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Clear-Sighted Statistics: An OER Textbook 

Module 18: Linear Correlation and Regression 

“Correlation is not causation but it sure is a hint.”1 
-- Edward Tufte 

 
The term “regression” is not a particularly happy one from the etymological 
point of view, but it is so firmly embedded in statistical literature that we 
make no attempt to replace it by an expression which would more suitably 
express its essential properties.2 

-- George Udny Yule and Maurice G. Kendall 
 

I. Introduction 

In this module we turn to simple linear correlation and regression, which focuses on the 

relationship between two interval or ratio variables. Correlation and regression (Ordinary 

Least Squares Regression or OLS) are a collection of some of the most widely used 

techniques in inferential statistics. After completing this module, you will be able to: 

• Distinguish an independent variable (X) from a dependent variable (Y). 
 

• Use Microsoft Excel to create scatter diagrams or X-Y charts, which chart 
the relationship between the independent and dependent variables. 

 
• Calculate by hand and with Excel the coefficient of correlation, r, and 

interpret the result. 
 

• Describe positive and negative correlations. 
 

• Use scatter diagrams to visualize the relationship between the 
independent and dependent variables as well as understand the least 
squares line. 
 

• Calculate by hand and with Excel the coefficient of determination, r2, and 
interpret the result. 

 
• Run a significance test of a correlation to determine whether there is a 

correlation in the population, and determine the probability of a Type II 
error and statistical power using G*Power. 

 

https://www.dictionary.com/browse/etymological


 

• Conduct simple linear regression analysis using a handheld calculator, 
Microsoft Excel’s built-in functions, and Excel’s Regression Analysis tool. 

 
• Conduct significance tests and develop confidence intervals to determine 

whether the independent variable predicts the dependent variable. 
 

• Distinguish correlation from causation. 
 

• Discuss spurious correlations and confounding variables. 
 
You should download several files that accompany this module: 

• Module18_Examples.xlsx, which shows the data and analysis for the 
examples used in this module. 

 
• Module18_Exercises.xlsx, which shows the data for the end-of-module 

problems that you can solve. 
 

• Student-t_table.xlsx or Student-t_table.pdf, the critical values table for the 
student-t distribution. This file is available in Appendix 2: Statistical Tables. 

 
II. Correlation and Regression: An Overview 

Correlation and regression cover different aspects of the relationship between an 

independent variable and dependent variable. An independent variable predicts the 

dependent variable. It is, therefore, sometimes called the predictor or explanatory variable. 

It is usually symbolized by the letter X. The independent variable is also called the 

regressor, stimulus, and exogenous variable. The dependent variable responds to changes in 

the independent variable, which is why it is sometimes called the response variable. The 

dependent variable is also called the criterion variable, predictand, regressand, and 

endogenous variable. It is usually symbolized by the letter Y. We will focus on simple linear 

correlation and regression, which has only one independent variable and one dependent 

variable. We will speak of XY variables, which are determined by the value of each datum’s 

X and Y value. 

https://www.dictionary.com/browse/exogenous
https://www.dictionary.com/browse/endogenous


 

Correlation measures the strength of the association between the independent 

variable and dependent variable. Technically, correlation examines how variance in the 

dependent variable is associated with variance in the independent variable. For example, 

we could calculate the number of speeding tickets given on the New Jersey turnpike and 

the number of state troopers patrolling the highway. The independent variable—the 

predictor—would be the number of state troopers and the dependent, or response 

variable, would be the number of speeding tickets. 

As suggested many decades ago in the George Udny Yule and Maurice Kendall 

quotation at the start of this module, the term regression is odd, especially for 

contemporary students of statistics. A better term would be predictive modelling because 

regression predicts the value of the dependent variable based on the independent variable. 

It models the relationship between the X and Y variables by using the regression equation 

and fitting these variables to the least square line. The goal of regression is to explain 

variation in the Y variable based on changes in the X variable. Simple linear regression is 

based on the sum of the squares, which is a the sum of the squared differences between the 

observed and predicted value of the dependent variable or Ŷ. The difference between the 

observed Y value and the predicted Y value are errors in the model, which are called 

residuals. The objective of the regression model is to draw a straight line that comes closest 

to the observed values. This line is called the least squares line, regression line, or line of best 

fit. This line is unique. All other lines between the XY variable have a higher sum of the 

squares. See Figure 1. 



 

 
Figure 1: Scatter Diagram With the Least Squares Line 

 
There are six requirements for linear correlation and regression: 

1. The independent and dependent variables are quantitative and continuous. 
 

2. The data to be correlated should approximate a normal distribution. 
 

3. The relationship between the independent and dependent variables is linear. 
 

4. If this relationship is not linear, the data in one or both of the variables may 
have to be transformed using a logarithmic scale. (Transforming data, 
however, is a sophisticated technique which we will not cover). 

 
5. The variance around the regression line should be homoscedastic; which is 

to say, their variances should be roughly equal for all the Y variables 
predicted by X. 

 
6. Outliers can distort the correlation: All data from the independent and 

dependent variables should be within plus or minus 3.29 standard deviations 
from its respective means. 

 
No model explains the dependent variable completely. Regression models, 

therefore, also measure the random errors or residuals. This is a point that statisticians 

George E. P. Box and Norman R. Draper thought so important that they mentioned it twice 

in their book on statistical models:  

y = 2.1089x + 5.8218
r² = 0.4036
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• “Essentially, all models are wrong, but some are useful.”3  
 

• “(Remember that all models are wrong; the practical question is how wrong 
do they have to be to not be useful.)”4  

 
It is less likely that the regression model will be useful when the correlation is weak, or 

when there are serious violations of the linear correlation and regression assumptions.  

There is a more sophisticated type of linear regression called multiple regression. 

Multiple regression focuses on how one dependent variable responds to changes in two or 

more independent variables. Because multiple regression is typically not reviewed in 

introductory statistics classes, we will not cover it in Clear-Sighted Statistics. 

III. The Basics 

Francis Galton, the great Victorian era English statistician and eugenicist, first used the 

term correlation in the 1880s. Galton, a half-cousin of Charles Darwin, the founder of the 

theory of evolution, used statistics in his biometric studies of inherited traits. He also 

symbolized correlation with the letter r, a convention we still follow today. And, he 

pioneered the least square or regression line, which is still the basis of simple linear 

regression.5  

In the 1890s, Galton’s protégé and future biographer6, Karl Pearson, developed the 

coefficient of correlation, which is also known as Pearson’s product-moment coefficient of 

correlation, or PMCC. The coefficient of correlation, r for a sample or rho (ρ) for a 

population, measures the strength of the association between the independent and 

dependent variables. Scores range from -1.00 to +1.00. The more extreme the correlation 

coefficient, the stronger the correlation. 

https://www.dictionary.com/browse/eugenicist
https://www.dictionary.com/browse/biometric
https://www.dictionary.com/browse/protege


 

The correlation coefficient is a unit-free or “dimensionless” standardized measure of 

effect size, ES. Because r-scores are a unit-free, we can measure the strength of an 

association between two variables that are measured on different scales like:  

• Income and incidence of smoking . 
 

• Highest level of education and annual income. 
  

• The relationship between demand and price in economics.  
 
While the value of an r score can be positive or negative, when considering effect size for 

the purposes of estimating statistical power and the probability of a Type II error, we use 

the absolute value of r; which is to say, we drop the negative sign. 

Table 1 shows for equations for calculating the coefficient of correlation for a 

population and sample.  

Table 1: Equations for the Coefficient of Correlation 

Population, ρ Sample, r 

ρ =
Σ(X − μX)(Y − μY)

σXσY
 r =

Σ(X − X̅)(Y − Y̅Y)

(n − 1)sXsY
 

 
Where:  r = sample correlation coefficient  
 ρ = population correlation coefficient  
 X = a random independent variable 
 Y = a random dependent variable 
 μX and μY are the population means for the independent and 

dependent variables 
 σX and σY are the population standard deviations for the independent 

and dependent variables 
 X̅ and Y̅ are the sample means for the independent and dependent 

variables 
 sX and sY are the sample standard deviations for the independent and 

dependent variables 
 n = the number of paired variables 

 



 

Table 2 shows how we interpret the coefficient of correlation. The closer the 

correlation is to zero, the weaker the correlation. The closer the r-value is to +1.00 or -1.00, 

the stronger the correlation. 

Table 2: Interpretation of the Coefficient of Correlation 

Negative Positive Meaning 
0.00 to -0.099 0.00 to -.099 No Correlation 
-0.10 to -0.299 0.10 to 0.299 Small Correlation 
-0.30 to -0.499 0.30 to 0.499 Medium Correlation 
-0.50 to -1.000 0.50 to 1.000 Large Correlation 

 
The relationship between the independent and dependent variables can be 

illustrated using a scatter diagram, which is also called a scattergram or X-Y chart. Figure 2 

shows a typical scatter diagram. Each dot represents the value of each XY variable based on 

the value of the independent variable (X) and dependent variable (Y).  

 
Figure 2: Scatter Diagram 

 
Table 3 shows examples of a perfect positive and negative correlation. A perfect 

correlation has an r score of 1.00 or -1.00, which means that the independent variable 

predicts the changes in the dependent variable without and errors. An example of a perfect 
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positive correlation is the mathematical relationship between temperature measured on 

the Fahrenheit and Celsius scales. An increase in temperature measured on the Fahrenheit 

scale is perfectly associated with increases on the Celsius scale. The r score is +1.00. 

