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The premise of density-functional theory is that knowledge of the ground-state density uniquely determines
the Hamiltonian, and thereby, via solution of the corresponding time-independent Schrödinger equation, all the
properties of the system. The density therefore constitutes a basic variable of quantum mechanics. There are at
present two paths from the density to the Hamiltonian: the Hohenberg and Kohn proof of the bijectivity between
the external potential and the basic variable, and the Percus, Levy, and Lieb constrained-search proof. We argue
the Hohenberg- and Kohn-type proof to be the more fundamental, and that this is the case in general when both
external electrostatic and magnetostatic fields are present, and the basic variables are the ground-state density
and physical current density.

DOI: 10.1103/PhysRevA.85.052502 PACS number(s): 31.15.ec

Density-functional theory (DFT) is an extensively em-
ployed theory of the electronic structure of matter. In the
context of DFT, matter is defined as a system of N electrons in
the presence of an external field F ext(r) = −∇v(r), with v(r)
a scalar potential. The premise of DFT is that knowledge of the
ground-state density ρ(r) of a system uniquely determines the
Hamiltonian Ĥ to within a constant, and thereby via the so-
lution � of the corresponding time-independent Schrödinger
equation, all the properties of that system. The density ρ(r), a
gauge-invariant property, is thus considered a basic variable of
quantum mechanics. There are two proofs of the path from the
ground-state density ρ(r) of a system to its Hamiltonian Ĥ .
There is the original path derived for a nondegenerate ground
state due to Hohenberg and Kohn (HK) [1] based on the proof
of bijectivity between ρ(r) and the external potential v(r).
Then there is the constrained-search proof of Percus, Levy,
and Lieb (PLL) [2]. The two proofs are independent, and as
such are considered at present to be at par with each other. We
argue that the HK proof is more fundamental, and that this is
the case in general when the electrons are also subject to other
external fields such as a magnetostatic field. The principal
reason for this is that it is solely via the proof of bijectivity
between the external potentials and certain gauge-invariant
properties of the system that determines what constitutes the
basic variables of quantum mechanics. Consequently, the PLL
proof, which requires the a priori knowledge of what the basic
variables are, is dependent on the conclusions of an HK-type
proof of bijectivity and is therefore less fundamental. More
significantly, the choice of what constitutes a basic variable
is not arbitrary but governed by the one-to-one relationships
of HK. The use of PLL-type proofs for arbitrarily chosen
properties, or those properties assumed to be basic variables
on the basis of proofs that ignore the presence of the external
potentials, is thus no longer justified.

In order to explain our reasoning, we begin with a brief
review of the two paths from the ground-state density ρ(r) to
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the Hamiltonian Ĥ . The Hamiltonian in atomic units (e = h̄ =
m = 1) is Ĥ = T̂ + Û + V̂ , where the respective operators
are the kinetic T̂ = 1

2

∑
k p2

k ,p̂k = −i∇rk
, electron interaction

Û = 1
2

∑′
k,� 1/|rk − r�|, and external potential V̂ = ∑

k v(rk).
The Schrödinger equation is Ĥ (R)�(X) = E�(X), where
{�(X),E} are the eigenfunctions and eigenenergies, with R =
r1, . . . ,rN ; X = x1, . . . ,xN ; x = rσ,{rσ } being the spatial and
spin coordinates of the electron. The energy E is the expec-
tation value of the Hamiltonian Ĥ : E = 〈�(X)|Ĥ |�(X)〉 =
T + Eee + ∫

ρ(r)v(r)dr, where T and Eee are the kinetic and
electron-interaction energies being the expectation values of
the corresponding operators, and where the ground-state den-
sity ρ(r) is the expectation value ρ(r) = 〈�(X)|ρ̂(r)|�(X)〉
with the density operator ρ̂(r) = ∑

k δ(rk − r).
Hohenberg-Kohn path. The HK theorem is proved for

the case when the N -electron system is in a nondegenerate
ground state. In the theorem, it is first proved (map C) that the
relationship between the external scalar potential v(r) and the
wave function �(X) is bijective or one to one. This fact is then
employed in the proof (map D) that the relationship between
�(X) and ρ(r) is bijective. Thus

v(r)
Map C←→ �(X)

