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ARTICLE

Griffithsin carrageenan fast dissolving inserts
prevent SHIV HSV-2 and HPV infections in vivo
Nina Derby1, Manjari Lal2, Meropi Aravantinou1, Larisa Kizima1, Patrick Barnable1, Aixa Rodriguez1,

Manshun Lai2, Asa Wesenberg1, Shweta Ugaonkar1, Keith Levendosky1, Olga Mizenina1, Kyle Kleinbeck1,

Jeffrey D. Lifson3, M. Melissa Peet4, Zachary Lloyd4, Michael Benson4, Walid Heneine5, Barry R O’Keefe 6,

Melissa Robbiani7, Elena Martinelli1, Brooke Grasperge8, James Blanchard8, Agegnehu Gettie9,

Natalia Teleshova1, José A. Fernández-Romero1,10 & Thomas M. Zydowsky1

Human immunodeficiency virus (HIV) pre-exposure prophylaxis (PrEP) strategies with

proven in vivo efficacy rely on antiretroviral drugs, creating the potential for drug resistance

and complicated treatment options in individuals who become infected. Moreover, on-

demand products are currently missing from the PrEP development portfolio. Griffithsin

(GRFT) is a non-antiretroviral HIV entry inhibitor derived from red algae with an excellent

safety profile and potent activity in vitro. When combined with carrageenan (CG), GRFT has

strong activity against herpes simplex virus-2 (HSV-2) and human papillomavirus (HPV)

in vitro and in vivo. Here, we report that GRFT/CG in a freeze-dried fast dissolving insert

(FDI) formulation for on-demand use protects rhesus macaques from a high dose vaginal

SHIV SF162P3 challenge 4 h after FDI insertion. Furthermore, the GRFT/CG FDI also protects

mice vaginally against HSV-2 and HPV pseudovirus. As a safe, potent, broad-spectrum, on-

demand non-antiretroviral product, the GRFT/CG FDI warrants clinical development.
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The promise for success of oral pre-exposure prophylaxis
(PrEP) in preventing HIV acquisition is threatened by the
side effects and systemic accumulation of antiretroviral

drugs (ARVs). Side effects are less acceptable in uninfected than
HIV infected people. Drug accumulation may have consequences
for HIV treatment in people who become infected and long-term
health consequences for those who remain uninfected. ARV
candidates also dominate the topical microbicide arena, bringing
the same issues of side effects, long-term consequences, and
resistance. Currently, the microbicide development pipeline
contains no strictly non-ARV options1.

Development of non-ARV microbicides initially centered on
molecules with non-specific modes of action, but the candidates
either were too weak to show efficacy in humans or caused epi-
thelial damage, increasing HIV risk2. Lectins represent a specific
non-ARV approach to HIV prevention, binding envelope glycans
and interfering with the interactions between the envelope gly-
coproteins and cellular receptors. Although one lectin, cyanovirin,
reduced vaginal SHIV infection in macaques3,4, its unacceptable
safety profile diminished enthusiasm for the approach5,6.

Griffithsin (GRFT) is a mannose binding lectin derived from red
algae that has an excellent safety profile5–7. It is the most potent
anti-HIV lectin identified to date and among the most potent anti-
HIV agents8,9. GRFT prevents both cell-free and cell-associated
HIV transmission and virus-cell fusion10 with picomolar activity
against cell-free virus in vitro (50% effective concentration [EC50]
1.6 ng/ml [0.13 nM], EC90 7.2 ng/ml [0.58 nM]11). GRFT inhibits
infection with other pathogens, including HSV by targeting entry
and cell-to-cell transmission, and HPV by mediating receptor
internalization7,12. GRFT’s activity against sexually transmitted
infections (STIs) that increase HIV susceptibility and exhibit
intertwined epidemiology with HIV infection (such as HSV-2 and
HPV13–18) adds to its appeal. A multipurpose prevention technol-
ogy (MPT) that can simultaneously protect against multiple STIs
may improve adherence14. Tackling HIV, HSV-2, and HPV with a
single strategy may also improve anti-HIV efficacy.

Carrageenan (CG) is an algae-derived polysaccharide that is
safe and highly potent against HPV19–25 and is in clinical testing
for HPV prevention and clearance21,25. The GRFT/CG combi-
nation acts synergistically against HSV12. Neither GRFT nor CG
is readily absorbed after topical administration26, making these
antiviral agents ideal for repeated/extended topical use. CG is
already included in many foods and personal care products2 and
is generally recognized as safe (GRAS), which simplifies the
regulatory pathway for GRFT/CG products.

In this study, we demonstrate in vivo anti-HIV efficacy of
GRFT using the SHIV SF162P3 infection model in rhesus
macaques. For on-demand protection, we use a novel fast dis-
solving vaginal insert (FDI) formulation of GRFT/CG that sta-
bilizes GRFT27. We also show that the formulation protects
against HSV-2 and HPV infections in mice and provide tox-
icological and immunological data on repeated dosing that
confirm the safety of GRFT/CG. We find that GRFT concentra-
tions 3 logs above the in vitro EC90 are associated with in vivo
protection from SHIV and are sustained for at least 8 h after FDI
insertion. A potent non-ARV on-demand MPT, the GRFT/CG
FDI could have an important place within the HIV prevention
toolbox.

