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Clear-Sighted Statistics: An OER Textbook 

Module 10: Sampling and Sampling Errors 

 
Probability sampling, where a small randomly selected sample of the 
population can be used to estimate the distribution of an attitude or opinion 
in the entire population with statistical confidence, had traditionally 
provided the foundation for survey research and political polling. The basis 
of probability-based random sampling is that every member of the 
population must have a known, non-zero chance of being selected. 
Probability sampling provides the means by which the margin of sampling 
error can be calculated and the level of confidence in survey estimates 
reported. Sampling error results from collecting data from some rather than 
all members of the population and is highly dependent on the size of the 
sample.1 [italics added] 

-- Pew Research 
 
I. Introduction 

In Module 3, we reviewed basic probability and non-probability sampling techniques. We 

explained that sampling is nearly always the only realistic way to learn about a population 

because compared to taking a census—counting every element in the population—

sampling is faster, less expensive, and generally as reliable as a census when properly 

conducted. We distinguished random sampling errors from systematic errors. We found 

that systematic errors are due to flaws in the research design, human error, or fraudulent 

behavior on the part of researchers or respondents. Sampling error—when the parameter 

of interest does not equal the statistic—is not due to human error. Random sample errors 

often occur when samples are conducted. In this sense, the risk of random sampling error 

is ubiquitous.  

After completing this module, you will be able to: 

• Construct a sampling distribution of sample means. 
 

• Understand why random sampling error is not due to human error. 

https://www.dictionary.com/browse/ubiquitous


 

 

 
• Describe the implications of the Central Limit Theorem. 

 
• Use the Central Limit Theorem and z-values to find probabilities of 

obtaining possible sample means, X̅, from a normally distributed 
population. 

 
In Module 11 we will turn to constructing confidence intervals for the purpose of 

estimating unknown population parameters using sample statistics. 

II. Random Sampling Error (One More Time) 

Sampling error occurs when the statistic does not equal the parameter; that is when X̅ ≠ μ. 

Every sample has a risk of sampling error because not every variable is included in a 

sample. These random errors are not due to carelessness or human errors. In Module 11 on 

Confidence Intervals, we will set the acceptable limits on sampling error when we estimate 

unknown population parameters. 

III. The Sampling Distribution of the Sample Means 

Due to sampling error, the sample mean, X̅, varies from sample to sample. The best way to 

demonstrate this is to construct a sampling distribution of the sample means, which is a 

probability distribution of all sample means. Let’s construct one from a very small 

population. 

Imagine a version of heaven, hell, or alternate universe, where the first five 

presidents of the United States formed an intramural basketball team. Here are the average 

points scored per game during the last season for each president on the team: 

Table 1: Average Points per Game 

President Points 
Washington 34 
Adams 8 
Jefferson 22 
Madison 14 



 

 

Monroe 12 
 
The population mean for the score per player per game is 18 points.  

μ =
Σ𝑋

𝑁
=

34 + 8 + 22 + 14 + 12

5
=

90

5
= 18 

Equation 1: Population Mean 

We now create all possible samples of two players. The combinations will help us 

determine how many samples are possible. This formula is appropriate because the order 

of selection is unimportant. There are 10 possible samples, as shown in Equation 2. 

nCr =
𝑛!

𝑟! (𝑛 − 𝑟)!
=

5!

2! (5 − 3)!
=

120

2(6)
=

120

12
= 10 

Equation 2: 10 Possible Samples Using the Combinations Formula 

 
Here is the sampling distribution of the sample means: 

Table 2: Sampling Distribution of the Sample Means 

Sample Points Mean, X̅ % 
Washington/Adams 34, 8 21 10% 
Washington/Jefferson 34, 22 28 10% 
Washington/Madison 34, 14 24 10% 
Washington/Monroe 34, 12 23 10% 
Adams/Jefferson 8, 22 15 10% 
Adams/Madison 8, 14 11 10% 
Adams/Monroe 8, 12 10 10% 
Jefferson/Madison 22, 14 18 10% 
Jefferson/Monroe 22, 12 17 10% 
Madison/Monroe 14, 12 13 10% 

 
Of the ten samples, only the sample mean for Jefferson/Madison equals the population 

mean. This is, therefore, the only sample without sampling error. The nine other samples 

have sampling error.  

Let’s see what happens when we take the mean of the sample means, μX̅, which we 

pronounce as “mu sub X-Bar.” 

μX̅ =
Sum of the Sample Means

Number of Samples
=

21 + 28 + 24 + 23 + 15 + 11 + 10 + 18 + 17 + 13

10
= 18 

Equation 3: Mean of the Sampling Distribution of Sample Means 



 

 

The population mean, μ, and the mean of the sampling distribution, μX̅, are equal. When the 

population mean and the mean of the sampling distribution are not equal, they should be 

very close. 