Map D←→ ρ(r). (1)

The proof is for v-representable densities, i.e., for densities
obtained from wave functions that are solutions of Hamiltoni-
ans of the form given above. Knowledge of ρ(r) then uniquely
determines v(r) to within a constant, and since the operators T̂

and Û are assumed known, and so is the Hamiltonian Ĥ (R).
The solution �(X) of the Schrödinger equation then leads to all
the properties of the system. The wave function �(X) is thus
a functional of the density ρ(r) : �(X) = �[ρ]. Via a density-
preserving unitary transformation [3,4] it has been shown that
the wave function must also be a functional of a gauge function
α(R). This ensures that the wave function when written as
a functional is gauge variant. Thus, �(X) = �[ρ(r),α(R)].
Furthermore, the HK proof is generalized [3,4] to be valid
for each choice of gauge function α(R). The HK theorem
thus defines [5,6] a basic variable of quantum mechanics
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as a gauge-invariant property, knowledge of which uniquely
determines the external potential, hence the Hamiltonian, and
thereby via the solution of the Schrödinger equation, all the
properties of the system.

Percus-Levy-Lieb path. The PLL proof assumes knowledge
of the fact that the basic variable is the density ρ(r). The
proof is valid for both nondegenerate and degenerate ground
states and for N -representable densities. The proof involves a
constrained search over all antisymmetric functions �ρ(X) that
generate the ground-state density ρ(r). The true wave function
�(X) is the one that yields the density ρ(r) and minimizes the
expectation value of T̂ + Û :

min
�ρ→ρ

〈�ρ(X)|T̂ + Û |�ρ(X)〉. (2)

This expectation value is independent of the external potential
v(r). [Implicit in this constrained-search procedure is that the
functions �ρ(X) lead to rigorous upper bounds to the ground-
state energy, the true �(X) giving the exact value E.] Further,
according to Levy [2], as �(X) cannot be an eigenfunction
of more than one Ĥ with a multiplicative potential, it follows
that ρ(r) determines Ĥ uniquely within an additive constant,
and hence via solution of the Schrödinger equation all the
properties of the system. Thus, this path to the Hamiltonian is

ρ(r) −→ �(X) −→ Ĥ . (3)

If more than one �(X) satisfies Eq. (2), then these functions all
give the same ground-state energy. Thus, when degeneracies
exist, Eq. (3) once again follows (see Levy [2]). As the
operators T̂ and Û are known, the path from �(X) to Ĥ

in Eq. (3) requires knowledge of the external potential v(r).
The potential v(r) may be determined explicitly, either by
inversion [7] of the Schrödinger equation, or by a more
physical description via the “quantal Newtonian” first law
[3,7,8], according to which the sum of the external F ext(r)
and internal F int(r) fields on an electron vanish. Thus, v(r) is
the work done to bring an electron from a reference point at
infinity to its position at r in the force of the internal field:

v(r) =
∫ r

∞
F int(r′) · d�′, (4)

where F int(r) = Eee(r) − D(r) − Z(r). Here the component
fields are [3,7] the electron interaction Eee(r), differential
density D(r), and kinetic Z(r). The sources of these fields
are quantal in that they are expectation values of Hermitian
operators taken with respect to the wave function �(X),
which is known as a result of the constrained search. For
the definitions of the quantal sources and fields, we refer the
reader to [3,7]. To complete the PLL prescription, we note that
it is possible to construct [9] antisymmetric functions �ρ(X)
that generate the density ρ(r). It is also possible to construct
[10] antisymmetric functions �ρ(X) that are functionals of
functions χ , i.e., �ρ(X) = �ρ[χ ](X) that also reproduce a
given density ρ(r).