Results
GRFT CG FDIs protect from SHIV SF162P3 vaginal infection.
GRFT/CG FDIs containing 1 mg GRFT (3.3 wt.%) and 3 mg CG
(10 wt.%) (Table 1) protected 8 out of 10 macaques from SHIV
SF162P3 infection in a vaginal challenge model. In contrast,
control (CG only) FDIs protected 0 out of 10 macaques

(Fig. 1a–c). GRFT/CG and CG FDIs were inserted vaginally in
depot medroxyprogesterone acetate (DMPA)-treated macaques 4
h before intravaginal challenge with 300 50% tissue culture
infectious doses (TCID50) of a viral stock containing 4.1 × 103

TCID50 and 1.3 × 107 RNA genomes/ml. This protection was
highly significant (p= 0.0004, Fisher’s exact test); GRFT/CG FDI
use resulted in a 5-fold reduction in the relative risk of infection
(95% confidence interval [CI] 1.4-17.3). GRFT/CG FDIs did not
appear to influence the course of infection in the 2 animals that
became infected (Fig. 1d, e). Initial sequencing results (for 1
GRFT-exposed macaque and 1 control) suggest that there was no
GRFT-related selection for transmitted variants within the SHIV
stock (Supplementary Fig. 1, Supplementary Methods). SHIV
challenge was performed in the absence of seminal fluids. How-
ever, in vitro, semen does not impact the anti-HIV activity of
GRFT (Fig. 2).

GRFT CG FDIs release GRFT vaginally without inflammation.
The GFRT/CG FDI tested against SHIV SF162P3 in vivo was
selected based on in vitro stability and release criteria27. Since
DMPA can influence mucosal drug absorption characteristics28,
we determined GRFT release in vivo both in DMPA-treated and
non-DMPA treated macaques. FDIs inserted vaginally in non-
DMPA-treated macaques (n= 6 per time point) delivered high
concentrations of GRFT to the vaginal lumen. GRFT con-
centrations in cervicovaginal lavages (CVLs) were sustained
between 1 and 8 h post-insertion while GRFT was not detected in
plasma (Supplementary Fig. 2, Fig. 3a). In CVLs from macaques
treated with DMPA 4 weeks before FDI insertion (n= 6 per time
point), mean GRFT levels were also high–approximately 7000
and 4000 times the EC90 at 4 and 8 h, respectively. Although
GRFT levels at each time point were significantly higher in non-
DMPA-treated than DMPA-treated macaques, the concentra-
tions in DMPA-treated animals protected against SHIV challenge
in absence of any systemic GRFT detected.

The in-vitro anti-HIV activity of CVLs from non-DMPA-
treated (Fig. 3b) and DMPA-treated (Fig. 3c) FDI-treated
macaques correlated tightly with the GRFT concentrations
therein. The CVLs from 4 h post-insertion also significantly
inhibited SHIV SF162P3 infection in polarized human cervical
explants (Fig. 3d).

GRFT/CG FDIs did not alter the macaques’ vaginal pH; though
as expected29, DMPA by itself increased pH (Supplementary
Fig. 3). No cytokines or chemokines were increased in CVLs from
DMPA-treated macaques after GRFT/CG FDI use (Table 2). Only
CCL2 levels were significantly elevated in CVLs 1 h after GRFT/
CG FDI insertion from non-DMPA-treated macaques (Table 2)

GRFT CG FDIs protect mice against HSV-2 G and HPV16
PsV. We evaluated the anti-HSV-2 and anti-HPV properties of
GRFT/CG FDIs using mouse-sized FDIs containing 0.1 mg (4 wt.
%) GRFT and 0.3 mg (12 wt.%) CG (Fig. 4a, Table 1). In the
murine models of HSV-2 G (Fig. 4b) and HPV16 pseudovirus
(PsV) (Fig. 4c) infection30,31, Balb/C mice are DMPA-treated
prior to virus exposure (7 or 3 days before exposure to 104 plaque
forming units (pfu) of HSV-2 G or 8 × 106 copies of HPV16 PsV,
respectively). For HPV16 PsV, mice are also administered
nonoxynol-9 vaginally 6 h before challenge to expose the base-
ment membrane and facilitate virus binding31. GRFT/CG FDIs
were administered 4 h before virus exposure. GRFT-only and CG-
only FDIs were not tested as we previously examined the con-
tribution of each drug to protection in the HSV and HPV PsV
models using gel formulations12.

GRFT/CG FDIs protected 9 of 15 mice from challenge with a
100% lethal dose of HSV-2 G that infected 15 of 15
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hydroxyethylcellulose (HEC) placebo FDI-treated controls
(Fig. 4d). HEC was used since CG impedes HSV and HPV
infections in mice12,20,30,31. The 63% protection vs. HEC FDI was
highly significant (p < 0.0001, Fisher’s exact test). Protection was
associated with mean GRFT concentrations in mouse vaginal

washes of approximately 300-fold the anti-HSV-2 EC90 (12 ng/ml
based on GRFT concentration) (Fig. 5).

GRFT/CG FDIs also protected 10 of 10 mice against HPV16
PsV infection using in vivo luciferase expression from the
reporter gene for detection and a PsV inoculum that infected 7 of
10 control HEC FDI-treated mice (Fig. 4e, f). Comparison of the
log-transformed radiances revealed that protection by the GRFT/
CG FDI was highly significant vs. HEC FDI (p < 0.0001, ANOVA
with Bonferroni’s correction). In contrast, radiance values in mice
administered GRFT/CG FDIs were not different from back-
ground values in D-PBS treated mice that were not challenged.

GRFT is safe and minimally absorbed after repeated use. To
further probe the safety of GRFT, we performed toxicology stu-
dies. Repeated dosing of GRFT and GRFT/CG in small animal
models revealed no adverse findings at any dose levels tested, and
showed that GRFT/CG gel is non-irritating (Table 3). 7 days of
daily vaginal application of 0.1% GRFT/CG gel did not enhance
the susceptibility of mice to HSV-2 infection when compared to
the D-PBS control (p= 0.7152, Fisher’s exact test). 14 days of
daily intravenous administration of GRFT up to 8.3 mg/kg/day in
rats resulted in no detectable anti-drug-antibodies (ADA) and a
no adverse effect level (NOAEL) of 8.3 mg/kg/day despite high
systemic levels of GRFT. Fourteen days of daily vaginal GRFT/CG
gel dosing (up to 0.3% GRFT) in rats resulted in a NOAEL of
0.3% GRFT and little or no vaginal irritation. This regimen also
resulted in little or no systemic detection of GRFT. A related
study in rabbits also found a NOAEL of 0.3% GRFT and little or
no vaginal irritation.