Similarly there is a perfect negative or inverse correlation between speed and time 

travelled. As speed decreases, travel time increases. The r-score is -1.00. All XY values fall 

on the least squares or regression line. Please note: These are perfect correlations because 

the X and Y variables are not independent, which is a serious violation of the requirements 

for correlation. 

Table 3: Perfect Positive and Negative Correlations 

Positive Correlation Negative Correlation 

  

It also must be pointed out that perfect correlations are extremely rare. It is highly unlikely 

that we will ever see a perfect positive or negative correlation in the social sciences. 

Contrast these perfect correlations with two values that have an r-score of 0.0001, 

which is to say, two values with no correlation. Figure 3 shows such a scatter diagram. Note 

the wide dispersion of X Y values from the flat least squares line. 
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Figure 3: A scatter diagram with no correlation, r = 0.0001 

 
As displayed in Table 4, the difference between a strong and weak correlation is 

shown by the dispersion of the XY values from the least squares line. The weaker the 

correlation, the greater the dispersion of the XY variables from the least squares line, or the 

looser the fit to this regression line. 

Table 4: The difference between strong and weak correlations 

Strong Positive Correlation Weak Positive Correlation 

  
Strong Negative Correlation Weak Negative Correlation 

  
  

III.  Correlation: The Relationship Between an NBA Player’s Height and Average Rebounds 
per Game 
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Is the height of an athlete who plays in the National Basketball Association associated with 

his average number of rebounds per game? A rebound is a statistic awarded to a player 

who takes possession of a loose ball after a missed field goal or foul shot. It is considered a 

very important statistic because when a player gets a rebound, his team takes possession of 

the ball, and the time a team controls the ball is associated with winning games.  

Figure 4 shows data on a random sample of thirty players from the 2019-20 season. 

The sample was taken on December 12, 2019 from data posted on http://stats.nba.com. 

Players’ heights ranged from 73” (6’1”) to 84” (7’0”). The mean height is 78.33” with a 

standard deviation of 3.36”. There are no outliers because the height of all the players is 

within ±3.29 standard deviations from the mean. The average number of rebounds per 

game ranged from 1.1 to 11.0. The mean number of rebounds is 4.6 with a standard 

deviation of 2.96. There are no outliers. 

http://stats.nba.com/


 

  
Figure 4: NBA players' heights and average rebound per game.  

 
Question: Which of the two variables—a player’s height or his average rebounds 

per game—is the independent or predictor variable? Answer: A player’s height predicts 

the average number of rebounds per game because the player attained his height before 

the game began. Height is the independent variable and rebounds are the dependent 

variable. 

A scatter diagram helps to visualize the relationship between the X and Y variables 

as shown in Figure 5: 



 

  
Figure 5: Scatter diagram showing the relationship between height and average rebounds per game 

 
The values for the independent variable, height, are shown on the horizontal or X-Axis and 

the average rebounds per game, or dependent variable, are shown on the vertical or Y-Axis. 

Even though the least squares line is not shown, we can see that there is a positive 

correlation between a player’s height and the average rebounds per game, given the fact 

that as players’ heights increase the per game rebound average goes up. In addition, this is 

not a perfect correlation as the XY variables do not line up in a straight line.  

We calculate the coefficient of correlation, r, to determine the strength of the 

association or correlation. Here, again, is the formula for the coefficient of correlation: 

r =
Σ(X − X̅)(Y − Y̅)

(n − 1)sXsY
 

Equation 1: Coefficient of Correlation Equation 

 
Where: r = Coefficient of Correlation 
 X = Independent variable 
 X̅ = Mean of the independent variable 
 Y̅ = Mean of the dependent variable 
 Y = Dependent variable 
 sX = Standard deviation for the independent variable 
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 sY = Standard deviation for the dependent variable 
 n = Sample size (number of matched pairs) 
 
There are seven steps to complete this calculation: 

1. Count the number of paired observations, n. 
 

2. Calculate the means: X̄ and Y̅. 
 

3. Calculate the standard deviations: sX and sY. 
 

4. Subtract X̄ from each X variable and Y̅ from each Y variable. 
 

5. Multiply (X - X̄) and (Y - Y̅) for each pair of random variables. 
 

6. Sum (X - X̄)(Y - Y̅). 
 

7. Complete the formula be dividing Σ X - X̄)(Y - Y̅) by (n – 1)sXsY. 
 
Equation 2 shows the completed calculation. Figure 6 shows all the steps to complete this 

calculation: 

r =
Σ(X − X̅)(Y − Y̅)

(n − 1)sXsY
=

206.81

(29)(3.36)(2.96)
= 0.7182 

Equation 2: The coefficient of correlation calculation 



 

  
Figure 6: Calculating the coefficient of correlation 

 
A correlation coefficient of 0.7182, which indicates a large positive correlation is based on 

the interpretations listed Table 2. 

Performing these calculations by hand requires 129 mundane calculations that 

could take at least 20 minutes to complete. Given the inevitable boredom that will ensue 

making these repetitive calculations, you may make a few careless errors. You should know 

that Karl Pearson did not calculate his Pearson Product Moment coefficient by hand using 

paper and pencil. He employed computers. But his computers were not the digital 

computers we use today, they were intelligent and highly focused women: 

https://www.dictionary.com/browse/mundane


 

In the history of computing, the humbler levels of scientific work were open, 
even welcoming, to women. Indeed, by the early twentieth century 
computing was thought of as women’s work and computers were assumed to 
be female. Respected mathematicians would blithely approximate the 
problem-solving horsepower of computing machines in ‘girl-years’ and 
describe a unit of machine labor as equal to one ‘kilo-girl.’7 
 

Today, fortunately, women are no longer restricted to the lower levels of scientific work. As 

a result, you cannot hire teams of female “computers” to perform this grunt-work. You can, 

however, harness the power of Excel to get some non-exploitative “kilo-girls.”  

Excel has two built-in correlation functions that calculate the coefficient of 

correlation in a few seconds. The older function is PEARSON, named after Karl Pearson. 

The newer function is CORREL, which is said to round off numbers more accurately than 

the PEARSON function. Both functions require the same number of observations for the 

independent and dependent variables and ignore text and logical values in the cell 

addresses. Equation 3 shows the syntax for these functions: 

=CORREL(IndependentVariableArray,DependentVariableArray) 
=PEARSON(IndependentVariableArray,DependentVariableArray) 

Equation 3: CORREL and PEARSON Functions 

 
Figure 7 shows the CORREL function in Cell E1: =CORREL(B2:B31,C2:C31) with the answer 

0.7182. 

https://www.dictionary.com/browse/grunt-work


 

 
Figure 7: CORREL Function 

 
A correlation of 0.7182 (71.82 percent) is a large, positive correlation that indicates 

that as players’ heights increase, rebound averages go up. 

Excel’s Data Analysis ToolPak will also calculate the correlation coefficient. On the 

Data ribbon, click on the Data Analysis icon. Depending on the version of Excel you are 

using, this icon looks like the ones shown in Figure 8. The icon on the left is from Excel 

2019 on the Macintosh, and on the right is the icon from the Windows version of Excel 365. 



 

 
Figure 8: Data Analysis Icon 

 
Once you click on this icon, the Analysis Tools window pops up as shown in Figure 9. Select 

Correlation and click OK. 

 
Figure 9: Data Analysis window 

 
After selecting Correlation, a new Correlation window pops-up. This window allows 

you to select the input range and output options. The input range is Cells $B$1:$C$1. 

Please note: The independent variable should be in column B and the dependent variable 

is in Column C. “Labels” in the first row are checked because cells B1 and C1 have the 

names of the independent and dependent variables. The selected output range is set as 

$H$1 on the same worksheet as the data. See Figure 10: 



 

 
Figure 10: Correlation Input window 

 
After you enter this information, click OK and Excel will complete the analysis as shown in 

Figure 11. 

 
Figure 11: Correlation Analysis output 

 
Excel’s DataAnalysis Tool will often save you time compared to using this program’s 

built-in functions, which are far faster than performing these calculations by hand. 

Unfortunately, Excel’s Correlation tool is not as robust as its Regression tool. It fails to 

report the coefficient of determination. The regression tool, on the other hand, will 

calculate the coefficient of correlation and the coefficient of determination, as well as 

conduct a regression analysis.  

The coefficient of determination, or r2: This statistic indicates how much the 

variation in the dependent variable is explained by the independent variable. It is very easy 

to calculate once you have the coefficient of correlation; just square the correlation 

coefficient, r. Here is the formula for r2 along with the calculation for our example: 

r2 = [
Σ(X − X̅)(Y − Y̅)

(n − 1)sXsY
]

2

= [
206.81

(29)(3.36)(2.96)
]

2

= 0.71822 = 0.5158 

Height (X) Rebounds (Y)

Height (X) 1

Rebounds (Y) 0.71819506 1



 

Equation 4: Equation for the Coefficient of Determination 

 
The coefficient of determination is more precise than the coefficient of correlation 

because it does not use “tee-shirt” effect sizes—small, medium, and large that were shown 

in Table 2—to describe the strength of the correlation. A coefficient of determination of 

0.5158 means that a player’s height explains 51.58 percent of his average rebounds per 

game. Height, while the most important predictor of rebounds, is not a perfect predictor 

because it fails to explain 48.42 percent of a player’s rebounds, found by 1.0000 – 0.5158 = 

0.4842. 