Note that the constrained-search proof does not deter-
mine what property constitutes a basic variable. Had it
not been known that the ground-state density ρ(r) is a
basic variable, the PLL proof would not be possible. This
becomes more evident in the case of the added presence
of a magnetostatic field B(r) = ∇ × A(r), with A(r) the

vector potential. In this case in atomic units such that
e = h̄ = m = 1, the Hamiltonian Ĥ = T̂ + Û + V̂A, where
the external potential operator V̂A = V̂ + 1

c

∫
ĵ(r) · A(r)dr −

1
2c2

∫
ρ̂(r)A2(r)dr with the physical current-density oper-

ator ĵ(r) = ĵp(r) + ĵd (r), the paramagnetic current-density
operator ĵp(r) = 1

2i

∑
k[∇rk

δ(rk − r) + δ(rk − r)∇rk
], and the

diamagnetic current-density operator ĵd (r) = ρ̂(r)A(r)/c. The
energy expectation value is E = T + Eee + ∫

ρ(r)v(r)dr +
1
c

∫
j(r) · A(r)dr − 1

2c2

∫
ρ(r)A2(r)dr, with j(r) the physical

current density. Once again, via a density-preserving unitary
transformation, the wave function is a functional of a gauge
function α(R) : �(X) = �[α(R)]. (For a constant magnetic
field, the above Hamiltonian can be shown to correspond to
the interaction of the magnetic field with the orbital angular
momentum.)

The question which arises is what properties constitute the
basic variables in quantum mechanics when a magnetostatic
field is present. The answer, originally provided a quarter of a
century ago [11], is that the basic variables are the ground-state
density ρ(r) and the gauge-variant paramagnetic current
density jp(r) = 〈�(X)|ĵp(r)|�(X)〉. With this choice of basic
variables, a constrained-search proof is readily constructed
[12]. One searches over all antisymmetric functions �ρ,jp (X)
that yield the ground state {ρ,jp}. The true ground-state
wave function �(X) is that which minimizes the expectation
value of T̂ + Û . Although such a proof with these basic
variables appears logical, it is fundamentally in error as
explained below.

In our recent work [5,6] we have explained why {ρ,jp}
cannot be the basic variables. Among the several reasons
given, the most significant one is that the proof for {ρ,jp}
being the basic variables ignores a fundamental physical fact
intrinsic to this case. In contrast to the B(r) = 0 case, where
the relationship between the external potential v(r) and the
nondegenerate ground-state wave function �(X) is one to one,
in the B(r) finite case the relationship between the external
potentials {v(r),A(r)} and the nondegenerate ground state
�(X) can be many to one. Hence,

{v(r),A(r)} ↘
{v′(r),A′(r)} −→
{v′′(r),A′′(r)} −→ �(X)

... ↗ (5)

The many-to-one relationship is exhibited, for example, by
the two-dimensional Hooke’s atom in a magnetic field [13].
In this example there exists an infinite number of {v(r),A(r)}
that generate the same ground state �(X). A consequence
of the many-to-one relationship is that knowledge of {ρ,jp}
is inadequate to determine the physical current density j(r)
uniquely. The constrained-search proof with {ρ,jp} as the basic
variables is thus in error.

As a result of the many-to-one relationship between
{v(r),A(r)} and �(X), it is evident that there can be no
equivalent of map C of the original HK proof. The proof [11]
that {ρ(r),jp(r)} are the basic variables relies solely on a
map-D-type argument of a one-to-one relationship between
�(X) and {ρ(r),jp(r)}. The claim is that since the wave
function �(X) is then known, the many-to-one relationship
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between {v(r),A(r)} and �(X) can be ignored. However, the
solely map D argument presupposes [5,14] the existence of
the generalization of map C and is therefore fundamentally
flawed. Consequently, one does not know the wave function
�(X). For other reasons why {ρ(r),jp(r)} cannot be the basic
variables, we refer the reader to [5,6].