Discussion
In the era of PrEP and efficacious microbicides, reducing HIV
seroconversion rates remains a challenge. Young women were the
least adherent to daily PrEP and the dapivirine vaginal ring in
large phase 3 clinical trials32–34. Obtaining parental consent for
PrEP or ARV-based microbicide prescriptions may be a high
barrier to uptake. Availability of safe, non-ARV microbicides,

Table 1 FDI composition

Species FDI GRFT CG Dextran 40 Sucrose Mannitol HEC

Macaque GRFT/CG 1 mg 3mg 8mg 2mg 12mg 0mg
CG 0mg 3mg 8mg 2mg 12mg 0mg

Mouse GRFT/CG 0.1 mg 0.3 mg 0.8 mg 0.2 mg 1.2 mg 0mg
HEC 0mg 0mg 0.8 mg 0.2 mg 1.2 mg 0.5 mg
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Fig. 1 GRFT/CG FDIs protect macaques from SHIV infection. a Macaque
sized FDIs. b Schematic of the macaque challenge study. c Plasma viral
RNA copies/ml of SHIV over time following challenge in macaques
administered FDIs. DMPA-treated macaques were challenged with 300
TCID50 SHIV SF162P3 4 h after vaginal administration of either GRFT/CG
FDIs (left, n= 10, 2 of 10 infected) or control CG FDIs containing all the
same components except GRFT (right, n= 10, 10 of 10 infected). The
percent of infected animals in each group was compared at the conclusion
of the study by Fisher’s Exact test. d The means with standard error of the
mean (SEM) are shown as symbols with error bars for macaques that
became infected during the study in the presence of the GRFT/CG (red
symbols, n= 2) or CG (black symbols, n= 10) FDIs. e The number of CD4
T cells per milliliter (ml) of blood is shown over time for all macaques that
became infected. Macaques exposed to GRFT/CG FDIs are in red and to
CG FDIs in black
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Fig. 2 Effect of semen on GRFT anti-HIV activity. The antiviral activity of
GRFT was determined using the TZM-bl MAGI assay with (open squares)
or without (open circles) human whole semen (WS). The graph shows the
percent of virus replication (symbols and error bars represent mean ±
standard deviation (SD)) relative to virus control (triplicates per condition).
The dose-response curves were used to estimate EC50 values with 95%
confidence intervals (not shown). Data are the composite of two
independent experiments
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possibly obtainable without a prescription, could extend coverage
to the most vulnerable populations. A safe and effective on-
demand product that prevents HSV-2 and HPV infections along
with HIV could incentivize use, improve adherence, and decrease
HIV incidence. GRFT, which is a potent, broad-spectrum, poorly

absorbed, and safe non-ARV lectin, is well suited to be an on-
demand multipurpose microbicide. However, the sensitivity of
GRFT to oxidation under mild conditions in vitro has presented
regulatory challenges for its development as a microbicide. By
formulating GRFT in a low moisture content FDI (~1%), we are
able to suppress oxidation compared with the aqueous gel for-
mulation and thereby generate a stable product27. Here we
demonstrate that GRFT/CG FDIs prevent SHIV infection in
macaques while also protecting mice from HSV-2 and HPV. We
further provide the requisite safety data to progress the GRFT/CG
FDI into clinical testing.

GRFT prevented SHIV infection in a highly stringent SHIV
macaque model designed to result in 100% infection of placebo-
treated macaques after a single challenge. We used a viral
inoculum far in excess of the quantities of HIV found in
semen35–38 and also employed DMPA to increase susceptibility to
infection39. All controls did become infected after a single chal-
lenge and experienced robust infection with high peak viremia.
We evaluated protection in this model 4 h post-dosing because
high concentrations of GRFT were detected in CVLs at this time,
and the CVLs significantly prevented SHIV infection in mucosal
target cells. However, vaginal concentrations of GRFT far
exceeded the in vitro effective doses within 0.5–1 h of insertion
(the earliest times examined), and it is likely that high GRFT
concentrations would have been detected at even earlier times.
GRFT/CG FDIs dissolve in under 60 s in biologically relevant
volumes of vaginal simulant in vitro27 though in vivo dissolution
times remain to be assessed. GRFT levels also remained high for
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Fig. 3 GRFT in vivo release and activity. a For PK evaluation, GRT/CG FDIs were inserted vaginally in macaques either treated or not 4 weeks prior with
DMPA. GRFT concentrations are shown in CVL (black symbols) and plasma (aqua symbols) at 4 h (left) and 8 h (right) post-insertion. Separate groups of
macaques were assayed at each time point. The mean ± SEM is indicated by line and error bars for each group of 6 macaques. GRFT was not detected in
plasma (PL) above the lower limit of quantification (LLOQ) of the assay, which was 10 ng/ml (top red dotted line), and so the values are shown at the
LLOQ. The LLOQ for CVL was 1.25 ng/ml (bottom red dotted line). The 100-fold EC90 level, 724.4 ng/ml, is also indicated (blue dotted line).
Concentrations of GRFT in CVL from DMPA-treated and non-DMPA-treated macaques and between 4 and 8 h in DMPA-treated macaques were
compared by two-sided Mann–Whitney test and p values are shown for α < 0.05. b GRFT concentrations in CVLs from non-DMPA-treated macaques and
(c) from DMPA-treated macaques correlated with the EC50 of the CVLs using Spearman correlation analysis. Spearman correlation coefficient (r) and
significance of the association (p value) are shown. d Anti-SHIV SF162P3 activity of CVLs from non-DMPA-treated macaques was analyzed in human
ectocervical explants. Tissue infection level (CUM SIV gag copies/ml) was compared between the Baseline (BL) and 4 h (4 h) post insertion using a log-
normal mixed effects two-sided ANOVA model with time points and animal IDs nested within the experiment assumed as fixed and random effects,
respectively. Four CVLs selected at random from the 6 macaques per time point were each tested twice for 8 replicates total. CVLs were collected from the
same macaques at baseline and 4 h post-insertion. Mean ± SEM is indicated for each group by line and error bars

