






levels of AP2D15 and AP2D26, in the skin and flesh tis-
sues of the apple cultivars (Additional file 5). Both
AP2D15 and AP2D26 transcript levels increased from
early fruit stage (30 DAFB) through to ripe fruit stage
(150 DAFB) in both apple cultivars. Co-expression
measured as correlation between gene expression of
transcription factors and PSYs showed strong positive
correlation between AP2D26 and PSY2 in fruit skin
(Table 1), further suggesting a potential regulatory
relationship.

Discussion
Apples are consumed globally and are chosen to eat for
their healthful metabolites and convenience. Consumers
associate presence of nutritionally favourable com-
pounds with fruit colour, partly contributed by caroten-
oids. Thus, carotenoid content has become an important
apple breeding objective [25, 31, 34]. The phytoene syn-
thase step is known to play a significant role in the ca-
rotenoid pathway because of its position as the first
committed step, potentially controlling the flux down-
stream [65, 66]. Many plant species are known to have
multiple PSY genes, including apple [34, 60].
The multiple PSY genes highlight the issue of func-

tional diversity because of the potential to acquire a
novel function, subfunctionalize or even lose the original
function [67, 68]. The domesticated apple has 17 chro-
mosomes, which may have been a result of both recent
and older whole genome duplication (WGD) events [59].
The six apple PSYs are present on four chromosomes,
which suggests that prior to the most recent genome du-
plication, at least two ancestral apple PSY genes on dif-
ferent chromosomes were present, resulting in the two

homeologous pairs PSY1/PSY2 and PSY3/PSY4 described
here.
MdPSY3/PSY4 cluster with maize and rice PSY3,

which have had their function proven in bacteria.
Others, such as cassava MePSY3, tomato SlPSY3and
loquat EjPSY3, which also share high homology to the
apple PSY4 (66 %, 72 % and 96 % identity respectively)
have not been tested or have been found to be non-
functional [15, 21, 22, 60]. The non-functionality of
MdPSY4 in bacteria could be because of the acquisition of
a new function or perhaps mutation of some active sites.
However, sequence analysis showed it was closer to PSY se-
quences than squalene synthase [18, 69]. It must be noted
however, that while heterologous expression of plant genes
in bacteria is a widely used method, the plastid environ-
ment where these enzymes function is absent, which may
affect catalytic activity due to improper membrane
localization of the enzyme and/or protein complex forma-
tion [19]. The localization of apple MdPSY4 to the plasto-
globuli, in contrast to MdPSY1 and MdPSY2 in the
chloroplast, may be important here in the sense that the
catalytic activity of MdPSY4 could be influenced by its pro-
tein location. The tomato SlPSY3, for instance, was recently
shown through virus induced gene silencing to affect carot-
enoid accumulation [15]. It remains to be seen if MdPSY4
has acquired a different function or its catalytic activity is
affected by protein complex formation.

MdPSY2 has a dominant expression pattern in apple
We examined MdPSY1 and MdPSY2 transcript levels
because of the ability of the encoded proteins to catalyze
the conversion of GGPP to phytoene. Between these two
genes, there was no tissue specific expression among the

Fig. 4 Transient expression of apple PSY-YFP fusion constructs in etiolated maize leaf protoplasts. PSY1 and PSY2 were localized throughout the
plastids based on the fluorescent distribution pattern. PSY4 localized to speckles, suggesting localization to plastoglobuli [18]. CHL, chlorophyll
autofluorescence; Bars = 10 μm
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Fig. 5 Carotenoid concentrations in fruit of apple cultivars selected based on the pigmentation of their skin and flesh. a. Ripe fruit (150 DAFB) of
‘Granny Smith’ (left) and ‘Royal Gala’ (right). b. Total carotenoid concentration as measured by HPLC in apple fruit skin (top panel) and flesh (lower
panel). Fruit were harvested at different time points (days after full bloom) and separated into skin and flesh for carotenoid extraction and
analysis. Error bars are standard errors from three biological replicates
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wide ranging apple tissues we examined to suggest sub-
functionalization. Subfunctionalization of duplicated genes
can take the form of complementary gene expression pat-
terns in different tissues or partitioning protein function
between paralogs [70, 71]. The absence of gene expression
partitioning among the apple PSYs contrasts with what is
observed in plants, such as maize, where subfunctionaliza-
tion is observed among the PSYs [20]. This lack of differ-
ence in tissue-specific expression between MdPSY1 and
MdPSY2 could be because the gene duplication between
them is a recent event.
One obvious difference between MdPSY1 and MdPSY2

was their unequal gene expression levels. Unequal gene
expression between paralogs in duplicated genomes can

be an immediate consequence of the polyploidization or
a result of changes introduced over time [72, 73]. The
variation in gene expression between these PSY paralogs
could be related to gene dosage effects or may simply be
immaterial [74]. However, the higher relative expression
of MdPSY2 over MdPSY1 is consistent with previous
study where MdPSY2 showed higher transcript levels
(3–5 fold) over MdPSY1 in different apple cultivars [34].
This could mean MdPSY2 has a dominant role in apple
and may be primarily responsible for this first carotenoid
pathway step in apple tissues. However, both PSY tran-
scripts do not correlate with total carotenoid levels, sug-
gesting post-transcriptional processes may be important
for determining flux through this enzymatic step. Recent