In our work [5,6], we have proved the bijective relationship
between the external potentials {v(r),A(r)} and the gauge-
invariant properties {ρ(r),j(r)} of the N -electron system in a
nondegenerate ground state. In other words,

{v(r),A(r)} ←→ {ρ(r),j(r)}. (6)

Thus, knowledge of {ρ(r),j(r)} determines v(r) to within a
constant and A(r) to within the gradient of a scalar function,
and thereby determines uniquely the Hamiltonian Ĥ of the
system. Our proof of this bijectivity explicitly accounts for the
many-to-one relationship between {v(r),A(r)} and the non-
degenerate ground state �(X). Hence, the basic variables in
the presence of a magnetostatic field are {ρ(r),j(r)}. With this
knowledge, a constrained-search proof for the determination
of the ground-state wave function �(X) follows [5,6]. One
searches over all antisymmetric functions �ρ,j(X) that yield
the ground state {ρ(r),j(r)}. These functions lead to rigorous
upper bounds to the ground-state energy. The true ground-state
wave function �(X) is that which yields {ρ(r),j(r)} and which
minimizes the expectation value of T̂ + Û :

min
�ρ,j→ρ,j

〈�ρ,j(X)|T̂ + Û |�ρ,j(X)〉. (7)

This expectation value is independent of the external potentials
{v(r),A(r)}. Once again, as �(X) cannot be an eigenfunction
of more than one Ĥ with a multiplicative scalar potential
and vector potential, it follows that {ρ(r),j(r)} determines Ĥ

uniquely to within an additive constant and the gradient of a
scalar function:

{ρ(r),j(r)} → �(X) → Ĥ . (8)

If more than one �(X) satisfies Eq. (7), then these functions all
give the same ground-state energy. Thus, degenerate ground
states are accounted for in Eq. (8). In going from �(X) to
Ĥ , the external potential v(r) may again be obtained from the
corresponding “quantal Newtonian” first law [15,16]: F ext +
F int = 0, where F ext = E(r) − L(r) with E(r) = −∇v(r)
and L(r) = j(r) × B(r)/ρ(r) the magnetic field component
of the Lorentz field, and F int(r) = Eee(r) − D(r) − Z(r) −
I(r) with I(r) the contribution of the magnetic field to
the internal field of the electrons. (For the definitions of
the fields and their quantal sources, we refer the reader
to [15].) This constrained-search proof for the determination
of the ground-state wave function �(X), and simultaneously
the energy E, is the correct counterpart to our proof via
bijectivity. Once again, it is possible to construct antisym-
metric functions �ρ,j(X) [17–19] that reproduce a given
{ρ(r),j(r)}. [We note that in the construction of the Slater
determinant in [17], the bijective relationship of Eq. (6) must
be employed.]

The conclusion, based on the above discussion, is that
knowledge of what constitutes the basic variables in quantum
mechanics is arrived at via a (HK-type) proof of bijectivity
between the basic variables and the external potentials. It

is with this knowledge that a PLL proof becomes possible,
because only then is the subspace over which the constrained
search is to be performed defined. The search over this
subspace then leads to the true ground-state wave function
and energy.

For completeness, we note that according to the
Gunnarsson-Lundqvist theorem [20,21], there also exists a
one-to-one relationship between the density ρe(r) of the lowest
excited state of a given symmetry and the external potential
v(r). Thus such a density is also a basic variable of quantum
mechanics. With this knowledge, a constrained-search proof
for the determination of the excited-state wave function �e(X)
and energy Ee may then be constructed. One searches over all
antisymmetric functions �ρe (X) of the given symmetry that
yield the density ρe(r). The wave function �e(X) is that which
yields the density ρe(r) and which minimizes the expectation
value of T̂ + Û . The functions �ρe (X) yield rigorous upper
bounds to the excited-state energy, with �e(X) leading to the
true value Ee.