Table 2 GRFT/CG FDI-induced changes in vaginal cytokines
and chemokines in DMPA-treated and untreated macaques

DMPA No DMPA

Analyte 4 h 8 h Analyte 1 h 4 h 8 h 24 h
CCL5 nd 0.03↓ FGF nd nd nd 0.03↓
IL-15 nd 0.03↓ CCL3 nd nd nd 0.03↓
MIF 0.03↓ 0.03↓ CCL2 0.03↑ nd nd nd
IL-1RA nd 0.03↓ IL-15 nd nd nd 0.03↓
CXCL10 nd 0.03↓ HGF nd nd nd 0.03↓
CXCL9 nd 0.03↓ CXCL10 nd nd nd 0.03↓

CXCL9 nd nd nd 0.03↓

For DMPA-treated macaques, analytes not detected in CVL were: G-CSF, IL-12, CCL11, IL-17,
CCL3, GM-CSF, CCL4, CCL2, EGF, IL-5, HGF, CCL22, CXCL11, TNF-α, and IL-4. Analytes
unaffected by GRFT/CG FDIs at any time point vs. baseline were: FGF, IL-1β, IL-10, IL-6, VEGF,
IFN-γ, IL-2, and CXCL8
For DMPA-untreated macaques, analytes not detected in CVL were: IL-10, CCL11, IL-17, GM-
CSF, CCL4, IL-5, CCL22, and IL-4. Analytes unaffected by GRFT/CG FDIs at any time point vs.
baseline were: IL-1β, G-CSF, IL-6, IL-12, EGF, VEGF, CXCL11, MIF, TNF-α, IFN-γ, IL-1RA, CCL5,
CXCL8, and IL-2
Levels of each analyte were measured in CVL at baseline and at one of the time points post-
insertion. Effects of each GRFT/CG FDI formulation at each time point were compared to
baseline using two-tailed Wilcoxon Signed Rank test, α < 0.05 and the significance of the
difference (p-value) is reported. ‘nd’ indicates no significant difference
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at least 8 h following FDI insertion, and GRFT was detected in the
vaginal fluids of many animals even at the latest times sampled
after dosing, 24 (macaques) to 72 (mice) hours. These levels were
still more than 100-fold the anti-HIV EC90 in most animals at 24
h post-dosing and more than 1000-fold in some. The window of
protection could extend from within 4 min of to 8 h or more after
insertion. GRFT can bind selectively to the cervical epithelium
and remain on the surface of cells6, supporting the rationale to
evaluate protection in vivo at extended times after GRFT dosing.
GRFT concentrations in CVLs were lower after DMPA treatment.
This could be related to differences in vaginal fluid volume or
viscosity, greater adherence of GRFT to the epithelium, or GRFT
loss. Such differences were not observed for tenofovir adminis-
tered to pigtailed macaques40 but could reflect differences in the
physicochemical properties of the drugs, drug delivery systems, or
subspecies. Importantly, efficacy of the GRFT/CG FDI under
non-DMPA conditions may also be even greater than we
observed herein.

The two macaques that became infected in the presence of
GRFT/CG FDIs were similar to uninfected macaques in char-
acteristics that could impact vaginal distribution of GRFT or
susceptibility to SHIV infection (e.g., weight, age, parity, men-
strual cycle phase, and protective MHC alleles). Because we did
not collect CVLs at the time of virus challenge (to not disturb the
vaginal microenvironment or deplete drug), we lack other
information that could have impacted SHIV transmission, such as
vaginal GRFT concentration, microbiome, cytokine/chemokine
milieu, and local ulceration. Because GRFT was not absorbed,
there are no blood levels to indicate GRFT release from the FDI.
Vaginal fluid levels and viscosity could have varied between
macaques as in women41, and GRFT could have been bound to
vaginal fluid proteins42,43.

The SHIV SF162P3 stock used for in vivo challenge herein had
a low passage history and retained the full suite of potential N-
linked glycosylation sites (PNGs) in gp120 present on the pub-
lished SHIV SF162P3 envelope44 less one at position 228 (N228D,
N230D by HIV-1HxB2 numbering). Loss of this PNG (N230Q)
from HIV-1NL4-3 was independently linked with increased
infectivity and transmissibility of the virus45. This may help to
explain the 100% infection rate observed in vivo with the virus
stock. Loss of N230 in combination with other PNGs was also
associated with increased GRFT resistance in four clade C iso-
lates46. Thus, if N228D impacted GRFT activity in macaques, it
would have skewed towards the null hypothesis while we saw
highly significant, potent protection. Variation within the stock
virus gp120 was detected around the V3 loop, and selection for a
specific V3 loop sequence appeared evident in both of the infected
macaques for which we could sequence envelope (one exposed to
GRFT, one not). However, no differences in the two macaques’
virus were detected that could be attributed to GRFT. While it is
unlikely that the two infections in GRFT-exposed macaques were
initiated by a GRFT-resistant viral variant in the inoculum,
additional sequencing of the infected macaques will be needed to
be certain. Resistance is not considered a major problem for on-

100

80

%
 U

ni
nf

ec
te

d

60

40

20

0
0 5 10 15 20

Days

p < 0.0001

GRFT/CG

DMPA DMPA

3 d

2 h

4 h Imaging

FDI HPV

Nonoxynol-9

1 w 4 h

FDI HSV-2

3 w
Follow-up

GRFT/
CG

HEC HEC

Luminescence counts
color scale
min = 19, max = 21

HEC

6 ****
****

p < 0.0001

5

Lo
g 

ra
di

an
ce

(P
/S

/c
m

2 /
sr

)