You can use Excel’s RSQ function to calculate the coefficient of correlation, but you 

may wonder why you should bother. After all, squaring 0.7182 on a handheld calculator is 

very easy. The reason for using RSQ is that Excel is more precise than a handheld calculator 

because it calculates values to fifteen digits past the decimal point. Our r score of 0.7182 is 

actually 0.7181950614491000. When Excel calculates the value of r2, it uses all 15 digits 

even when it displays the result rounded off to only two or four digits past the decimal 

point. 

The syntax for RSQ is shown in Equation 5: 

=RSQ(DependentVariableArray,IndependentArray) 
Equation 5: RSQ Syntax 

 
For our example, Figure 12 shows the results of the RSQ function in cell E2.  



 

  
Figure 12: Coefficient of Determination = 0.5158 

 
The formula is cell E3 is: 

= RSQ(B2: B31: A2: A31) 
Equation 6: =RSQ Function for Figure 12, Cell E3 

 
V.  Testing the Significance of the Correlation With a t-test 
 
In our example, we have a large positive correlation. But, a question arises: Could there 

actually be no correlation in the population? Is rho, ρ, actually zero? We can answer this 

question using a Null Hypothesis test.  

Here are the Null and Alternate Hypotheses: H0: ρ = 0; H1: ρ ≠ 0. 



 

This is a two-tailed test as evidenced by the not equal sign, ≠, in the Alternate Hypothesis. If 

the test statistic falls in the left-tail, we have a negative or inverse correlation. If the test 

statistic falls in the right-tail, we have a positive correlation. When the test statistic does 

not fall in either rejection region, we fail to reject the null hypothesis and conclude that 

there is no correlation in the population. This conclusion, of course, assumes that our test 

has sufficient statistical power, which we can estimate a priori or post hoc. 

As always, the second step in the Null Hypothesis test is to set the significance level, 

which we will set at 0.05. Recall that this is our tolerance for committing a Type I error. A 

Type I error in this context rejects the Null Hypothesis when there really is no correlation 

in the population. 

Then we select the test statistic. Equation 7 shows the test statistic for this t-test: 

t =
r√n − 2

√1 − r2
 

Equation 7: t-test for the correlation coefficient with n - 2 degrees of freedom 

 
Here is how to write the decision rule for this two-tailed test with 28 degrees of 

freedom (30 – 2). We can find the critical values for t using the t-test table or Excel’s TINV 

function, =TINV(alpha,df). Figure 13 shows the table of critical values for a t-distribution. 

 
Figure 13: t-distribution table, critical value for t is -2.048 and +2.048 

 
The formula for finding the critical value in Excel is: =TINV(0.05,28). The critical values for 

this two-tailed test are -2.048 and +2.048. 

          Confidence Level, c

80% 90% 95% 98% 99% 99.9%

    α — One-Tailed Test

0.10 0.05 0.025 0.01 0.005 0.0005

    α — Two-Tailed Test

df 0.20 0.10 0.05 0.02 0.01 0.001

27 1.314 1.703 2.052 2.473 2.771 3.690

28 1.313 1.701 2.048 2.467 2.763 3.674

29 1.311 1.699 2.045 2.462 2.756 3.659



 

The decision rule: Reject the null hypothesis if t is less than -2.048 or greater than 

+2.048. Figure 14 shows the chart of the t-distribution with the two rejection regions. 

 
Figure 14: t-distribution with 28 degrees of freedom and a 5% significance level 

 
Our decision to reject or fail to reject the null hypothesis can also be made using the p-

value. We should reject the Null Hypothesis if the p-value is less than or equal to the 

significance level. 

Next, we calculate the value of the test statistic, p-value, statistical power, and make 

a decision regarding the null hypothesis. The value of the test statistic is very high, 5.461, 

found by: 

t =
r√n − 2

√1 − r2
=

0.7182√30 − 2

√1 − 0.5158
= 5.461 

Equation 8: The equation for the test statistic 

 
This is a very large t-value. It is clearly in the rejection region. 

The p-value is 0.00001, which can be found using the Excel function shown in 

Equation 9: 

=TDIST(ABS(teststatistic),df,number_of_tails) 
=TDIST(ABS(5.461),28,2) 

Equation 9: Excel's formula for p-value 

 
This tiny p-value is an indication that we should reject the null hypothesis. There is only a 

0.00001 chance that the results are merely due to sampling error or 1 in a 100,000. We 



 

conclude that there is a correlation in the population. For tiny p-values like this one, we 

would report the value as <0.001. 

We can conduct a post hoc power analysis using G*Power; although strictly 

speaking, this step is not necessary because we are rejecting the Null Hypothesis. As shown 

in Figure 15, the test family is t tests, The statistical test is Correlation: Point biserial 

module. The type of power analysis is Post hoc: Compute achieve power – given α, sample 

size, and effect size. The input parameters are Tail(s) = two, Effect size (ρ) = 0.7128, which 

is our r-score, α err prob is the level of significance, 0.05, and Total sample size is 30. 

Statistical power is greater than 99.9 percent and the probability of a Type II error (failing 

to reject a wrong Null Hypothesis is less than 0.1 percent.  

 
Figure 15: Post Hoc Power Analysis 

 
Given the large effect size and very high statistical power, we could have achieved 

sufficient statistical power with a smaller sample size. The a priori power analysis shown in 



 

Figure 16 indicates sufficient statistical power of 80 percent could have been achieved with 

a sample of only 10 matched pairs. 

 
Figure 16: A Priori Power Analysis 

 
Conclusion: There is a large positive correlation in the population between an NBA 

player’s height and his average rebounds per game. 

VI.  Some Caveats About Linear Correlation 
 

1. The coefficients of correlation and determination describe the strength of the 
linear relationship between the X and Y variables. 

 
2. r and r2 are measures of association, not causation. 

 
3. High r and r2 values do not necessarily mean that X is a useful predictor of Y. 

 
4. To determine how well the independent variable, X, predicts the dependent 

variable, Y, we must conduct a regression analysis. 
 
VII.  Simple of Ordinary Least Square (OLS) Regression  
 



 

We are now going to conduct a regression analysis three ways: 1) by hand, 2) using Excel’s 

built-in functions, and 3) Using Excel’s Regression Analysis Tool. We will discover that 

Excel lets us perform the necessary calculations far faster than doing them with pencil and 

paper or a handheld calculator. We will also see that Excel’s Regression Analysis tool 

performs most of the important regression calculations very quickly. 

Regression models estimate values of the dependent variable Y based on a selected 

value of the independent variable X. Regression is based on the least square line. This line 

is sometimes called the regression line or the best fit line. Excel calls this line the trendline, 

but Excel has a variety of trendlines, so you must select the linear trend line to add a least 

squares line to an XY chart. The least squares regression line is the straight line between 

the observed X variable and predicted Y variables that make the vertical distance, or the 

residuals, from each observed Y variable as small as possible. The least squares line is often 

called the best-fit line because it is the only straight line through all the XY variables that 

minimizes the sum of the squares of the vertical distance between the observed Y value and 

the predicted Y value. The predicted Y value is symbolized by the Y-hat symbol, Ŷ. The 

differences between Y and Ŷ are called residuals, errors, or derivatives. 

A useful first step in any simple linear regression analysis is to draw a scatter 

diagram. Doing so will help determine whether the relationship between X and Y is linear. 

Figure 17 shows a scatter diagram with a non-linear relationship. 



 

 
Figure 17: Scatter Diagram for a Nonlinear Relationship 

 
Figure 18 shows that the line that minimizes the distance between each XY variable is 

curved. The relationship between X and Y, therefore, is not linear. We would either have to 

transform one or both of the variables to create a linear relationship or use a more 

sophisticated non-linear regression analysis. 

 
Figure 18: Scatter Diagram for a Nonlinear Relationship With a Nonlinear Trendline 

 
Let’s create a scatter diagram for the relationship between a basketball player’s 

height and average rebounds per game with a least squares line using Excel. The first step 

is to select the X and Y variables on the Excel workbook. To repeat, the X and Y arrays 



 

should be in adjacent columns with the X variables to the left of the Y variables. The second 

step is to select “Insert Chart” and select a “Scatter” chart. Select the one without lines 

between the XY variables as shown in Figure 19.  

 
Figure 19: XY Scatter Chart 

 
Excel produces the chart shown in Figure 20. This chart needs to have the least 

squares trendline added. It also needs proper formatting. 

 
Figure 20: Excel's Scatter Chart Output 

 
Adding a least squares line is very easy in Excel. Highlight the chart. Click on the 

“Add Chart Elements” icon shown in Figure 21: 
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Figure 21: Add Chart Elements Icon 

 
The Chart Elements Options window appears. Select Trendline and Linear as shown in 

Figure 22: 

 
Figure 22: Chart Elements Options Window 

 
Excel adds the least squares line to the chart shown in Figure 23: 



 

 
Figure 23: Excel's Scatter Chart Output With Least Squares Line 

 
The chart is now ready for further formatting. Figure 24 shows a properly formatted 

scatter diagram with a least squares line. Part of the formatting is to add a chart title as well 

as titles for the X-Axis and Y-Axis. This chart also shows the equation for the least squares 

line, which is called the regression equation, and the coefficient of determination, r2. 

