR metrics 

is a sound avenue of analysis. 
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Figure 6: Plots of Individual Tree Diameter at Breast Heights by Species 

Figure shows all available data points on diameter at breast height of individual trees in 

Howland Experimental Forest (A) and Penobscot Experimental Forest (B). 

 

 
 

 Initial comparisons of data mining methods and resampling techniques performed on all 

LiDAR metrics across Howland Experimental Forest and Penobscot Experimental Forest showed 

relatively consistent classification accuracy (CA) values across all combinations tested (Figure 

7). While the data mining methods that produced the best results varied across the two forests, 
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leave-one-out resampling consistently allowed for the highest CA values. Using the LiDAR 

metrics alone, the highest classification accuracies achieved were CA = 0.5200 for Howland 

Experimental Forest, using a random forest classifier, and CA = 0.5215 for Penobscot 

Experimental Forest, using a neural network classifier. Second-best methods to be included for 

comparison on subsequent analyses included the classification tree method for Howland and the 

CN2 Rules method for Penobscot. 

Initial comparisons of data mining methods and resampling techniques performed on 

vegetative indices for Howland Experimental Forest produced higher classification accuracy 

values than the same protocol run on LiDAR metrics (Figure 7). In this case, cross-validation 

resampling produced the highest CA values. Using the vegetative indices alone, the highest 

classification accuracy was CA = 0.6367, achieved using a neural network classifier. The k-

nearest neighbors method produced a comparable classification accuracy of 0.6238, and was also 

kept for inclusion in subsequent analyses. 

Initial comparisons of data mining methods and resampling techniques performed on 

reflectance data for Howland Experimental Forest produced classification accuracy values 

slightly lower than those from the vegetative index comparison (Figure 7). Cross-validation 

resampling again produced the highest CA values in this comparison. Using only data on the 

hyperspectral reflectance bands, the highest classification accuracy was CA = 0.6100, again 

achieved using a neural network classifier. The k-nearest neighbors and random forest methods 

produced comparable classification accuracies of 0.4981 and 0.5057, respectively. All three of 

these methods were kept for inclusion in subsequent analyses. 

 

 

 



   
 

37 

Figure 7: Comparison of Resampling Techniques and Data Mining Methods Using 

Complete Lists of Metrics  

Available LiDAR data were used in separate analyses of each forest. Hyperspectral data 

(reflectance bands and vegetative indices) were only available for Howland Experimental Forest, 

so those analyses, as well as an analysis of all available data together, were only conducted for 

that site. Repeated colors in the same column indicate the results of different resampling methods 

used in combination with each classifier. 

 

 
 

Another initial comparison of data mining methods and resampling techniques was 

performed, this time on all available data for Howland Experimental Forest (Figure 7). Cross-

validation resampling once again produced the highest CA values in this comparison, CA = 
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0.6371, achieved using a k-nearest neighbors classifier. The neural network method produced a 

comparable classification accuracy of 0.6019, and was also included in further analyses. 

 As described above, classification trees were also run on each dataset discussed above, 

regardless of the performance of this method during the initial comparison. These classification 

trees were not used to generate metrics of classifier performance, but were viewed in list format 

in order to identify which metrics, indices, or bands served as the nodes in the first five levels of 

the tree. The results of that analysis provided simplified lists of inputs for use in further analyses 

(Table 5). A list of thirteen LiDAR metrics from Penobscot Experimental Forest and a list of ten 

LiDAR metrics from Howland Experimental Forest were cross-referenced to produce a generic 

list of five LiDAR metrics shared between the classification trees produced on the two forests. 

This generic list was generated in an attempt to identify some universal or generalizable aspects 

of LiDAR data that may have strong explanatory power in other forests. The hyperspectral data 

available on the Howland site were also used to produce simplified lists of reflectance bands, 

vegetative indices, and a list generated from the full dataset of LiDAR and hyperspectral data 

together. All further results were generated using only the inputs shown in these simplified lists.  
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Table 5: Simplified Lists of Data Mining Inputs  

 