4

3

2
GRFT/

CG
D-PBS

HPV 16 PsV no PsV

a b c

d e f

Fig. 4 GRFT/CG FDIs protect mice from HSV-2 and HPV PsV infections. a Mouse-sized FDI. Schematics of the (b) mouse HSV-2 G and (c) HPV16 PsV
challenge studies. d Survival curves showing the proportion of mice (of 15 total per group) that remained uninfected over time after HSV-2 G challenge.
The GRFT/CG FDI was compared with an FDI containing HEC (HEC FDI). Significance was assessed using Fisher’s exact test for the proportion infected vs.
uninfected in each group at study termination. The Fisher’s p value is shown. e In vivo imaging of luminescence from HPV16 PsV challenge. Each mouse
corresponds to a data point in f. f DMPA-treated mice were given one of the indicated formulations (HEC FDI, GRFT/CG FDI, or D-PBS) intravaginally 4 h
before HPV 16 PsV (or no PsV for D-PBS-treated mice) challenge (n= 10/treatment). In vivo luciferase expression (from e) is expressed as mean
luminescence in photons per second per centimeter squared per steridian ± SD for each individual animal. Two-sided ANOVA was used to analyze the log-
transformed radiances across treatments in the HPV PsV mouse model. The F test was used for overall comparison between treatments (p value in italics),
and pairwise comparisons were performed using Tukey–Kramer adjusted t tests with significance indicated by asterisks: ∗∗∗∗p < 0.0001. Mean ± SEM is
indicated for each group by line and error bars

106

105

104

103

G
R

F
T

 (
ng

/m
l)

102

101

100

0 2 4 6 8 1020 60100

100X EC
90 HSV

100X EC
90 

HIV

LLOQ: Vag wash

Hours

Fig. 5 PK of GRFT in vaginal washes of DMPA-treated mice. Vaginal
washes were collected from 5–6 mice per time point at 0.5, 1, 2, 4, 6, 8, 24,
48, and 72 h after FDI insertion. Separate mice were measured at each time
point. The levels of GRFT equivalent to 100-fold above the anti-HIV EC90

and 100-fold above the anti-HSV-2 EC90 are both shown (blue dotted lines)
as is the LLOQ of GRFT (red dotted line) in mouse vaginal washes (5 ng/
ml). Each symbol with error bars indicates the mean ± SEM of the mice in
that group

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06349-0 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:3881 | DOI: 10.1038/s41467-018-06349-0 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


demand products, especially drugs like GRFT that are not
absorbed after topical administration. The development of resis-
tance to GRFT in vitro is slow, even for clade C virus under
enhanced drug pressure conditions46. Importantly, the mechan-
ism of action of GRFT differs from those of ARVs currently used
in prevention and treatment.

We evaluated activity in single virus models (SHIV, HSV, HPV
alone) while exposure scenarios are likely to involve multiple
viruses. Mixed inoculum studies in explant models and in vivo,
such as those we have used to evaluate ARV-based micro-
bicides47–49, will be essential to inform clinical progression of
candidates that target multiple pathogens.

For entry blockers to impact the HIV epidemic, they must be
able to act on diverse envelopes, especially those from clade C,
which accounts for approximately 46% of HIV infections
worldwide and dominates the epidemic in southern Africa. These
agents must also be efficacious in the presence of semen. We
tested the efficacy of GRFT against SHIV SF162P3, a virus with a
clade B-derived envelope against which GRFT has a known low
EC50 (1.04 ng/ml). However, published data show that GRFT
potently inhibits infection with transmitted HIV isolates from
clade C, as well as B and also possesses activity against isolates
from clade A11. We have found herein and in previous work that
neither GRFT’s anti-HIV activity nor CG’s anti-HPV activity is
inhibited by seminal fluids20. Other studies found that GRFT’s
anti-HSV-2 activity is preserved in the presence of seminal
plasma7. Thus GRFT has the potential to reduce HIV transmis-
sion in the epidemic’s hot spots and in the context of intercourse.

Non-ARV microbicides that have advanced into the clinic have
not proven potent enough to demonstrate protection in human
trials. Those that have shown the greatest efficacy in macaques
(i.e., cyanovirin3,4, glycerol monolaurate50) are immunomodula-
tory, bringing their own risks. In fact cyanovirin triggers
expression of many genes and secretion of pro-inflammatory
proteins6. GRFT, which does not induce such changes, is orders
of magnitude more potent than other non-ARVs in vitro against
HIV and is just as, or more potent than, ARVs. Furthermore, the
benefits of combining HIV protection with HSV and HPV pro-
tection cannot be overstated18. We recently initiated the first-in-
human Phase 1 clinical study of GRFT administered as a vaginal
GRFT/CG gel (NCT02875119). The results reported here, when
combined with the anticipated safety of the GRFT/CG gel in

women, should facilitate rapid progression of GRFT/CG FDIs
into clinical testing to address widespread unmet needs of women
globally.

Methods
Fast dissolving inserts. GRFT was produced in Nicotiana benthamiana by
infiltrating a recombinant GRFT-Agrobacterium, instead of a TMV vector, into N.
benthamiana seedlings11. GRFT was isolated from infected leaf biomass 7 days
later and purified by ion exchange chromatography. CG was obtained from
Gelymar (Santiago, Chile). GRFT and CG solutions were combined with excipients
(Table 1), loaded into polymerase chain reaction (PCR) tubes (Agilent Technolo-
gies, Santa Clara, CA), and placed in a Millrock Laboratory Freeze Dryer (LD85,
Millrock Technology, Kingston, NY) with condenser temperature −70 °C and
vacuum 100 mTorr. Formulations were rapidly frozen to −45 °C and held for 3 h27.
Primary drying was performed from −40 °C to 30 °C over 22 h, and secondary
drying was at 30 °C for 5 h followed by a 4 °C hold. PCR tubes were capped and
sealed in aluminum foil sachets (Pharmaceutical Packaging Services, Richmond,
VA) with a MediVac Sealer (ALINE Heat Seal Corporation, Cerritos, CA) and
stored at 2–8 °C until FDIs were popped out of the tubes for use. Given the stability
of human-sized GRFT/CG FDIs prepared in aluminum foil-sealed blister sheets up
to 40 °C/75% relative humidity27, FDIs for commercial use could be stored at
ambient temperature. FDI composition is shown in Table 1.