 
Figure 24: Formatted Scatter Diagram with Least Squares Line 
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From this scatter diagram we can see that the X and Y variables have a strong 

positive linear relationship. We can now turn to performing the regression analysis. Please 

note: You can also construct the least squares line using Excel’s LINEST function. Equation 

10 shows the syntax for this function: 

=LINEST(known_y’s,known_x’s,constant,stats) 
Equation 10: LINEST Function Syntax 

 
Where: known_y’s is the cell address of the range of dependent variables 
 known_x’s is the cell address of the range of independent variable 
 constant is an optional argument, it TRUE or omitted, the Y-Intercept 

is calculated normally, if FALSE, the Y-Intercept is forced to be zero 
 Stats is an optional argument, if TRUE, the LINEST function returns 

an array with additional regression statistics, if FALSE or omitted, 
LINEST returns the Y-Intercept constant and the slope coefficient 

 
As shown in Figure 25, there are three critical equations used in regression: 1) The 

slope of the least squares line or b; 2) the Y-Intercept or a; and 3) the regression equation, 

which predicts the Y variable, Ŷ for a given X variable: 

 
Figure 25: The Three Critical Regression Equations 

 
1) The Slope of the Least Squares Line, b 



 

The first equation calculates the slope of the least squares line or b. The slope of the line 

indicates the rate the line rises or falls over the horizontal distance, which is the distances 

the independent variance increases. Equation 11 shows this equation and the calculation 

for our example: 

b − r
sY

sX
= 0.7182

2.96

3.36
= 0.6331 

Equation 11: Slope of the Least Squares Line 

 
Where: r = Coefficient of Correlation 

 sY = Standard Deviation of the Dependent Variable 
 sX = Standard Deviation of the Independent Variable  
 b = Slope of the line (average change in the predicted value of Y, Ŷ, for 

each change in X) 
 

The slope of the least squares line for our example is 0.6331. This means that when a 

player’s height increases by an inch, his average rebounds per game are expected to go up 

by 0.6331. The problem with this equation is that we must already know the values of the 

standard deviations of X and Y, as well has the coefficient of correlation, r. 

Microsoft Excel’s SLOPE function can quickly calculate the slope of the least squares 

line without having to calculate the standard deviations for X and Y or the coefficient of 

correlation. Equation 12 shows the syntax for this function and Figure 26 shows the 

calculation for our example. 

=SLOPE(Known-Y-Values,Known-X-Values) 
Equation 12: The SLOPE Function Syntax 

 



 

  
Figure 26: Slope of the Least Squares Line Calculation in Excel 

 
2) The Y-Intercept, a 

The second equation is for the Y-Intercept (a). This is the point where the least squares line 

intersects with, or crosses, the vertical or Y-Axis. A positive Y-Intercept means that the least 

squares line crosses the Y-Axis above its origin and a negative Y-Intercept indicates that the 

regression line crosses the Y-Axis below its origin. In practice, a negative Y-Intercept has no 

real meaning other than that it is needed for the regression equation. In our example, for 

instance, it is impossible for a player to have negative rebounds. 

Equation 13 shows the formula for the Y-Intercept and the calculation for our 

example. The intercept is -44.95. 

a = Y̅ − bX̅ = 4.64 − (0.6311 ∗ 78.33) = −44.95 
Equation 13: Y-Intercept 

 
Where: a = Y-Intercept 



 

 b = Slope of the line (average change in the predicted value of Y, Ŷ, for 
each change in X) 

 X̅ = Mean of the independent variable 
 Y̅ = Mean of the dependent variable 
 
Excel’s INTERCEPT function quickly calculates the Y-Intercept without entering the 

slope of the line, X̅, and Y̅. Equation 14 shows the syntax for this function and Figure 27 

shows the calculation for our example. 

=INTERCEPT(Known-Y-Values,Known-X-Values) 
Equation 14: The Intercept Function Syntax 

 

 
Figure 27: Intercept of the Least Squares Line Calculation in Excel 

 
3) The Regression Equation to Calculate the Predicted value of Y, Ŷ 

The regression equation calculates the estimated or predicted value of Y, or Ŷ, for any 

selected value of X. X and Ŷ provide the coordinates for the least squares line. We would 

need these coordinates if we were to draw it with the least squares line without taking 

advantage of adding this line using Excel’s charting elements tool. Given that we have 30 X-



 

values, we would have to repeat this calculation thirty times. Needless to say, this is a time-

consuming chore. Fortunately, we can use Excel’s built-in function to make fast work of 

these calculations. In addition, Excel’s Regression tool will calculate Ŷ. Equation 15 shows 

the formula for the regression equation and the predicted values for Y when X is 80” and 

74”. 

= bX + 1 = (0.6331 ∗ 80) ± 44.9471 = 5.7 
A player who is 80” tall is expected to average 5.7 rebounds per game 

 
= bX + 1 = (0.6331 ∗ 74) ± 44.9471 = 1.9 

A player who is 74 tall is expected to average 1.9 rebounds per game 
Equation 15: The Regression Equation 

 
Where: Ŷ = Estimated or predicted value of Y for a selected X value 

 A = The Y-Intercept, the value of Y when X is zero, -44.9471 in our 
example. Yes, no basketball player can be -44.94 inches tall 

 b = Slope of the line (average change in the predicted value of Y, Ŷ, for 
each change in X) 

 X = Any selected value of X 
 
Excel’s TREND function will quickly calculate Ŷ. Equation 16 shows the syntax for 

this function and Figure 28 shows what our workbook looks like when we calculate Ŷ and 

the residuals. 

=TREND(Y-Array,X-Array,new-X,Const) 
Equation 16: Syntax for the TREND Function 

 
Where: Y-Array is the cell array with the Y variables 

 X-Array is the cell array with the X variables 
 new-X is the X variable to predict Y (this argument is optional) 
 Const (Constant) is optional, if blank or TRUE, b is normally 

distributed, if FALSE, b is set at zero 
 



 

 
Figure 28: Ŷ and Residuals Calculated Using Excel 

 
The residuals, as previously noted, are the errors in the prediction of the dependent 

variable. Essentially, they are the portion of the dependent variable that is not explained by 

the independent variable. The residuals are found by Y minus Ŷ. On the scatter diagram, the 

residuals represent the vertical distance between Y and Ŷ. 

A critical part of the regression analysis is the Standard Error of the Estimate (SEE). 

The SEE is essentially the standard deviation of the residuals. It measures the accuracy of 

the predicted Y values, Ŷ. The smaller the SEE, the higher the correlation coefficient and the 

stronger the regression model. Equation 17 shows the formula for SEE and the calculation 

for this problem. Figure 29 shows the data. 



 

SEE = √
Σ(Y − Ŷ)2

n − 2
= √

122.90

30 − 2
= 2.10 

Equation 17: Formula and Calculations for SEE 

 

 
Figure 29: Calculation of the SEE 

 
Excel’s STEYX function calculates the SEE in a few seconds. All it requires is the 

dependent variable range and the independent variable range. The bottom of Figure 28 

shows the use of this function for our example in Cell B40 and the formula is displayed in 

Cell C40 and in Equation 18 shown below.  



 

=STEYX(Y_variable_range,X_variable_range) 
Equation 18: STEYX Syntax 

 
VIII. Testing the Significance of the Slope of the Least Squares Line  
 
There are other important significance tests that we should run. This is a test to determine 

whether the slope of the least squares line in the population is equal to zero. Remember: 

the slope in the sample is symbolized by the letter b. The slope in the population is 

symbolized by the Greek letter beta, β. Unfortunately, this symbol can be confused with a 

Type II error, which is also symbolized with β.  

Here are the null and alternate hypotheses for this test: H0: β = 0; H1: β ≠ 0. When we 

fail to reject the null hypothesis, we are saying that the regression equation does not 

adequately predict Y. When we reject the null hypothesis, we conclude that the regression 

equation does predict Y.  

We will use a 5 percent significance level. Our test statistic is a t-test with n – 2 

degrees of freedom. We have 28 degrees of freedom. Just as in our test of the correlation, 

the critical values for our two-tailed test are -2.048 and +2.048. The rejection rule is: Reject 

the null hypothesis if t is less than -2.048 or greater than 2.048. 

Unfortunately Excel does not have a built-in function for this test. But, as we shall 

see shortly, Excel’s Regression tool will conduct this test in the blink of an eye. Without 

using the Regression tool, we can calculate the values of these test statistic in two steps: 1) 

Calculate the value of sb, or the standard error of the estimated slope based on sample 

statistics (Equation 19), 2) Calculate the test statistic (Equation 20). Figure 30 shows how 

these calculations were performed in Excel along with the calculation of the p-value for this 

problem. 



 

sb =
SEE

sX

√n − 1
⁄

=
2.10

3.36
√30 − 1

⁄
= 0.12 

Equation 19: Standard Error of the Estimated Slope 

 
Where: sb = the standard error of the estimated slope based on sample statistics 

 sX = is standard deviation of the independent variable 
 SEE = the standard error of the estimate 
 n = the number of paired observations 

 

t =
b

sb
=

0.6331

0.12
= 5.461 

Equation 20: The Test Statistic for the Slope of the Least Squares Line 

 
Where: sb = the standard error of the estimated slope based on sample statistics 
 b = the slope of the least squares line based on sample statistics 
 

 
Figure 30: Calculation of the Test Statistic and p-value for the Slope of the Regression Line 

 



 

The value of our test statistic, 5.461, is very large while the p-value, 0.00001, is tiny. 