 Penobscot Howland 

Generic 

LiDAR 

LiDAR 

Metrics 

LiDAR 

Metrics 

Reflectance 

Bands 

Vegetative 

Indices 

Hyperspectral 

+ LiDAR 

D9 

Fcover 

Fract_all 

P50 

P100 

D0 

D2 

D9 

Fcover 

Fract_all 

Kurtosis 

Mean 

P10 

P40 

P50 

P80 

P100 

St_Dev 

D3 

D5 

D6 

D9 

Fcover 

Fract_all 

P50 

P60 

P90 

P100 

B003 

B019 

B026 

B037 

B038 

B054 

B059 

B062 

B063 

B070 

B072 

B079 

B086 

B102 

B112 

B113 

ARI1 

ARI2 

CRI2 

DATT2 

GI 

GM2 

PRI 

RDVI 

RGRI 

SIPI 

B023 

B034 

DATT2 

Fract_All 

GM1 

GM2 

Mean 

MTCI 

P60 

P70 

PRI 

REIP 

RGRI 

SIPI 

VOG 

 

 

The classifiers that produced the best results using the LiDAR metrics from both forests 

as inputs were run again, using only the simplified and generic lists discussed above. At this 

stage, final comparisons were made by adding in the Cohen’s Kappa coefficient as an additional 

means of assessing the performance of these optimized protocols. Figure 8 shows the results of 

classifications run on the simplified and generic LiDAR metrics datasets, using the two best data 

mining methods for each forest as determined by the initial comparison of classifiers.  
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Figure 8: Comparison of Resampling Techniques and Data Mining Methods Using 

Simplified and Generic Lists of Metrics 

 

 
 

For the Howland site, the random forest classifier run with the simplified list showed the 

highest classification accuracy of 0.4914, with a Kappa coefficient of 0.2003. For the Penobscot 
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site, the neural network classifier run with the simplified showed the highest classification 

accuracy of 0.4570, with a Kappa coefficient of 0.2440. All of these results represent a loss of 

accuracy as compared to the classifiers run using the full list of LiDAR metrics as inputs. 

However, the variable reduction alone does not fully explain this decrease in accuracy, as 

shown in the result of the same classifiers run using the generic list of metrics shared across the 

simplified lists for the two forests. In this case at the Howland site, the random forest classifier 

run with the generic list showed the highest classification accuracy of CA = 0.4914 with a Kappa 

coefficient of 0.2128. Though none of these results surpasses the accuracy achieved by using the 

full list, all are better than with the simplified list. For the Penobscot site, the neural network 

classifier run with the generic list showed the highest classification accuracy of CA = 0.4355 

with a Kappa coefficient of 0.2041. These results, unlike the Howland site, show another small 

decrease in accuracy (Figure 8). 

A comparable method was used on the hyperspectral datasets, using the simplified list of 

metrics discussed above in combination with the two best classifiers on the vegetative index 

dataset and the three best classifiers for the reflectance dataset. These classifiers were run using 

the cross-validation resampling technique that yielded the best results in the initial assessment 

(Figure 8). For the vegetative indices dataset, the neural network classifier performed best, with 

an overall classification accuracy of 0.6376 and a Kappa score of 0.4740, a dramatic 

improvement in accuracy over the performance of any classifier run with the full list of metrics. 

There was also a small decrease in accuracy for the reflectance dataset as compared to the 

classifiers run on the full list of bands. The k-nearest neighbors classifier achieved a 

classification accuracy of 0.5481, with a Kappa score of 0.3604.  
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For comparison, the results of the best classifiers used on the outputs of the principal 

components analysis on the hyperspectral datasets are also shown in Figure 8. The PCA results 

show the inverse trend when compared to the results of the data mining performed with the 

simplified lists of hyperspectral metrics. On the vegetative indices PCA dataset, the neural 

network classifier produced the best result, with a classification accuracy of 0.5329 and a Kappa 

coefficient of 0.2858. This represents a decrease compared to both the results generated using 

the simplified list of indices and the original data mining results using the full list. For the 

reflectance dataset, the k-nearest neighbors classifier produced the best result, with a 

classification accuracy of 0.6248, with a Kappa coefficient of 0.4484. This represents a decrease 

in accuracy as compared to either previous analysis.  