TZM-bl MAGI assay with semen. The multinuclear activation of a galactosidase
indicator (MAGI) assay in TZM-bl cells (NIH AIDS Reagent Program)24 was
modified for evaluation of semen effects as follows: TMZ-bl cells were pre-
incubated for 15 min with different concentrations of GRFT. Cell-free virus (HIV-
1ADA-M) was diluted with medium containing 25% whole human semen and the
resulting mixture was added to TZM-bl cells for a final semen concentration of
12.5%. A similar antiviral assay without human semen was performed side-by-side
as control. The TCID50 and 95% CI were calculated using a curve-fitting analysis
with GraphPad Prism (La Jolla, CA).

Anti-SHIV activity in macaques. Adult female Indian rhesus macaques (Macaca
mulatta) that tested negative by serology for simian retrovirus, Herpes B, simian T
cell leukemia virus type 1, and SIV were enrolled. Macaque studies were carried out
at Tulane National Primate Research Center (TNPRC, Covington, LA) in com-
pliance with the regulations stated in the Animal Welfare Act, the Guide for the
Care and Use of Laboratory Animals, and TNPRC animal care procedures51,52. The
TNPRC Institutional Animal Care and Use Committee (IACUC) approved the
studies (OLAW Assurance #A4499-01). TNPRC receives full accreditation by the
Association for Accreditation of Laboratory Animal Care (AAALAC #000594).
Animals were socially housed indoors in climate-controlled conditions and mon-
itored twice daily by a team of veterinarians and technicians to ensure the animals’
welfare. Any abnormalities were recorded and reported to a veterinarian. Macaques
were fed commercially prepared monkey chow twice daily along with supplemental
foods including fruit, vegetables, and foraging treats as part of TNPRC’s envir-
onmental enrichment program. Water was available continuously. TNPRC Divi-
sion of Veterinary Medicine has established procedures to minimize pain and

Table 3 Safety studies of GRFT and GRFT/CG

Test product(s) Route of administration, duration of
dosing, animal model

Results

GRFT/CG gel∗

0.1% gel
Vaginal
7-day repeat dosing
Mice

1) GRFT/CG gel did not enhance the susceptibility of mice to HSV-2 infection
when compared to D-PBS control (p= 0.7152, Fisher’s exact test)

GRFT
2.1, 4.2, and 8.3 mg/
kg/day

IV
14-day repeat dosing
Rats with TK and ADA assay

2) NOAEL estimated to be 8.3 mg/kg/day
3) All blood samples tested were negative for ADA (mean sensitivity= 0.273 μg/
ml for anti-GRFT antibodies)

GRFT/CG gel∗

0.1%, 0.2%, and
0.3% GRFT

Vaginal
14-day repeat dosing
Rats with TK

1) NOAEL= 0.3% GRFT/CG gel
2) Mean vaginal irritation scores were in the minimal to non response category for
all parameters evaluated in proximal, mid-areas, and distal areas
3) 5 of 170 serum samples tested contained GRFT (LLOQ= 10 ng/ml)
4) Highest serum GRFT level (212 ng/ml) was 164-fold lower than highest Cmax
value (34.7 μg/ml) seen in the IV repeat-dose study in the NOAEL group

GRFT/CG gel∗

0.1%, 0.2%, and
0.3% gel

Vaginal
14-day repeat dosing
Rabbits

1) NOAEL= 0.3% GRFT/CG gel
2) Mean vaginal irritation scores were in the minimal to non response category for
all parameters evaluated in proximal, mid-areas, and distal areas

Note: 0.1% GRFT/CG gel contained 90.64% (w/w) water, 0.26% sodium acetate trihydrate, 0.35% sodium chloride, 3/1% CG, 0.20% methylparaben, 5.45% GRFT solution in PBS
ADA antidrug antibody assay, TK toxicokinetics, NOAEL no observable adverse effect level
∗3% CG gel
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distress through several means in accordance with the Weatherall Report. Before all
procedures, including blood collection, macaques were anesthetized with ketamine-
HCl (10 mg/kg) or tiletamine/zolazepam (6 mg/kg). Preemptive and post-
procedural analgesia (buprenorphine 0.01 mg/kg) was administered for procedures
that could cause more than momentary pain or distress in humans undergoing the
same procedures. All macaques were released, not euthanized, at the conclusion of
the study.

SHIV SF162P3 stock used for in vivo challenge was a third-generation growth
of virus obtained originally from the NIH Division of AIDS. The stock was grown
in CD8 T cell-depleted allogeneic rhesus macaque peripheral blood mononuclear
cells (PBMCs) as follows: The cells (107/ml) were stimulated for 3 days with 3 μg/
ml phytohemagglutinin (PHA) and 40 U/ml IL-2, washed, and infected with a
SHIV SF162P3 stock grown in the lab (200 TCID50 per 106 cells). This parent stock
was a second-generation growth from the Division of AIDS stock. The following
day and every 3–4 days thereafter, feeder PBMCs were added in media with IL-2.
Cultures were maintained at 5 × 106 cells/ml for 10 days, and supernatants were
collected, clarified by centrifugation, and frozen at −80 °C. Virus growth was
monitored by p27 enzyme linked immunosorbent assay (ELISA). The harvested
virus stock was characterized for p27 content by the ELISA, SIV gag RNA content
by quantitative reverse transcription PCR (qRT-PCR)53, TCID50 in rhesus
macaque PBMCs by Reed and Muench method54, and focus forming units in
TZM-bl cells by MAGI assay for repeated titration of the same stock over time.
qRT-PCR was performed on viral RNA isolated from the stock with the Qiagen
RNeasy kit and amplified by the standard curve method using the One-step RT-
qPCR Kit (KAPA Biosystems, Wilmington, MA) on a ViiA-7 Real-Time PCR
System (Thermo Fisher Scientific, Waltham, MA) with the following primers:
SIVgag FW (5′-GGTTGCACCCCC TATGACAT-3′), SIVgag RV (5′-TGCATAG
CCGCTTGATGGT-3′). SIV gag plasmid was used for the standard curve. MAGI
assay was performed using HIV-1ADA-M24. Serial dilutions of virus were tested in
triplicate to establish the dose-response curve. The TCID50 and 95% CI were
calculated using a curve-fitting analysis with GraphPad Prism (La Jolla, CA). The
titer used for in vivo infection was TCID50 from macaque PBMCs.