Conclusion: We have sufficient evidence to reject the Null Hypothesis. We conclude that 

our regression model predicts the value of the dependent variable. 

IX. Confidence Intervals and Prediction Intervals  
 
Because the regression equation is based on sample statistics that do not perfectly predict 

the value of the dependent variables, we set up intervals for the predicted value of the 

dependent variable, Ŷ. In fact, we need to create two types of intervals: 1) Confidence 

Intervals and 2) Prediction Intervals. Unfortunately, Excel does not have built-in functions 

for these calculations nor are they included in Excel’s Regression Analysis. Even so, Excel 

can make short work of these calculations. 

Confidence Intervals for Ŷ: Confidence intervals provide the margin of error (MoE) 

for Ŷ. The formula for constructing these confidence intervals is shown in Equation 21 and 

the calculations performed in Excel are shown in Figure 31. 

Ŷ ± t(SEE)√
1

n
+

(X − X̅)2

(n − X̅)2
 

Equation 21: Equation for the Confidence Interval of Ŷ 

 
Where: Ŷ = Predicted value of Y 
 t = Critical value of t with n – 2 degrees of freedom 
 SEE = Standard Error of the Estimate 

 



 

 
Figure 31: Confidence Interval for Ŷ 

 
The first player on our list is 82” tall, there is a 95 percent probability of 10.0 

average rebounds per game, plus or minus 1.17 rebounds. The lower confidence limit or 

LCL is 8.23 rebounds found by 10.00 – 1.17. The upper confidence limit is 11.17 rebounds 

found by 10.0 0 + 1.17. 



 

Prediction Intervals for Ŷ: Prediction intervals provide the range of values that 

allows for random errors for a future observation. Prediction intervals are wider than 

confidence intervals because there is more variation for an individual element of the 

group than in the entire group. Equation 22 provides the formula for calculating prediction 

intervals for Ŷ. Figure 32 shows these calculations conducted in Excel. 

Ŷ ± t(SEE)√1 +
1

n
+

(X − X̅)2

(n − X̅)2
 

Equation 22: Equation for the Prediction Interval of Ŷ 

 
Where: Ŷ = Predicted value of Y 
 t = Critical value of t with n – 2 degrees of freedom 
 SEE = Standard Error of the Estimate 

 



 

 
Figure 32: Prediction Intervals for Ŷ 

 
The prediction interval is in Column F in Figure 32. If we had a 82” tall new player 

we would expect him to have a 95 percent probability of averaging 7 rebounds per game, 

plus or minus 4.55 rebounds. The lower limit of the prediction would be 2.45 rebounds, 

found by 7.0 - 4.55. The upper limit would be 11.55 rebounds, found by 7.0 + 4.55.  



 

X. Using Excel’s Regression Tool  
 

Excel’s regression tools can save time performing regression analysis by: 

• Calculating the coefficient of correlation. 
 

• Calculating the coefficient of determination. 
 

• Determining the slope of the least squares line. 
 

• Testing the significance of the slope of this line and the Y-Intercept. 
 

• Finding the Ŷ and the residuals. 
 

• Determining whether the residuals approximate a normal distribution. 
 

To launch Excel’s Regression tool, click on the Data Analysis icon located on the Data 

ribbon. Figure 33 shows what this icon looks like.  

 
Figure 33: Data Analysis Icons 

 
Once you click on this icon, the Analysis Tools selection window appears. Scroll 

down the list and select Regression and click OK. See Figure 34. 

 
Figure 34: Analysis Tools Selection Window 

 
Excel will now present the Regression option screen. See Figure 35. Under Input, 

enter the Y Range, $B$2:$B$32, and the X Range, $A$2:$A$32. You need not type these cell 



 

ranges. You can highlight the first cell in the workbook and drag the cursor to the last cell. 

Check the labels box because the names of the X and Y values are in the first cell of their 

respective ranges. Check the Confidence Level box. Excel defaults to a 95 percent 

confidence level, but you can enter different confidence levels. Please note: These 

confidence levels are for the slope of the regression line and the Y-Intercept, not the 

residuals.  

Under Output options, you have three choices: 1) Output range, which places the 

output in a place on the workbook that you designate. Just enter one cell address and Excel 

will use that as the starting place for entering the analysis. Make certain that Excel will not 

write over cells with existing data. 2) Excel will place the analysis in a new worksheet. 3) 

Excel will place the analysis in a new workbook. Under Residuals check residuals, and Excel 

will calculate the residuals. Check Normal Probability Plots and Excel will create an XY 

chart of the Ŷ, which you can use to determine whether the residuals approximate a normal 

distribution. There are more rigorous tests for testing the normality of the residuals, like 

the Shapiro-Wilks test. The Shapiro-Wilks test is not easily conducted in Excel. More 

sophisticated statistical software, like SPSS, can run this and similar tests merely by 

checking a box. 



 

 
Figure 35: Regression Option Window 

 
Excel quickly calculates the regression and correlation. statistics, an ANOVA table 

for the regression, t-tests for the Y-Intercept, which we will ignore, the Slope, the residuals 

for Ŷ, and the normal probability plot. Excel will also calculate confidence intervals for the 

Y-Intercept and slope of the regression line. Let’s review the outputs of these analyses. 

1) Summary Output - Regression Statistics: See Figure 36.  

 
Figure 36: Summary Output - Regression Statistics 

 

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.718195061

R Square 0.515804146

Adjusted R Square 0.498511437

Standard Error 2.095082972

Observations 30



 

The labelling of these statistics is more appropriate for multiple regression than linear 

regression. The first line item is labelled Multiple R, but it is the coefficient of correlation, r. 

The second item is R Square. This is the coefficient of determination, r2. Ignore Adjusted R 

Square because this item does not apply to linear regression. Standard Error is SEE. 

Observations is the number of paired observations. The analysis tool, despite its 

inappropriate labelling, provides more useful information than the Correlation tool. The 

Regression tool also saves us from entering the Excel functions: COUNT, CORREL, RSQ, 

STEYX, and TREND. 

2) Excel’s Regression ANOVA Table: See Figure 37. 

This ANOVA table tests whether the slope of the regression line, β, equals zero. It also 

shows the relationship among the values on the ANOVA table and, the coefficient of 

determination and the Standard Error of the Estimate. The null and alternate hypotheses 

for this test are: H0: β = 0; H1: β ≠ 0. 

  
Figure 37: ANOVA Table for Regression 

 
Significance F is the p-value, which is very low. We have sufficient evidence to reject the 

Null Hypothesis that β equals zero. Conclusion: The independent variable, players’ heights, 

predicts the dependent variable, average rebounds per game. See Equations 23 and 24. 

𝑆EE = √Residual Mean Square = √4.38937266 = 2.10 
Equation 23: SEE = Square Took of Residual Mean Square 

 

r2 =
SS Regression

SS Total
= 1 −

SS Residual

SS Total
=

112.9024345

253.827937
= 0.5180 

Equation 24: r2 and the Regression ANOVA Table 

ANOVA

df SS MS F Significance F

Regression 1 130.925502 130.925502 29.8278393 0.00001

Residual 28 122.902434 4.38937266

Total 29 253.827937



 

 
3) Excel’s t-tests: See Figure 38. Excel also provides two t-tests: One for the Y-Intercept 

the other for the Slope of the least squares line. Both of these tests have significant results. 

See Figure 38. The test for the slope of the least squares line is labelled “Height.” 

 
Figure 38: t-tests for the Y-Intercept and Slope of the Least Squares Line 

 
Line 17, provides the Y-Intercept, -44.947061. Line 18, provides the slope of the line, 

0.63308163. The value of the t-statistic is 5.46148691, and the p-value is 0.00001. Please 

note: The p-value cells had to be reformatted because the values are so small. This test 

provides evidence that the independent variable predicts the dependent variable.: In 

addition, Excel also reports the lower and upper limits for a 95 percent confidence interval 

for the Y-Intercept and slope of the regression line. The LCL is labelled Lower 95% and the 

UCL is labelled Upper 95%. You will recalled that confidence intervals are an inverse 

hypothesis test. Because zero is not included between the upper and lower confidence 

limits, we reject the Null Hypothesis. In the case of the slope of the regression line, height is 

a useful predictor of rebounds. Excel, for some unexplained reason, reports the Lower 95% 

and Upper 95% twice. The repetition of these values is not shown in Figure 38. 

4) Excel Calculation of Ŷ and the Residual Output: See Figure 39. The Regression tool 

calculates estimated values of Y and the residuals. This saves us from using the TREND 

function: 



 

 
Figure 39: Residual Output 

 
5) Normal Probability Plot: Excel plots the distribution of the residuals as an XY chart. 

This plot can be used to see if this distribution approximates a normal distribution. The 

straighter the line of dots, the more closely the distribution approximates a normal 

distribution. Based on the plot shown on Figure 40, we can conclude that this distribution 

approximates a normal distribution. 