The variability in the population, as measured by the range, is greater than that in 

the sampling distribution of sample means.  

Table 3: Range for the Population and Sample Distribution of the Sample Means 

 Highest 
Value 

Lowest 
Value 

Range 
(H – L) 

Population 34 8 26 
Sample Distribution 28 10 18 

 
The sampling distribution of the sample means will always have less variability than the 

population distribution. This is because the sampling distribution of the sample means is 

created using the sample means that draw the data towards the “center.” 

IV. The Central Limit Theorem (CLT) 

The Central Limit Theorem is a central concept for the discipline of statistics. Without it 

modern statistical methods would not exist. The CLT was first proven by Pierre-Simon 

Laplace in 1810. In 1824, the French mathematician, Siméon-Denis Poisson, refined the 

theorem. The mathematics underlying the CLT are difficult. But we need only concern 

ourselves with the implications of the CLT. 

Here is why CLT has such important implications: 

• Sampling distributions of the sample means become more normally 
distributed as the sample size increases. 

 
• When the population is normally distributed, the sampling distributions 

of the sample mean will follow a normal distribution. 
 

• When the population is symmetrical, but not normally distributed, the 
sampling distribution of the sample means will emerge with a sample 
size as small as 10. 



 

 

 
• When the population is skewed, the normal shape of the sampling 

distribution will emerge with a sample size as small as 3. 
 
Conclusion: Samples of 30 or more are large enough to apply the CLT. We can then assume 

the sampling distribution of sample means is normally distributed even when the 

population is not. Figure 1 shows what happens to the sampling distribution when the 

sample size is increased. 

 
Figure 1: As sample size increases, the sampling distribution of sample means becomes more normal 

 
The CLT has enormous implications: Under most circumstances, we assume the data will 

be normally distributed. Of course, the assumption of normality should always be tested. In 

Module 17, Chi-Square Tests, we will cover a test to determine whether the data are 

normally distributed. When the data are not normally distributed, nonparametric methods 

we are used to analyze the data. Chi-Square is the only nonparametric method typically 

covered in introductory statistics class.  

V. Standardizing Sampling Error with z-values 



 

 

In Module 9, we introduced z-values, which require interval or ratio data, and used 

the formula for a population. Now we modify this formula for comparing a sample 

mean to a population mean, for measuring sampling error. Table 4 shows the 

formulas for a population and a sample: 

Table 4: Formulas for z-Values for a Population and a Sample 

Population Sample 

z =
X − μ

σ
 z =

X̅ − μ
σ

√n⁄
 

 
Let’s examine the new equation for z-values. The numerator, X̅ - μ, measures sampling 

error. The smaller the result, the lower the sampling error. The denominator measures the 

standard error of the mean, σX̅ or SEM: 

σX̅ = σ
√n⁄  

Please note: σX̅ is pronounced: “Sigma sub X − Bar” 
Equation 4: Formula for the Standard Error of the Mean 

With the standard error of the mean, σX̅, will be larger when the data are more variable; 

which is to say, when the standard deviation, σ, is the larger.  

Table 5: The larger the standard deviation, σ, the larger the standard error 
𝛔

√n⁄ = σX̅ 𝟓
√100

⁄ = 0.5 𝟏𝟎
√100

⁄ =1.0 𝟏𝟓
√100

⁄ = 1.5 

 
Similarly, the larger the sample size, n, the smaller the standard error of the mean, σX̅. 

Table 6: The larger the sample size, n, the smaller the standard error of the mean 
𝜎

√𝐧⁄ = 𝜎𝑋̅ 5
√𝟏𝟎𝟎

⁄ = 0.5 5
√𝟏𝟐𝟏

⁄ =0.45 5
√𝟏𝟒𝟒

⁄ = 0.42 

 
The z-value formula for sample is very important. It is the essence of many formulas used 

in Null Hypothesis Significance Testing (NHST)—showing the strength of the statistical 

evidence in an analysis— which we will discuss in later modules. It is a fraction with 

sampling error in the numerator and the standard error of the mean, or the proportion, in 

the denominator. 



 

 

VI. Calculating z-value for Samples 

We usually use samples to make decisions about how different a parameter, μ, is from the 

statistic, X̅. When we discuss NHST, we will calculate z-values for samples to determine 

whether the probability that the difference between X̅ and μ is due to sampling error.  