Macaques were challenged intravaginally with 300 TCID50 SHIV SF162P3
4 weeks after 30 mg intramuscular DMPA injection. 4 h before challenge, macaques
had GRFT/CG or CG FDIs (n= 10 each) inserted intravaginally. The animals were
followed for 8 weeks. At the times of FDI insertion and challenge and during follow
up, blood was collected for the isolation of plasma and PBMCs by Ficoll-Hypaque
(GE Healthcare, Chicago, IL) centrifugation55. SHIV viral load in plasma was
quantified by quantitative reverse transcriptase PCR (qRT-PCR)56. Primers and
probe were SGAG21 (forward), 5′-GTC TGC GTC ATP TGG TGC ATT C-3′;
SGAG22 (reverse), 5′-CAC TAG KTG TCT CTG CAC TAT PTG TTT TG-3′; and
pSGAG23 (probe, 100 nM), 5′- (FAM) CTT CPT CAG TKT GTT TAC TTT CTC
TTC TGC G-(BHQTM1)-3′. The lower limit of quantification of the assay was 15
RNA copies/ml.

For PK measurements, macaques were administered FDIs intravaginally, and
blood and CVLs were collected at 1, 4, 8, or 24 h post-insertion (n= 6 macaques/
time point). GRFT was measured in plasma and CVLs. Nine months later,
macaques were injected intramuscularly with 30 mg DMPA and administered FDIs
again 4 weeks post-DMPA. Blood and CVLs were collected at 4 or 8 h post-
insertion for GRFT measurement.

Anti-HIV activity in CVLs from macaques in PK studies was assessed by TZM-
bl MAGI assay with HIV-1ADA-M as described above24. Serial dilutions of CVL
were tested in triplicate to establish the dose-response curve. The EC50 and 95% CI
were calculated by curve-fitting analysis.

Anti-SHIV SF162P3 activity of macaque CVLs in mucosal target cells was tested
in human ectocervical tissues without gross pathological changes from women
undergoing routine hysterectomy. Tissues were received from the National Disease
Research Interchange (NDRI, Philadelphia, PA) and processed for polarized
explant cultures (5 × 5 mm; 1-2 explants per condition)57. After 48 h of activation
with 5 μg/ml PHA and 100 U/ml interleukin-2 (IL-2), explants were challenged
with 60 TCID50 of SHIV SF162P3 (20 μl) mixed with CVL (20 μl) applied on the
apical surface of the epithelium for 4 h. Tissues were washed extensively and
cultured for 14 days. Infection was monitored by SIV gag qRT-PCR47 performed
on culture supernatants collected every 3–4 days and analyzed for SOFT and CUM
endpoints47,58–60. The CUM was reported. Activity of each CVL pair (baseline vs.
4 hour, n= 4) was tested twice in separate experiments.

Vaginal pH and cytokines and chemokines were quantified to assess vaginal
safety of GRFT/CG FDIs. Vaginal pH was measured using litmus paper inserted
into the vaginal vault for 5 min. 29-plex Luminex quantified cytokines and
chemokines in CVL. The Novex® Monkey Cytokine Magnetic 29-Plex Panel kit
(Life Technologies, Carlsbad, CA) was used on a MAGPIX® system (Luminex
XMAP Technology, Austin, TX) with Luminex xPOPNENT software. Clarified
macaque CVL supernatants were thawed, centrifuged, and aliquotted for 1:3 final
dilution. The assay was performed according to the manufacturer’s instructions.
Values that fell within the standard curve for each analyte were plotted. Values
below the lowest standard concentration were plotted as the lowest standard
concentration.

Anti-HSV-2 and HPV16 PsV activity in mice. Studies using female Balb/C mice
were carried out at Rockefeller University’s Comparative Bioscience Center (RU

CBC, New York, NY) following the guidelines of the Animal Welfare Act and the
Guide for the Care and Use of Laboratory Animals51,52. RU IACUC approved the
animal protocols (protocol numbers 12563 and 14684-H). Veterinarians at CBC
regularly monitored the animals to minimize any distress or pain.

HSV-2 G (ATCC) was propagated in Vero cells (ATCC), and the titer was
determined by plaque assay30. To test antiviral activity against HSV-2, we
performed vaginal challenge with 104 pfu/mouse HSV-2 G in mice pre-treated with
2.5 mg DMPA31. Mice were scored daily from day 4 to day 25 post-challenge.
Animals with signs of infection (e.g., hind limb paralysis, erythema, hair loss, and
vaginal swelling) were deemed infected and euthanized by carbon dioxide
inhalation. HPV16 PsV was produced by co-transfection of 293 T cells (NCI,
Frederick) with p16shell and Addgene (Cambridge, MA) plasmid 37328 (reporter
pCLucf)31. Titration was performed by qRT-PCR for the reporter using the
Absolute Blue qPCR Sybr Green kit (Thermo Fisher) with the following primers for
EGFP: Forward (5′-GAG CTG AAG GGC ATC GAC TT-3′) and Reverse (5′-CTT
GTG CCC CAG GAT GTT G-3′). Reactions were run on the Viaa7. We performed
vaginal high-dose challenge with 8 × 106 copies in 10 μl HPV16 PsV in mice pre-
treated with DMPA/nonoxynol-9 (Fig. 3b)20,22,31. We measured luciferase
expression 24 h after challenge by vaginal application of D-luciferin followed by
imaging on an IVIS spectrum imaging system (PerkinElmer, Waltham, MA)31.