RESIDUAL OUTPUT

Observation Predicted Rebounds Residuals

1 6.965632653 3.034367347

2 3.167142857 0.532857143

3 4.433306122 -0.333306122

4 6.965632653 -2.265632653

5 7.598714286 1.801285714

6 4.433306122 1.266693878

7 1.900979592 0.099020408

8 2.534061224 0.365938776

9 7.598714286 3.401285714

10 4.433306122 0.266693878

11 2.534061224 0.665938776

12 5.699469388 -3.299469388

13 3.80022449 2.09977551

14 7.598714286 2.901285714

15 5.699469388 1.400530612

16 1.900979592 0.799020408

17 3.167142857 1.032857143

18 5.066387755 -3.366387755

19 5.699469388 -2.899469388

20 2.534061224 -1.134061224

21 6.33255102 -0.33255102

22 1.267897959 2.962102041

23 1.267897959 -0.167897959

24 1.900979592 -0.000979592

25 7.598714286 1.801285714

26 5.066387755 -3.866387755

27 5.699469388 -2.299469388

28 3.80022449 -2.70022449

29 8.231795918 -1.731795918

30 4.433306122 -0.033306122



 

 
Figure 40: Normal Probability Plot 

 
XI.  Caveat Regarding Extrapolation 
 
Extrapolation is using the regression model to predict Y-values from X-values that are not 

in the model. This is a risky venture. We can only predict the average number of 

rebounds per game for players between 73” and 82” tall. We cannot predict the rebounds 

for a player whose height is 72” (6’0”) or less, or 83” (7’1”) or more because we cannot 

make any inferences for values outside the range of our X-values. 

XII.  Correlation and Causation 
 
For 120 years statisticians have warned that correlation is not synonymous with causation. 

Correlation is merely a measure of association. It does not prove a causal relationship even 

though correlation is a necessary but not sufficient condition to prove causation.  

Karl Pearson, in his biography of his mentor Francis Galton, wrote, “Up to 1889 men 

of science had thought only in terms of causation, in the future they were to admit to 

another working category, that of correlation, and thus open to quantitative analysis wide 

fields of medical psychological, and sociological research.”8 

The adoption of correlation was a major revolution in the history of science. Yet, 

causation has always been and remains a very important topic for both the physical and 
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social sciences. As Judea Pearl, the artificial intelligence expert and recipient of the 

prestigious A. M. Turing Award, and his colleagues point out, “We study causation because 

we need to make sense of data, to guide actions and policies, and to learn from our success 

and failures…we also need to know how and why causes influence their effect.”9 Or, as 

Francis Bacon, who helped develop the scientific method over 400 years ago ,wrote, 

“Human knowledge and human power meet in one; for where the cause is not known the 

effect cannot be produced (italics added).”10  

Despite Pearson and generations of statisticians who followed him, the physical and 

social sciences are focused on issues of causation and questions about causal inference 

remain a major concern. Questions about causation abound: 

• Do statins lower LDL cholesterol and reduce the risk of heart disease? 
 

• Does drinking sugar-sweetened carbonated soft drinks like Coca-Cola 
cause people to gain weight? 

 
• Will doubling a brand’s advertising spending lead to higher sales? 

 
• Do mosquitoes spread West Nile virus? 

 
• Does reducing the taxes on corporations and billionaires contribute to 

increased national debt? 
 

• Does social distancing cause the spread of COVID-19 to be reduced? 
 

• Will taking a new analgesic relieve a person’s headache? 
 

• Does a medical procedure have an unacceptable high risk of causing 
terrible side effects? 

 
• Does the MMR vaccine cause autism? 

 
Yet statisticians remain reluctant to mention causation. In fact, the typical 

introductory Statistics textbook mentions causation once, and this mention is the mantra 

that correlation does not imply causation. 

https://amturing.acm.org/
https://www.dictionary.com/browse/analgesic?s=t
https://www.dictionary.com/browse/mantra?s=t


 

How scientists establish causation, is something rarely mentioned in the 

standard introductory textbook. The gold standard for establishing causation are 

random controlled trials or tests (RCT). In such experiments, subjects are randomly 

assigned to either a control or treatment group. These subjects do not know whether they 

have been assigned to the treatment group, which is exposed to the stimuli, or to the 

control group, which has no exposure. In “double-blind” studies, the researchers and 

analysts also do not know to which group a subject has been assigned. The researchers 

then analyze the data to see if the effect is more prevalent in one of the studied groups. If it 

is, the researchers conclude that there is a causal effect. Sometimes RCTs are not possible, 

as the great Ronald Fisher wrote in his attack on researchers who argue that there is a 

causal link between smoking cigarettes and lung cancer.  

…randomization is totally impossible…in an inquiry of this kind. It is not the 
fault of [the researchers]… they cannot produce evidence in which a 
thousand children of teen age have been laid under a ban that they shall 
never smoke, and a thousand more chosen at random from the same age 
group have been under compulsion to smoke at least thirty cigarettes a day. 
If that type of experiment could have been done, there would be no difficulty 
[in establishing a causal link between smoking cigarettes and lung 
cancer]….No one feels—and especially a medical man could not feel—that it 
is right to do something to a human being which probably will do him 
harm.11  
 

Medical ethics—the Hippocratic oath of “do no harm”—limits the ability of medical 

researchers to conduct RCT. 

Historically, statisticians have been reluctant to discuss causation. Fisher a notable 

exception when he attacked the notion that smoking causes lung cancer. Fisher’s argument 

merits discussion. In the 1950s, the accumulated evidence suggested that smoking 

cigarettes causes lung cancer. The British Medical Journal published a series of articles on 

the link between smoking cigarettes and lung cancer. In the summer of 1958, this 

https://www.medicinenet.com/script/main/art.asp?articlekey=20909


 

prestigious journal published an editorial titled “Dangers of Cigarette-Smoking,” which 

called for using “all the modern devices of publicity” to alert the public to the serious health 

risks of smoking.12 This editorial prompted a harsh response from the acerbic Fisher. In his 

letter to the editor, Fisher wrote: 

Your annotation on “Dangers of Cigarette-smoking” leads up to the demand 
that these hazards “must be brought home to the public by all the modern 
devices of publicity”. That is just what some of us with research interests are 
afraid of. In recent wars, for example, we have seen how unscrupulously the 
“modern devices of publicity” are liable to be used under the impulsion of 
fear; and surely the “yellow peril” of modern times is not the mild and 
soothing weed [tobacco] but the original creation of states of frantic alarm.  
 
An important part of the mounting evidence of the causal link between smoking and 

cancer was established by Austin Bradford Hill and Richard Doll in their observational 

study published in the 1950s. By 1958, studies of patients in Scandinavia, the United States, 

Canada, Japan, and France, corroborated Hill and Doll’s results: Cancer patients were more 

likely to be smokers than non-smokers.13 These studies created a big stir, and were quickly 

accepted, as Fisher noted in his critique of Hill and Doll’s work published in The Centennial 

Review of Arts & Sciences, an American peer-reviewed journal.. Nineteen investigations 

around the world have concurred with the findings of Hill and Doll, Fisher noted.14 Yet 

Fisher argued that these studies “… were merely repetitions of evidence of the same kind, 

and it is necessary to try to examine whether that kind is sufficient for any scientific 

conclusion.”15 He points out that, among statisticians, skepticism abounds about the causal 

link between cigarettes and lung cancer. He even mentions that in his conversations with 

Hill, a fellow statistician, Hill was uncomfortable with the claim of causation. Fisher goes so 

far as to remind readers that correlation is not causation and to subtly suggest that what 

https://www.dictionary.com/browse/acerbic?s=t


 

Hill and Doll found may be nothing more than a spurious correlation; which is to say, mere 

coincidence without any real meaning.16 

Fisher launched into a full-scale critique of Hill and Doll’s research and the notion 

that there is a causal link between smoking cigarettes and lung cancer. Here is a summary 

of a few of his points: 

1. The researchers failed to investigate properly the question of whether the 
lung cancer patients inhaled their cigarettes. Fisher argued that this is an 
important issue as pipe smokers and cigar smokers typically do not inhale 
and they seem to have fewer cases of lung cancer than cigarette smokers. 

 
2. The fact that cigarette smokers have higher incidences of lung cancer than 

pipe and cigar smokers suggests that tobacco itself does not cause lung 
cancer. Fisher suggested that the cause might be cigarette paper or the fact 
that cigarette tobacco is not fermented to the same extent as the tobacco 
used in pipes and cigars. 

 
3. Fisher flips the dependent and independent variables when he suggests that 

maybe lung cancer causes cigarette smoking. Fisher writes: “Is it possible 
then that lung cancer—that is to say, the pre-cancerous condition which 
must exist and is known to exist for years in those who are going to show 
overt lung cancer—is one of the causes of smoking cigarettes? I don’t think it 
can be excluded.”17 He then added: “It [smoking] is the kind of comfort that 
might be a real solace to anyone in the fifteen years of approaching lung 
cancer. And to take that poor chap’s cigarettes away from him would be 
rather like taking away his white stick from a blind man. It would make an 
already unhappy person a little more unhappy than he needs to be.”18 

 
Fisher argued that more research was needed into: 1) The role of inhaling 

cigarettes, and the “genotype” of lung cancer patients as well as that of smokers of 

cigarettes, pipes, and cigars.19 Fisher adds that proving causation is complicated, which it 

is. Causation as a philosophical concept has been hotly debated issue in the work of 

philosophers from Aristotle in the fourth century BCE, David Hume in the seventeenth 

century and Bertrand Russel in the twentieth. Fisher’s argument against the causal link 

between lung cancer and cigarettes is best summarized in his comment in Nature: 



 

The curious associations with lung cancer found in relation to smoking habits 
do not, in the minds of some of us, lend themselves easily to the simple 
conclusion that the products of combustion reaching the surface of the 
bronchus induce, though after a long interval, the development of a cancer.20 
 
Today, virtually every scientist and statistician accepts the idea that the use of 

tobacco causes deadly illnesses and that observational studies like Hill and Doll’s can prove 

causation.  