Are all solely map-D-type proofs of what constitutes a basic
variable flawed? In addition to the case of current-density-
functional theory as discussed above, such proofs also exist
for spin-density-functional theory [22], for current-density-
functional theory when the added interaction between the
magnetic field and the spin angular momentum is also consid-
ered, and for other Hamiltonians [23]. The corresponding PLL
proofs exist [18,19,24] for the assumed basic variables. We dis-
cuss these individual cases in future work. We note, however,
that ignoring the natural fact of the many-to-one relationship
between the external potentials and the nondegenerate ground-
state wave function voids these proofs. Furthermore, solely
map-D-type proofs can be applied to any property, making it
unclear as to what the true basic variables are. For example, in
current DFT, the map D proof [11] given for {ρ(r),jp(r)} has
also been given [25] for the variables {ρ(r),j(r)}. What is done
in map-D-type proofs is that arbitrarily chosen properties are
put on the right-hand side of the map, a map C between external
potentials and the wave function presupposed, and then a
one-to-one relationship “proved” between the wave function
�(X) and the property. Lastly, the principal manner by which
DFT is applied is via the assumption of noninteracting v

representability. That is via the construction of a model
system of noninteracting fermions or bosons that possess
values of the basic variables that are identical to those of
the interacting electronic system. Knowledge of the true basic
variables then permits the construction of the unique model
system that reproduces these variables. For example, in current
DFT it is possible to construct [5,15] model noninteracting
fermion and boson systems that reproduce the basic variables
{ρ(r),j(r)}. This shows that these densities are noninteracting
v representable. It is not possible to construct such a unique
local effective potential system with {ρ(r),jp(r)} as the basic
variables because knowledge of {ρ(r),jp(r)} cannot uniquely
determine {ρ(r),j(r)}. We also note that the optimized potential
method has been proposed [26] as a means to circumvent
the many-to-one relationship between the external potentials
and the ground-state wave function, but the underlying formal
issues still persist.

Finally, as discussed above, the PLL constrained-search
proofs for the determination of the wave function �(X) for
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the cases for which B(r) = 0 and B(r) 
= 0 are explicitly
independent of the respective external potentials v(r) and
{v(r),A(r)}. This is a key attribute of the PLL-type proof.
But these proofs require a priori knowledge of the basic
variables ρ(r) and {ρ(r),j(r)}, respectively. As a consequence,
there is an implicit dependence of the proofs on the external
potentials. This follows from the bijective relationship between
the external potentials and the basic variables: knowledge
of the ground-state density ρ(r) uniquely determines v(r) to
within a constant, and knowledge of {ρ(r),j(r)} determines
{v(r),A(r)} to within a constant and a gauge transformation.
Thus, the PLL proof is intrinsically connected to the specific
physical system of interest as defined by the external potentials,
in spite of the fact that one is minimizing the expectation value
only of the operators T̂ + Û . In this manner, the HK theorem
provides a deeper perspective into the PLL constrained-search
proof.

In conclusion, there are many attributes of the PLL
constrained-search proof over the HK-type proof for the
determination of the wave function of a system of electrons:

the stringent v-representability constraint is reduced to one of
N representability; there is the generalization in the proof to
degenerate states; and lastly, there is the explicit independence
from external potentials in the proof. However, these attributes
only accrue as a result of preknowledge of what the basic
variables are. What properties constitute the basic variables
of quantum mechanics can only be determined via the rig-
orous HK-type bijectivity proofs which explicitly involve the
external potentials that define the Hamiltonian. The external
potentials play the key role of defining the physical system
and thereby the basic variables. Therefore, in spite of the
restriction to v-representable densities and to nondegenerate
ground states, it is the HK-type proof that is the more
fundamental.
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