Fig. 6 Gene expression profiles of PSY genes assessed in ‘Royal Gala’ and ‘Granny Smith’ apple fruit . PSY transcript levels in fruit skin and flesh
picked at different time points (days after full bloom). The data were analysed using the target-reference ratios measured with LightCycler 480
software (Roche) using apple Actin and Elongation factor1-α (EF1-α) as reference genes. Data are analysed from biological replicates and presented
as means ± SE (n = 4). Fisher's least significant difference (LSD) at P < 0.05 is shown

Fig. 7 PSY transcript levels in different apple tissues from ‘Royal Gala’. Data were analyzed from biological replicates as described in Fig. 6 and
presented as means ± SE (n = 4). Fisher’s least significant difference (LSD) at P < 0.05 is shown

Ampomah-Dwamena et al. BMC Plant Biology  (2015) 15:185 Page 10 of 14



knowledge on regulation of PSY in controlling caroten-
oid biosynthesis has shown that post-transcriptional
mechanisms play a major role in the pathway [75]. With
adequate expression of the PSY transcript, which we
have shown is mainly PSY1 and PSY2 in apple fruit, it is
then the stability of the protein which defines PSY as the
rate limiting step in carotenogenesis [75]. In Arabidopsis
this stability is modulated by the chaperone protein,
AtOR [75]. Such knowledge has implications for apple
breeding, where marker assisted selection is accelerating
the breeding of better cultivars [76].

Transactivation of PSY promoters
The possibility of different transcriptional mechanisms
controlling the different expression of apple MdPSY1 and
MdPSY2 is supported by the significant sequence differ-
ences in their promoters as well as the varied responses to

transient activation by the AP2/ERF transcription factors
we tested. The AP2/ERFs are implicated in many plant
development processes such as floral development and
response to biotic and abiotic stress [77, 78]. Their role in
the carotenoid pathway was highlighted in Arabidopsis,
when AtRAP2.2 was implicated in binding of the PSY
promoter [79]. The apple AP2/ERF family has been char-
acterised with some members implicated in fruit develop-
ment [57, 58]. The expression pattern of AP2D15 and
AP2D26, with increased transcript levels as the fruit
matured, suggests these genes have a role in fruit develop-
ment. This, in addition to the transient activation of PSY
promoters and the high correlation observed between
their gene expression and PSYs point to a potential rela-
tionship where these AP2/ERFs are possibly regulating the
PSYs. There is circumstantial evidence supporting AP2/
ERFs in carotenogenesis in tomato, where they have been
shown to regulate the carotenoid pathway negatively dur-
ing fruit ripening. SlAP2a indirectly affects the carotenoid
pathway through regulation of the ethylene pathway, as
RNAi repression of this gene resulted in a concomitant in-
crease in both ethylene and carotenoid compounds in
fruit. Similarly, SlERF6 was shown to affect carotenoid ac-
cumulation, where reduced expression by RNAi knockout
resulted in increased carotenoid concentration in fruit.
While these examples suggest both wild type genes are
negative regulators of the pathway [80,81], they do not
show any direct regulation of the carotenoid biosynthetic
genes by the AP2/ERFs. The PSY step in carotenogenesis

Fig. 8 Transient activation of PSY promoters by apple AP2/ERF domain (AP2D) transcription factors. a. Alignment of ‘Royal Gala’ PSY1 and PSY2
promoters conducted using ClustalW in Geneious. Highlighting (black) indicate nucleotide similarity. RAP2.2 motifs are indicated by black (PSY1)
and grey (PSY2) bars. b. Ratio of fluorescent signals measured from Nicotiana benthamiana leaves co-infiltrated with Agrobacterium constructs
with AP2/ERF genes and a vector with firefly luciferase (LUC) under control of PSY promoter and Renilla luciferase (REN) under the control of CaMV
35S promoter. LUC/REN signal ratios were normalised to the basal promoter activity. Bars represent means ± SE (n = 4). Fisher's least significant
difference (LSD) at P < 0.05 is shown

Table 1 Pearson’s correlation between AP2D15, AP2D26 and
apple PSY transcript levels in skin and flesh of ‘Royal Gala’ (RG)
and ‘Granny Smith’ (GS). Bold values are statistically significant at
P < 0.05

Transcription factors

AP2D15 AP2D26

RG GS RG GS

skin flesh skin flesh skin flesh skin flesh

PSY1 0.37 0.24 0.01 −0.22 0.45 0.28 0.5 −0.26

PSY2 0.56 0.56 0.61 −0.09 0.81 0.63 0.81 −0.1
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is under complex transcriptional and posttranscriptional
regulation. The tomato SlPSY1 and SlPSY2 are targets of
the MADS-box transcription factor Ripening Inhibitor,
and SlPSY1 gene expression and enzyme activity is inhib-
ited by tomato Stay-green 1 [82, 83]. AtPSY is regulated
by AtPIF1 through direct binding to the promoter to re-
press transcription and more recently, the Arabidopsis Or-
ange (OR) and OR-like proteins are showed to be major
posttranscriptional regulators of AtPSY, controlling AtPSY
protein levels and carotenoid content [75, 84]. The further
analysis of apple AP2/ERFs interactions with apple PSY
promoters will increase our understanding of their role in
the carotenoid pathway and maybe reveal how the apple
PSYs are transcriptionally controlled.

Conclusion
The data presented here suggest that the first committed
carotenoid pathway step in apple is encoded by two
functional genes MdPSY1 and MdPSY2, with other apple
PSYs playing little or no role in this respect. This has
implications for apple breeding programmes that have
fruit colour as a breeding target. Characterisation of the
PSY gene family members increases our understanding
of how the first carotenoid pathway step is controlled in
apple and for instance, would allow co-segregation with
fruit colour phenotypes to be tested during the develop-
ment of new cultivars.
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