 In a final assessment, the simplified list of inputs from the combined LiDAR and 

hyperspectral dataset on the Howland site were used in combination with the two best classifiers 

as identified by the initial assessment. These classifiers were again run using the cross-

validation resampling technique that yielded the best results in the initial assessment. The better 

of the two methods tested in this analysis was the k-nearest neighbors classifier, which achieved 

a final classification accuracy of 0.6795 and a Kappa score of 0.5470, which represents an 

improvement over any other list of inputs or classifier discussed thus far. 

 

4. Discussion 

The results of the final assessment, using the combined LiDAR and hyperspectral 

dataset, outperform all of the previous assessments. Since all previous steps used LiDAR and 

hyperspectral data separately, these final results suggest that the combination of spectral and 

structural information is richer in detail than either dataset alone. This improvement is in line 
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with other studies that have found a similar effect (e.g. Liu et al. 2013), and stands in contrast to 

several cases in which other authors have not found a significant improvement when 

incorporating LiDAR data into existing hyperspectral analyses. The fact that the incorporation 

of LiDAR data improved the hyperspectral-based classifications of trees Howland Experimental 

Forest speaks to the utility of data mining techniques in solving problems like this one. One 

notable element of the data mining procedure discussed here is the high performance of 

classifier types that are not typically favored in remote sensing work. In particular, support 

vector machines (SVM) and other methods that are best equipped to handle the very high 

dimensionality of hyperspectral data in particular are the established standard for of remote 

sensing work. However, when tested concurrently, the SVM method available through Orange 

was significantly outperformed. Some researchers have previously postulated that LiDAR 

datasets do not suffer as much from the issues of ill-posed problems and very high 

dimensionality and are therefore better suited to classification techniques that would not 

necessarily be optimal for other remote sensing work (Ducic et al. 2006), which may account 

for some of the differences between the methods described here and other previously published 

workflows. 

Whatever the context-specific details of classifier choice, the capability of data mining 

interfaces like Orange to simplify and optimize classification workflows is clearly powerful. 

The variable reduction technique used here showed mixed results in this context; when 

comparing this technique to the principal components analysis, it appears that each technique 

may have its merits under different circumstances. The PCA produced the best result of any 

method on the reflectance dataset, but had the poorest results of any method on the vegetative 

indices dataset. The classification tree-based variable reduction produced the best result of any 
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method on both the vegetative indices and LiDAR + hyperspectral datasets, but had the poorest 

results of any method on the reflectance dataset. Thus, it appears that variable reduction based 

on classification tree nodes is a technique worth trying when seeking to reduce dimensionality. 

it is adaptable to any dataset, and has the desirable effect of both reducing the dimensionality of 

a very large hyperspectral dataset into a more manageable form, and improving the outcome of 

classifications. Additionally, data mining software allows a comparison to PCA to be performed 

quickly, so that an optimal dimensionality reduction technique for the context can be easily 

determined. This dual benefit indicates that the technique discussed here may be useful for a 

variety of commercial forestry and inventory applications, even for organizations without the 

computing power or resources to use expensive and computation-intense programs like ENVI.  

Nonetheless, there remain some limitations to the analysis as presented here, the most 

important of which is the necessity of using aggregated data. While this is not a constraint that 

will necessarily apply to all future studies, aggregation of data to a subplot level was required in 

this case because of the lack of data on the coordinates of individual trees within either forest. 

This means that some detail was necessarily lost, particularly from the field campaign dataset, 

which provided data on height and DBH at an individual tree level, and from the hyperspectral 

datasets. In most cases, 500 or more pixels were averaged together during the Zonal Statistics 

summarization process, meaning that a great deal of detail on differential reflectance from 

within individual tree crowns could not be used. This effect was much less pronounced on the 

LiDAR dataset, since the 13m2 pixel size meant that individual trees could not be distinguished 

even before averaging to the subplot level.  

This is a problem that has been confronted by numerous researchers in the past, since G-

LiHT’s is certainly not the only dataset to include data aggregated to different sizes or to rely on 
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ground truth data with some limitations. Some authors have argued that attempts to identify or 

classify species at anything above the individual tree level will be met with difficulty (Yu et al. 