For PK measurements, DMPA-treated mice (n= 6/time point) were
administered FDIs intravaginally, and vaginal washes were collected20 at 0.5, 1, 2, 4,
6, 8, 24, 48, and 72 h post FDI insertion.

GRFT ELISA. GRFT was quantified using a validated indirect sandwich ELISA. 96-
well plates were pre-coated with HIV-1BaL gp-120 (NIH Reagent Program
Cat#49610, Germantown, MD) overnight at 4 °C. Wells were blocked with 0.05%
ovalbumin (Sigma, St. Louis, MO), 0.1% Tween 20 (Sigma) in PBS (Sigma) at 37 °C
for 1.5 h. Standards, controls and samples were pipetted in duplicate into the wells
and incubated at 37 °C for 1 h. A goat anti-GRFT detection antibody (0.5 μg/ml,
Pacific Immunology, Ramona, CA) was added for 1 h at 37 °C, followed by a rabbit
anti-goat-HRP secondary antibody (0.2 μg/ml, Southern Biotech, Birmingham, AL)
incubated for 30 min at 37 °C. Ultra-TMB substrate (Thermo Scientific, Rockford,
IL) was added followed by 0.16 M sulfuric acid (Thermo Scientific). Plates were
washed with 0.1% Tween 20/PBS between each step. Plates were read on the Emax
microplate reader (Molecular Devices, Sunnyvale, CA) using 450 nm for absor-
bance and 570 nm for reference. The lower limits of quantification were 1.25, 5,
and 10 ng/ml for macaque CVLs, macaque plasma and mouse vaginal washes,
respectively.

Repeated dosing safety and toxicology. GRFT/CG gels were prepared as follows:
Sterile filtered water, sodium acetate trihydrate, and sodium chloride were mixed
and heated to 69 °C. CG was added with stirring for 3.5 h and cooled to 60 °C for
addition of methyl paraben in water. Following 30 min of stirring, the mixture was
further cooled to 21 °C and stirred 45 min longer. GRFT in PBS (for final 0.1%,
0.2%, or 0.3% gels) was then added at RT and stirred for 30 min. The gels were
characterized for pH, viscosity, GRFT content, methyl paraben content, osmolality,
and turbidity. Gels were stored at 4 °C until use.

The HSV-2 infection enhancement model was performed as follows: GRFT/CG
gel containing 0.1% GRFT (10 μl) was administered vaginally to Balb/C mice daily
for 7 days. Following the established protocol30, the mice were challenged 12 h after
the last gel application with a suboptimal inoculum of 2 × 103 pfu HSV-2 G that
infects only 50% of control D-PCS-treated mice. Beginning on day 4 and for
21 days total, mice were scored for signs of infection.

Intravenous toxicity was assessed as follows: GRFT was dosed intravenously
daily for 14 days in 6 week old male and female Sprague-Dawley rats followed by a
14-day observation period following the final dose. Dose levels evaluated were 2.1,
4.15, and 8.3 mg/kg/day. Toxicokentic assessment was conducted, as was anti-drug
antibody (ADA) testing. Toxicokinetic assessment included cage-side and detailed
clinical observations, body weights, food consumption, clinical labs, organ weights,
and macroscopic and microscopic pathology. ADA testing was performed by a
validated assay developed and carried out at MPI Research (Mattawan, MI) as
follows: ELISA plates were coated with GRFT, blocked in 5% bovine serum
albumin (BSA) in PBS, incubated, and washed. Goat-anti-GRFT positive control
(Pacific Immunology, Ramona, CA) and dilutions of the serum samples were
added to the plates in duplicate, and the plates were incubated and washed.
Peroxidase-conjugated AffiniPure bovine anti-goat IgG (Jackson ImmunoResearch,
West Grove, PA) was added, and the plates were incubated and washed. 1-StepTM

Ultra TMB-ELISA substrate was added, and the plates were incubated. Reaction
development was stopped with 2 N sulfuric acid, the optical density (OD)
measured at 450 nm, and the data analyzed with SOFTmax Pro GxP Version 5.3.
The assay had a mean sensitivity of 0.273 μg/ml for anti-GRFT antibodies.

Vaginal toxicity was assessed as follows: GRFT/CG gels containing 0.1% (1 mg/
ml), 0.2% (2 mg/ml), or 0.3% (3 mg/ml) GRFT were dosed vaginally in 6 week old
Sprague Dawley rats daily for 14 consecutive days followed by a 14-day recovery
period. Systemic exposure to GRFT was measured by ELISA as described in the
Methods (LLOQ for rat serum was 2.5 ng/ml in a minimum required dilution of
1:4, corresponding to blood levels of 10 ng/ml). Toxicokinetics were evaluated as in
the intravenous dosing study.
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GRFT/CG gels containing 0.1%, 0.2%, or 0.3% GRFT were also dosed vaginally
in 5–8 months old New Zealand white rabbits for 14 consecutive days followed by a
14-day recovery period. Toxicokinetics were evaluated as in the rat intravenous and
vaginal dosing studies. In addition, vaginal irritation scoring was performed on the
proximal, mid-, and distal vaginal areas.

Statistics. GraphPad Prism 5.02 and SAS (Cary, NC) were used to analyze the
data, which were graphed in Prism. Macaque data were analyzed using non-
parametric tests or were log-transformed and analyzed using parametric tests.
Mouse data were analyzed using parametric tests. Multiple comparison corrections
were applied where appropriate. All statistical tests are indicated in the relevant
sections of Results and within the Figure Legends.

Data availability
All data are available from the authors. The 16 SHIV SF162P3 sequences derived in these
studies have been deposited in GenBank and have the following accession codes:
MH716498, MH716499, MH716500, MH716501, MH716502, MH716503, MH716504,
MH716505, MH716506, MH716507, MH716508, MH716509, MH716510, MH716511,
MH716512, MH716513.
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