In 1965, Austin Bradford Hill published nine criteria to prove causation.21 Here they 

are: 

1. Strength of the Effect: Small effects do not mean that there is no causal effect, 
though the larger the effect, the more likely there is a causal effect. 
 

2. Reproducibility: Consistent findings observed by different researchers in different 
places with different samples strengthen the probability of a causal effect. 
 

3. Specificity: Causation is likely when there is a very specific population at a specific 
site stricken with the disease with no other likely explanation. 
 

4. Temporality: The effect must occur after the cause. 
 

5. Dose Responsiveness: Greater exposure should generally lead to greater incidence 
of the effect and the effect reduces upon a reduction of exposure. 
 

6. Plausibility: Biological, chemical, or mechanical evidence for a “causal chain.” 
 

7. Coherence: The effect fits with established knowledge. 
 

8. Experiment: The effect can be replicated with experiments. 
 

9. Analogy: Similarities between observed associations. 
 

Establishing causation is not easy. A causal link must meet Hill’s nine criteria. In 

particular, the cause must precede the effect. There must also be a concomitant variation 

between the cause and effect. A change in the cause must lead to a change in the effect. 

Causality, however, is not deterministic. Not every smoker gets lung cancer. Nonsmokers 
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also get lung cancer, but at a much lower rate. Causation, therefore, is probabilistic, 

which means that the effect is more likely to happen when the cause is present. 

David Spiegelhalter, a past president of the Royal Statistical Society, writes that 

scholars like Judea Pearl and others are making progress in laying out the principles of 

causal regression models based on observational data.22 Pearl and his co-writer, Dana 

MacKenzie, lay out the basis for this causal revolution for a popular audience in the Book of 

Why: The New Science of Cause and Effect. Pearl argues that the calculus of causation is 

based on two languages: 1) Causal diagrams to express what we know, and 2) Symbolic 

language to express what we want to know.23 Pearl’s innovations in causal inference, 

however, are beyond the scope of an introductory textbook. 

Spurious Correlations: While the great statisticians of the late nineteenth and 

twentieth centuries avoided the issue of causation, they did speak of spurious correlations 

usually in the context of warning that correlation does not mean causation. Fisher, in fact, 

did this in “Cigarettes, Cancer, and Statistics” when he mentioned statistician George Udny 

Yules’ favorite example of a spurious correlation: The positive correlation between 

increases in imported apples in the United Kingdom and the rise of the divorce rate.24  

Karl Pearson was the first to mention spurious correlations in 1897.25 It is a term 

that refers to a statistically significant correlation between two variables due to mere 

coincidence. They either have no genuine relationship, or a third unseen variable called a 

confounding or lurking variable is present and explains, if not causes, the two correlated 

variables. A spurious correlation may also arise when the X and Y variables are not 

independent. The perfect positive and negative correlations cited above may, in fact, be 

spurious correlations because they are essentially non-independent measures. 



 

Here is a popular example of a spurious correlation commonly used by professors 

teaching introductory statistics classes: As ice cream sales rise so do the number of times 

lifeguards have to rescue swimmers from drowning. Do increased sales of Ben & Jerry’s, 

Häagen-Dazs, and Breyers ice cream cause people to drown? Or, when the number of 

drownings goes up cause people to run out and buy ice cream? The professor typically 

starts the lesson by telling students that correlation is not synonymous with causation. This 

is because spurious correlations are usually infused with a presumption of causation. Then 

the professor asks, which of these two events is the independent variable? Most students 

answer that ice cream sales are the independent variable. Whatever students answer, 

however, the professor will say they are wrong. Why? Well, there is a confounding variable 

that explains, if not causes, both increased ice cream sales and more lifeguard rescues: Hot 

weather. Summer weather is associated with more people swimming (and a greater need 

for lifeguards) and higher ice cream sales. Except for the members of the Coney Island 

Polar Bear Club, nobody goes to the beach to swim during cold winter weather. Ice cream 

sales also have a positive correlation with forest fires and shark attacks. These are also 

spurious correlations: Hot summer weather is the confounding variable. It dries out forests 

and results in forest fires and also warms oceans causing sharks to migrate to cooler 

northern waters where they are more likely to encounter summer bathers. 

There are thousands of delightfully foolish examples of spurious correlations that do 

not have a confounding variable. Tyler Vigen’s book and website, Spurious Correlations, has 

many hilarious examples. One of my favorites is the 66.6 percent correlation between the 

number of films Nicolas Cage appears in during a year, and the number of people who fall 
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into swimming pools and drown. I often wonder what a multiple correlation would show if 

a second independent variable—ice cream sales—were added. 

Here are a few more famous spurious correlations: 

1. The hemline theory of the stock market: As hemlines on women’s 
skirts rise, the stock market goes up. When hemlines descend, the stock 
market goes down. This spurious correlation goes back to the 1920s and 
is said to have a very high coefficient of correlation. 

 
2. The winner of the Super Bowl and the stock market: If the winning 

team is a member of the American Football Conference, the stock market 
will go down and if the winning team is in the National Football 
Conference, the stock market will go up.  

 
3. U.S. Murder Rate and Microsoft Internet Explorer Usage: From 2006 

to 2011, both the murder rate and the usage of Microsoft’s internet 
browser declined rate.  

 
4. Storks and Dutch (German or Danish) babies: The number of storks 

nesting on the rooftops of Dutch houses is said to be positively correlated 
with the number of children living in those houses. By the way, no 
reasonable person believes in the old folklore that storks deliver babies. 
There is a confounding variable: Large houses tend to attract both big 
families and storks seeking a nesting place. It is interesting to note that 
Darrell Huff (1913 – 2001), the author of the best-selling statistics book 
of the twentieth-century, How to Lie With Statistics, used this amusing 
spurious correlation when he testified before Congress in the 1950s and 
1960s to ridicule the notion that there is a causal link between tobacco 
and cancer.26 Was Mr. Duff being a fool or a knave when he worked for 
the tobacco industry as an expert witness who disputed the research that 
showed a causal link with their product and other deadly illnesses?  

 
Not all spurious correlations are harmless tomfoolery. Some are the work of knaves 

and misguided fools. Here are examples from the website, Statistics How to27.  

1. Universal health care breeds terrorism (Fox News) 
 

2. Living next to freeways causes autism (L. A. Times) 
 

3. Junk food does not cause obesity (Global Energy Balance Network). Okay, 
this is a spurious non-correlation. The GEBN is a non-profit organization 
that claims to fund research into obesity. According to The New York 
Times this organization has received funding from Coca-Cola.28  

https://www.dictionary.com/browse/tomfoolery
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4. Fox News makes viewers stupid, or at least misinformed (World Public 

Opinion, a project managed by the Program on International Policy 
Attitudes at the University of Maryland). I will let you decide whether this 
is a spurious correlation.  

 
One of the more nefarious spurious correlations to take hold is the notion that the 

MMR vaccination causes autism. The MMR vaccine was first licensed for use in 1971. This 

vaccine protects against measles, mumps, and rubella, which is also called German measles.  

According to the Infectious Disease Society of America (IDSA), a community of over 

12,000 physicians, scientists, and public health researchers, prior to the MMR vaccine, 

measles, mumps, and rubella, sickened 3 to 4 million people a year and annually lead to 

around 500 deaths and 48,000 hospitalization. Nearly every American child got the 

measles before age sixteen.29 Since the vaccine’s introduction, over 575 million doses have 

been given worldwide. It has an excellent safety record.30  

Autism Speaks, the largest autism advocacy group in the U.S., defines autism or ASD 

as “…a broad range of conditions characterized by challenges with social skills, repetitive 

behaviors, speech and nonverbal communication. According to the Centers for Disease 

Control, autism now affects an estimated 1 in 59 children in the United States today.”31 

How did this life-saving vaccine come to be viewed as a causal link to autism? 

The anti-vaccination movement has a long history. It had been dormant until 1998, 

when the highly respected British medical journal, Lancet, published an article by Dr. 

Andrew J. Wakefield, and twelve other medical researchers. This article was billed as an 

“early report” because it reported preliminary findings of a study of only twelve children. It 

raised the possibility that the MMR vaccine might cause autism, but the authors clearly 

stated that they did not prove an association, let alone a causal link, between the vaccine 
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and autism.32 The flaws in this research were readily apparent. There was no control group 

and the sample size was tiny. It is never a good sign when the number of authors of a study 

exceed the number of subjects. 

After the publication of Wakefield et al.’s article, the media picked up this story. 

Vaccination panic erupted. Soon, celebrities like Jenny McCarthy, a mother of an autistic 

child, who used their access to mass media to spread fear and distrust of vaccinations 

through appearances on talk shows, books, and social media.33 This anti-vaccination 

campaign contributed to a drop in the rate of vaccinations and a resurgence of measles. In 

2019, the World Health Organization listed vaccine hesitancy as one of the top ten threats to 

global health.34 

Numerous studies have failed to show a causal link between the MMR vaccine and 

autism. A study tracking 650,000 Danish children found that the MMR vaccine “…does not 

increase the risk for autism, does not trigger autism in susceptible children, and is not 

associated with clustering of autism cases after vaccination.”35 

In 2010, Lancet retracted Dr. Wakefield’s article, and The British Medical Journal 

published a series of articles by journalist Brian Deer, who exposed the fact that Dr. 