2010), but other researchers have previously published classifications with up to 90% on tree 

stands (Korpela et al. 2010). While that level of accuracy is partially due to the fact that the 

latter analysis was run on a forest with low species diversity and very homogenous tree stands, 

their results viewed in combination with those presented here make a relatively convincing 

argument that the use of data at a larger scale than individual trees is, while not ideal, still quite 

serviceable. This effect is paralleled in the hyperspectral data, in which there was most likely a 

larger limitation. Because pixels were aggregated into an overall mean value for a subplot 

identified only by the dominant species, there was necessarily some error that hindered species 

classification both because of the loss of detail and because of the contaminating effect of non-

dominant species’ spectral signatures for which it was impossible to fully account in this 

classification. Nonetheless, a relatively high classification accuracy of over 67% demonstrates 

again that such datasets can still be used to generate reliable results, an encouraging result given 

that researchers have recently begun to acknowledge that most forest classification work will 

need to be done on forest stands for practical reasons (Hovi et al. 2016).  

Another concern that has been discussed in the literature is the level of management that 

the forest in question has undergone. Though most studies (e.g. Maltamo et al. 2004) have 

found that classification accuracies produced with LiDAR data alone tend to be lower on 

unmanaged forest plots than on those that are managed, some researchers have achieved 

improved root mean square error values when using combined LiDAR and hyperspectral data to 

classify unmanaged forest plots (Anderson et al. 2008). In this case, aggregating data to the 

subplot level may have created a homogenizing effect that is comparable to the more easily 
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classified regularity of a managed forest with stands of the same species intentionally growing 

together or a cleared understory reducing less useful backscatter in LiDAR datasets. It is also 

possible, however, that a combination of structural and spectral information like the one used 

here is able to reveal canopy gaps or other irregularities that would otherwise make the 

association of spectral data with species information more difficult, as previously suggested by 

others, including Brennan and Webster (2006).  

The improved association between species identity and structural variables when moving 

from DBH alone to the G-LiHT-generated structural variables further supports this idea. It has 

been shown that using data on aboveground biomass (for which DBH is often used as a proxy) 

in conjunction structural information on forest structure generated by the Laser Vegetation 

Imaging Sensor (LVIS) improves the ability of models to predict the size of forest carbon stocks 

(Ni-Meister et al. 2010). It now seems that the combination of these two data types may be able 

to simultaneously help identify tree species, thereby opening up the possibility of generating 

species-specific carbon estimates with a similar combined dataset. Other researchers looking to 

the future of remote sensing have also highlighted the utility of LiDAR data in addressing large-

scale questions like deforestation and carbon sequestration in whole forests on a species-specific 

basis (Koch 2010, Karna et al. 2015). Maltamo and Packalén (2014) recommended a similar 

species-specific approach to forest inventory and classification, which may help to reduce error 

by relying on very targeted ground truth measurements. When looking to the future of multi-

sensoral and fused datasets, one of the commonly cited challenges is the development or 

discovery of analytical methods that can properly integrate data collected by different sensors or 

by different projects altogether. Based on the results of this analysis, it appears that data mining 

methods can be used to produce simplified datasets combining information from a variety of 
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sensors and to optimize classifiers depending on context, with high resulting accuracy even 

across many heterogeneously distributed temperate tree species. 

 

5. Appendix  

 
I. Creating Centroids, Interpolating, and 

Exporting Attribute Tables to Text Files 

 

import arcpy 

from arcpy import env 

from arcpy.sa import * 

import os 

arcpy.CheckOutExtension("Spatial") 

env.overwriteOutput = True 

 

# Iterate over subplot shapefiles and create centroid shapefiles 

 

env.workspace = 

r"/Users/juliamarrs/Documents/Computer_Programming_for_Geographic_Application

s/Final_Project/Subplots" 

subplots = arcpy.ListFeatureClasses() 

for fc in subplots: 

    try: 

        outfc = arcpy.Describe(fc).basename + "_Centroids" 

        arcpy.FeatureToPoint_management(fc, outfc, "CENTROID") 

    except Exception as e: 

        print e 

    print "Centroids Created" 

 

# Extract values around centroids to fields in centroids shapefile attribute 

table – Howland 

 

env.workspace = 

r"/Users/juliamarrs/Documents/Computer_Programming_for_Geographic_Application

s/Final_Project/Howland_Metrics" 

metrics = arcpy.ListFiles(wild_card = "*.tif") 

for fc in metrics: 

    try: 

        centroids = 

r"/Users/juliamarrs/Documents/Computer_Programming_for_Geographic_Application

s/Final_Project/Subplots/Howland_Subplots_Centroids.shp" 