Let’s calculate a couple of z-values for samples. According to the National Center for 

Education Statistics, the mean SAT score, μ, in 2017 for high school students in New York 

State was 1052 with a σ of 188. We take a sample of 36 students at Queens College. This 

sample shows the sample mean, X̅, is 1140. Compare the New York State SAT scores to the 

survey results conducted among students at Queens College. The z-value for that sample is 

2.81. 

z =
X̅ − μ
σ

√n⁄
=

1140 − 1052

188
√36

⁄
=

1140 − 1052

188
6⁄

=
88

31.33
= 2.81 

Equation 5: z-value for SAT Score of Students at Queens College Compared to the New York State Average 

What is the probability of having a z-value as high as 2.81? To answer this question, 

we look up this z-value on the Area Under the Curve Table. A z-value of 2.81 is 49.75 

percent above the mean. Only 0.25 percent of the data are higher than this score. It 

seems reasonable to conclude that the difference between the Queens College 

average of 1140 and the New York State average of 1052 is more than what we 

would expect from sampling error. This difference is likely a statistically significant 

difference; which means that the difference between X̅ and μ is bigger than what we 

would expect with sampling error.  

https://nces.ed.gov/programs/digest/d17/tables/dt17_226.40.asp
https://nces.ed.gov/programs/digest/d17/tables/dt17_226.40.asp


 

 

 
Figure 2: z-value for 2.81 = 0.4975 and a shaded normal curve 

Let’s calculate the z-value for another college. A survey of 36 students at York 

College reveals a sample mean of 1040. The z-value these students at is -0.38, which is very 

close to the population mean for students residing in New York State. Using the Area Under 

the Curve Table, we conclude that the students at York College are only 14.8 percent below 

the mean for New York State. 

z =
X̅ − μ
σ

√n⁄
=

1040 − 1052

188
√36

⁄
=

−12

188
6⁄

=
−12

31.33
= −0.38 

Equation 6: z-value for SAT Scores for Students at York College Compared to the New York State Average 

Area between the Mean and z
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974

2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981

2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986

3210-1-2-3
2.81

0.5000 0.4975



 

 

  
Figure 3: z-value for 0.38 and a shaded normal curve 

The difference between SAT scores of 1040 and 1052 appears to be merely 

sampling error.  

IX. Summary 

With the z-value formula for samples, we can now begin to conduct inferential 

statistics or methods of inferring findings about populations using samples. From 

here on, our focus will be inferential statistics. In our next module, Module 11, we 

will estimate the population mean, μ, and population proportion (π) using 

confidence intervals, which are a range of values where, over the long-term, we 

would expect to find the population parameter. We will also introduce another 

continuous probability distribution called student-t. In Module 12, we will review 

some fundamental ways of determining sample size, which is an important issue for 

null hypothesis significance testing. Modules 13 through 17 will cover NHST. 

Area between the Mean and z
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141

0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517

0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879

0.1480



 

 

Module 18, which will cover Linear Correlation and Regression, has a number of null 

hypothesis tests. 

X. Exercises 

Data for these exercises can be found in 10_Exercises.xlsx. 

Exercise 1: Sample Distribution of the Sample Means 

After a disappointing season, President Adams, who is 5’7” tall, is voted off the 

Presidents’ basketball team. His replacement is a lanky newcomer, President 

Abraham Lincoln, who is 6’4” tall. The average points per game for the Presidents’ 

team after President Lincoln’s first thirty game are shown in Table 7. 

Table 7: Average Points Scored per Game 

President Points 
Monroe 10 
Madison 14 
Jefferson 20 
Washington 30 
Lincoln 36 

 
A)  Calculate the population mean, μ;  
 
B)  How many samples of two players from the five players are possible?  
 
C)  Calculate the samples means, show your results as a sampling distribution of 

sample means; 
 
D)  How many of the samples have sample error? Which ones, if any, do not? 
 
E)  Calculate the mean of the sampling distribution of sample means;  

F) Using the range compare variability in the population to variability in the sampling 

distribution.  

Exercise 2: Area Under the Curve 



 

 

According to the National Center for Education Statistics, the mean SAT score (μ) in 2017 

for high school students in New York State was 1052 with a σ of 188. You conducted a 

random sample of 36 students at five colleges around New York City. Here are your results: 

Table 8: SAT Score for Five New York City Area Colleges 

College n SAT, X̅ 
Brooklyn College 36 1160 
School of the Visual Arts 36 1110 
Saint Francis College 36 950 
Touro College 36 1015 
Vaughn College of Aeronautics 36 1010 

 
A.  Calculate the z-values for each school; 

B.  Report the probability of finding these z-values for each school;  

 

* * * 

  

https://nces.ed.gov/programs/digest/d17/tables/dt17_226.40.asp


 

 

 

 

Except where otherwise noted, Clear-Sighted Statistics is licensed under a  

Creative Commons License. You are free to share derivatives of this work for 

non-commercial purposes only. Please attribute this work to Edward Volchok. 

* * * 

1 Pew Research Center, “Why Probability Sampling,” https://www.people-
press.org/methodology/sampling/why-probability-sampling/7/  

 

https://creativecommons.org/licenses/by/4.0/
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