Wakefield fraudulently manufactured the data used in the study and had financial conflicts 

of interest36. The British General Medical Council, the public body that licenses physicians 

in the United Kingdom, found Dr. Wakefield guilty of three-dozen charges, including 

dishonesty and abuse of children. The doctor lost his medical license in the United 

Kingdom.37 While he maintains his innocence, his reputation is in tatters, as a 2011 article 

in the Sunday New York Times Magazine noted:  

Andrew Wakefield has become one of the most reviled doctors of his 
generation, blamed directly and indirectly, depending on the accuser, for 



 

irresponsibly starting a panic with tragic repercussions: vaccination rates so 
low that childhood diseases once all but eradicated here—whooping cough 
and measles, among them—have re-emerged, endangering young lives.38 
 

Dr. Wakefield now lives in Texas and has become a prominent antivaxxer.39 

Why the link between the MMR vaccination and autism is a spurious 

correlation. Fact: The rate of MMR vaccinations has increased since its introduction in the 

early 1970s. Fact: The incidence of autism has also grown sharply. On the surface this 

would seem to suggest an important link between vaccination and autism. But, the 

increased rate of autism may be due to changes in the diagnostic criteria for this malady. A 

further confounding factor is that autism becomes apparent around the time a child would 

have received his or her first MMR vaccination. Please note: A recently published meta-

analysis of 54 studies with 13,784,284 participants shows that the male-to-female ratio in 

autism is 3 to 1.40 

Autism Speaks says there are genetic and environmental factors for autism. The 

environmental risks include the advanced age of either parent, multiple births (twins and 

triplets), multiple pregnancies spaced less than one year apart, premature births, and low 

birth weights. The MMR vaccine, they say, does not cause autism.41  

XIII.  Summary 
 
In this module we have: 

• Defined correlation as the strength of the association between two 
quantitative variables: The independent or predictor variable, X, and the 
dependent or response variable, Y. 

 
• Defined and interpreted the coefficient of correlation, r, and calculated it by 

hand and with Microsoft Excel. 
 

• Defined and interpreted the coefficient of determination, r2, and calculated it 
by hand and with Microsoft Excel. 
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• Tested the significance of the correlation. 
 

• Defined regression as a model used to predict the value of Y based on a value 
of X. 

 
• Conducted a regression analysis by hand and with Microsoft Excel. 

 
• Created the least squares line. 

 
• Generated confidence intervals and prediction intervals for Ŷ, the estimated 

value of the dependent variable. 
 

• Tested the significance of the least squares line. 
 

• Distinguished correlation from causation. 
• Discussed ways researchers establish causal relationships. 

 
• Described the problem of spurious correlations. 

 
Correlation and regression are some of the most important techniques in inferential 

statistics. There are, however, other more sophisticated types of regression that are 

covered in advanced statistics courses. As we discussed, there is multiple regression, which 

uses two or more independent variables to predict the dependent variable. Most serious 

investigations based on linear regression models rely on multiple regression and not 

simple linear regression with only one independent variable. There are also nonparametric 

regression models like Spearman’s Rho and Kendall’s Tau. Logistic regression models 

analyze multiple independent variables and a categorical or qualitative dependent variable. 

For non-linear data there is polynomial regression. There is also structural equation 

modeling, which uses mathematical and computer algorithms to construct causal models.  

XIV. Exercises 
 
Data for these exercises is in 18_Exercises.xlsx. Conduct a priori power analyses 

using G*Power. 

Exercise 1: Student Absences and Grades on the Final Exam 
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Dr. V. noticed that the more frequently a student is late or absent from class the worse he 

or she performs on the final exam. He decided to investigate. The first thing he did was to 

conduct an a priori power analysis using G*Power to determine the necessary sample size. 

Based on his experience, he estimated the correlation coefficient as -0.60. He entered 0.6 in 

effect size |ρ|. He set the α err prob at 0.05 and the Power (1 - β err prob) at 0.8. The 

analysis, depicted in Figure 41, shows that a sample size of 17 students would yield 82.24 

percent power. What is the sample size needed to achieve 80% power. 

 
Figure 41: A Priori Power Analysis 

 
Not being certain of the exact effect size, Dr. V. collected a random sample of 22 

students. This sample includes the number of times a student is absent and their grades on 



 

the final exam. The data can be found in the Excel file, 18_Exercises. Look for the 

worksheets with titles that start with “Exercise1_.” 

Figure 42 shows the results of Dr. V.’s sample: 

  
Figure 42: Dr. V.'s Sample Data 

 
Question 1: Which variable is the independent variable and which is the dependent 

variable? 

Question 2: Using Microsoft Excel, construct a scatter diagram (XY chart). Include the 

least squares line. 

Question 3: Using Microsoft Excel: 

a. Count the number of variables 
b. Calculate the mean and standard deviation of the independent variable 
c. Calculate the mean and standard deviation of the dependent variable 
d. Calculate the correlation coefficient, r, and interpret what it means 
e. Calculate the coefficient of determination, r2, and interpret what it means 

 

X  

Times 

Late/

Absent

Y

 Final 

Exam 

Grade

1 4 84.00

2 6 92.50

3 16 46.00

4 2 93.00

5 11 95.50

6 24 20.00

7 7 39.00

8 10 46.00

9 19 63.00

10 2 73.50

11 2 98.00

12 17 24.50

13 8 73.00

14 20 69.50

15 19 49.00

16 23 68.50

17 6 70.00

18 4 75.50

19 2 78.00

20 7 97.00

21 2 100.00

22 2 93.50



 

Question 4: Using Excel, conduct a NHST to determine whether there is a correlation in the 

population. Use a 0.05 significance level. 

 
Question 5: Using Excel, calculate the Slope of the line (b), the Y-Intercept (a), the Standard 

Error of the Estimate (SEE), and test the hypothesis that the slope of the line equals zero.  

Question 6: Using Excel’s TREND Function the calculate predicted values for Y (Ŷ) and 

their Confidence Intervals. 

Question 7: Using Excel’s TREND Function the calculate predicted values for Y and their 

Prediction Intervals. 

Question 8: Using Excel’s Regression Tool: a) Report the Regression Statistics, b) Interpret 

the ANOVA table, c) Interpret the t-test for the slope of the regression line, d) Interpret the 

residual output, and e) Interpret the Normal Probability Plot. 

a) Regression Statistics: 

b) ANOVA Table: 

c) t-Tests: 

d) Residual Output: 

e) Normal Probability Plot: 

Exercise 2: Used Cars: Mileage and Retail Selling Price 

Terry is a recent college graduate who loves to fix up used cars. She thinks she can turn this 

hobby into a business. She has recently purchased a late model Toyota Camray, fixed it up, 

and sold it for a tidy profit. When selling this car, she noticed a large inverse correlation 

between cars’ mileage and their asking price. She has now purchased a used, four-door 

Honda Accord LX. She has taken a survey of late model four-door Honda Accord LX from 

cars.com. Based on her experience with the Toyota, she anticipates a strong negative 



 

correlation between the car’s asking price mileage. Before conducting her survey, Terry 

conducted an a priori power test using G*Power to determine the size of her sample. She 

estimates the correlation coefficient as -0.70. She entered 0.7 in Effect size |ρ|. She set the α 

err prob at 0.50 and the Power (1- β err prob) at 0.8. The analysis in Figure 43, shows that 

a sample size of 11 cars would yield 82.24 percent power. 

 
Figure 43: A Priori Power Analysis 

 
The data can be found in the Excel file, 18_Exercises. Look for the worksheets with 

titles that start with “Exercise2_.” 

Figure 44 shows the results of Terry’s survey: 



 

 
Figure 44: Terry's Sample - Mileage and Asking Price 

 
Question 1: Which variable is the independent variable and which is the dependent.  

Question 2: Using Microsoft Excel, construct a scatter diagram (XY chart). Include the least 

squares line. 

Question 3: Using Microsoft Excel: 

a. Count the number of variables 
b. Calculate the correlation coefficient, r, and interpret what it means 
c. Calculate the coefficient of determination, r2, and interpret what it means 
d. Calculate the mean and standard deviation of the independent variable 
e. Calculate the mean and standard deviation of the dependent variable 

 
Question 4: Using Excel, conduct a NHST to determine whether there is a correlation in the 

population. Use a 0.05 significance level. 

Question 5: Using Excel calculate the Slope of the line (b), the Y-Intercept, the Standard 

Error of the Estimate, and test the hypothesis that the slope of the line equals zero.  

Question 6: Using Excel’s TREND Function, calculate predict values for Y and their 

Confidence Intervals. 

Question 7: Using Excel’s Regression Tool: a) report the Regression Statistics, b) interpret 

the ANOVA table, c) interpret the t-test for the slope of the regression line, d) interpret the 

residual output, and e) interpret the Normal Probability Plot. 

a) Regression Statistics: 

Mileage Price

1 24,029 $13,385

2 37,205 $13,288

3 12,029 $13,500

4 30,461 $10,888

5 2,773 $20,988

6 3,851 $19,000

7 21,337 $17,729

8 30,606 $15,500

9 43,718 $12,200

10 21,229 $14,142

11 23,794 $16,500



 

b) ANOVA Table: 

c) t-Tests: 

d) Residual Output: 

e) Normal Probability Plot: 

* * * 
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