        ExtractMultiValuesToPoints(centroids, fc, "BILINEAR") 

    except Exception as e: 

        print e 

    print "New Column Added" 

 

# Create text file from attribute table 

 

try: 

    input = 

r"/Users/juliamarrs/Documents/Computer_Programming_for_Geographic_Application

s/Final_Project/Subplots/Howland_Subplots_Centroids.shp" 
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    fieldList = arcpy.ListFields(input) 

    field_names = [] 

    for field in fieldList: 

        field_names.append(field.name) 

    fields_to_keep = field_names[15:17] + field_names[19:] 

    rows = arcpy.SearchCursor(input) 

    out_string = "" 

    file_name = 

r"/Users/juliamarrs/Documents/Computer_Programming_for_Geographic_Application

s/Final_Project/Subplots/Howland.txt" 

    out_file = open(file_name, 'w') 

    for r in rows: 

        for f in fields_to_keep: 

            val = r.getValue(f) 

            out_string += "\t" + str(val) 

        out_string += "\n" 

        out_file.write(out_string) 

    print(val) 

    out_file.close() 

except Exception as e: 

    print e 

print "Text File Created" 

 

# Create CSV file from attribute table 

 

try: 

    input = 

r"/Users/juliamarrs/Documents/Computer_Programming_for_Geographic_Application

s/Final_Project/Subplots/Howland_Subplots_Centroids.shp" 

    fieldList = arcpy.ListFields(input) 

    field_names = [] 

    for field in fieldList: 

        field_names.append(field.name) 

    fields_to_keep = field_names[15:17] + field_names[19:] 

    out_file = 

r"/Users/juliamarrs/Documents/Computer_Programming_for_Geographic_Application

s/Final_Project/Subplots/Howland.csv" 

    arcpy.ExportXYv_stats(input, fields_to_keep, "COMMA", out_file, 

"ADD_FIELD_NAMES") 

except Exception as e: 

    print e 

print "CSV File Created" 

 

# Extract values around centroids to new shapefile with dominant species info 

included – Penobscot 

 

env.workspace = 

r"/Users/juliamarrs/Documents/Computer_Programming_for_Geographic_Application

s/Final_Project/Penobscot_Metrics" 

metrics = arcpy.ListFiles(wild_card = "*.tif") 

for fc in metrics: 

    try: 

        centroids = 

r"/Users/juliamarrs/Documents/Computer_Programming_for_Geographic_Application

s/Final_Project/Subplots/Penobscot_Subplots_Centroids.shp" 

        ExtractMultiValuesToPoints(centroids, fc, "BILINEAR") 

    except Exception as e: 



   
 

49 

        print e 

    print "New Column Added" 

 

# Create text file from attribute table 

 

try: 

    input = 

r"/Users/juliamarrs/Documents/Computer_Programming_for_Geographic_Application

s/Final_Project/Subplots/Penobscot_Subplots_Centroids.shp" 

    fieldList = arcpy.ListFields(input) 

    field_names = [] 

    for field in fieldList: 

        field_names.append(field.name) 

    fields_to_keep = field_names[15:17] + field_names[19:] 

    rows = arcpy.SearchCursor(input) 

    out_string = "" 

    file_name = 

r"/Users/juliamarrs/Documents/Computer_Programming_for_Geographic_Application

s/Final_Project/Subplots/Penobscot.txt" 

    out_file = open(file_name, 'w') 

    for r in rows: 

        for f in fields_to_keep: 

            val = r.getValue(f) 

            out_string += "\t" + str(val) 

        out_string += "\n" 

        out_file.write(out_string) 

    print(val) 

    out_file.close() 

except Exception as e: 

    print e 

print "Text File Created" 

 

II. Extracting Hyperspectral Subplot Averages  

 

# Perform Zonal Statistics As Table function on reflectance geotiffs 

 

import arcpy 

from arcpy import env 

from arcpy.sa import * 

arcpy.CheckOutExtension("Spatial") 

env.overwriteOutput = True 

env.workspace = r"D:\Documents\Reflectance" 

veg_indices = arcpy.ListFiles(wild_card = "*.tif") 

for fc in veg_indices: 

    try: 

        subplots = r"D:\Documents\Howland_Subplots.shp" 

        outfc = arcpy.Describe(fc).basename + "_Zonal_Stats" 

        outZStats = ZonalStatisticsAsTable(subplots, "SUBPLOT_ID", fc, outfc, 

 "DATA", "MEAN") 

    except Exception as e: 

        print e 

    print "Zonal Stats Calculated" 

 

# Perform Zonal Statistics As Table function on vegetative index geotiffs 

 

import arcpy 

from arcpy import env 
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from arcpy.sa import * 

arcpy.CheckOutExtension("Spatial") 

env.overwriteOutput = True 

env.workspace = r"D:\Documents\Veg_Indices" 

veg_indices = arcpy.ListFiles(wild_card = "*.tif") 

for fc in veg_indices: 

    try: 

        subplots = r"D:\Documents\Howland_Subplots.shp" 

        outfc = arcpy.Describe(fc).basename + "_Zonal_Stats" 

        outZStats = ZonalStatisticsAsTable(subplots, "SUBPLOT_ID", fc, outfc,  

 "DATA", "MEAN") 

    except Exception as e: 

        print e 

    print "Zonal Stats Calculated" 

 

III. Calculating Kappa Coefficient – Example 

 

import numpy as np 

 

# Load csv files into numpy arrays 

 

H_RF = 

np.loadtxt(r"/Users/juliamarrs/Documents/Computer_Programming_for_Geographic_

Applications/Final_Project/Howland_Confusion_Matrix_RF.csv", 

    dtype = None, delimiter = ',') 

H_NN = 

np.loadtxt(r"/Users/juliamarrs/Documents/Computer_Programming_for_Geographic_

Applications/Final_Project/Howland_Confusion_Matrix_NN.csv", 

    dtype = None, delimiter = ',') 

P_RF = 

np.loadtxt(r"/Users/juliamarrs/Documents/Computer_Programming_for_Geographic_

Applications/Final_Project/Penobscot_Confusion_Matrix_RF.csv", 

    dtype = None, delimiter = ',') 

P_NN = 

np.loadtxt(r"/Users/juliamarrs/Documents/Computer_Programming_for_Geographic_

Applications/Final_Project/Penobscot_Confusion_Matrix_NN.csv", 

    dtype = None, delimiter = ',') 

 

# For each site below, the diagonal is extracted from the original array. 

# It is then trimmed of the last (grand total) value and summed. 

# The grand total number of pixels and its squared value are named and 

calculated. 

# The last row and column are extracted from the original array and trimmed 

for the last (grand total) value. 

# These trimmed arrays are multiplied together and summed 

# The grand total, its square, and sum of the row and column totals are used 

to calculate kappa. 

 

howland = [H_RF, H_NN] 

for h in howland: 

    diag = np.diagonal(h) 

    int_diag = diag[0:10] 

    diag_sum = np.sum(int_diag) 

    gr_total = diag[10] 

    gr_total_sq = gr_total**2 

    last_col = h[:,10] 

    col_totals = last_col[0:10] 
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    last_row = h[10,:] 

    row_totals = last_row[0:10] 

    totals_mult = col_totals*row_totals 

    totals_mult_sum = np.sum(totals_mult) 

    kappa = ((gr_total*diag_sum)-totals_mult_sum) / (gr_total_sq –  

 totals_mult_sum) 

    print kappa 

 

penobscot = [P_RF, P_NN] 

for p in penobscot: 

    diag = np.diagonal(p) 

    int_diag = diag[0:15] 

    diag_sum = np.sum(int_diag) 

    gr_total = diag[15] 

    gr_total_sq = gr_total**2 

    last_col = p[:,15] 

    col_totals = last_col[0:15] 

    last_row = p[15,:] 

    row_totals = last_row[0:15] 

    totals_mult = col_totals*row_totals 

    totals_mult_sum = np.sum(totals_mult) 

    kappa = ((gr_total*diag_sum)-totals_mult_sum) / (gr_total_sq - 

 totals_mult_sum) 

    print kappa 
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