
City University of New York (CUNY) City University of New York (CUNY) 

CUNY Academic Works CUNY Academic Works 

Open Educational Resources Queensborough Community College 

2020 

Clear-Sighted Statistics: Module 19: Wrapping Up Clear-Sighted Statistics: Module 19: Wrapping Up 

Edward Volchok 
CUNY Queensborough Community College 

How does access to this work benefit you? Let us know! 

More information about this work at: https://academicworks.cuny.edu/qb_oers/139 

Discover additional works at: https://academicworks.cuny.edu 

This work is made publicly available by the City University of New York (CUNY). 
Contact: AcademicWorks@cuny.edu 

https://academicworks.cuny.edu/
https://academicworks.cuny.edu/qb_oers
https://academicworks.cuny.edu/qb
http://ols.cuny.edu/academicworks/?ref=https://academicworks.cuny.edu/qb_oers/139
https://academicworks.cuny.edu/qb_oers/139
https://academicworks.cuny.edu/?
mailto:AcademicWorks@cuny.edu


 

Clear-Sighted Statistics: An OER Textbook 

Module 19: Wrapping Up 

“The first principle is that you must not fool yourself—and you are the 
easiest person to fool.”1 
 

-- Richard P. Feynman 
Theoretical Physicist 

“Cargo Cult Science” 
1974 

 
“One of the most frustrating aspects of the journal business is the null 
hypothesis. It just will not go away.… It is impossible to drag authors away 
from their p values, and the more zeros after the decimal point, the harder 
people cling to them. It is almost as if all the statistics courses in the world 
stopped after introducing Type I error….Perhaps p values are like 
mosquitoes. They have an evolutionary niche somewhere and no amount of 
scratching, swatting, or spraying will dislodge them….investigators must 
learn to argue for the [practical] significance of their results without 
reference to inferential statistics.”2 

-- John P. Campbell 
Editor, Journal of Applied Psychology 

“Some Remarks From the Outgoing Editor” 
1982 

 
“Sir Ronald [Fisher] has befuddled us, mesmerized us, and led us down the 
primrose path. I believe that the almost universal reliance on merely refuting 
the null hypothesis as the standard method for corroborating substantive 
theories in the soft areas [personality and social psychology] is a terrible 
mistake, is basically unsound, poor scientific strategy, and one of the worse 
things that ever happened in the history of psychology.”3  

-- R. Chris Fraley 
Psychologist, University of Illinois at Urbana-Champaign 

Cited in The Cult of Statistical Significance 
 

I. Introduction 

In this, our final, module, we will: 

1) Recap the key lessons of Clear-Sighted Statistics. 
 

2) Discuss what we did not cover and what would be covered in more advanced 
courses. 
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3) Discuss the growing criticism of NHST as we report on how the science of 
statistics is advancing and how these developments will probably change the 
ways inferential statistics will be conducted in the future. 

 

II. Statistics in a “Post-Truth” Society and the Need for Informed Skepticism 

Throughout Clear-Sighted Statistics, we have differentiated descriptive statistics or 

exploratory data analysis from inferential statistics. We noted that both descriptive and 

inferential statistics are prone to errors and distortions. Knaves willfully distort data for 

self-interested ends. Fools misapply statistical techniques and arrive at dubious 

conclusions because they do not understand what they are doing. The damage caused by 

knaves and fools plagues us and may even lead to destructive cynicism. But, when properly 

performed, statistical analysis can help us understand more clearly what the data means 

and establish a more solid foundation for our findings and our decisions. 

A key lesson you should learn from Clear-Sighted Statistics is that whenever you 

conduct a statistical analysis, you should do so with transparency and honesty. 

Transparency means that we should tell our audience how the data were acquired, what 

techniques were employed, and what questions remain unanswered. Honesty means that 

we should clearly state the limitations of our approach and our findings. 

The late John Wilder Tukey, who taught at Princeton University and worked at Bell 

Laboratories, was one of history’s greatest descriptive statistics experts. He was aware of 

how descriptive statistics in general and data visualization (charts) in particular can 

mislead us. In Module 4, we showed how knaves and fools distort data with charts. The 

following quote by Dr. Tukey’s highlights his concern about the misuse of charts: 

“Visualization is often used for evil—twisting insignificant data changes and making them 

look meaningful. Don’t do that crap if you want to be my friend. Present results clearly and 
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honestly. If something isn’t working—those reviewing results need to know.”4 Dead men 

like Professor Tukey do not need our friendship, but a free, democratic society needs its 

citizens to be able to distinguish fact from fiction. To be able to do this, citizens need 

statistical literacy because, as we have shown, numbers can trick us. Unscrupulous people 

will try to fool the innumerate.  

Inferential statistics is also prone to distortions by fools and knaves. Inferential 

statistics estimates unknown population parameters on the basis of sample statistics. 

Whenever we draw a sample, we risk random sampling error, that is when the sample 

statistics do not equal the population parameter, which is usually unknown. We cannot 

escape sampling error. It is a natural consequence of drawing samples from populations. 

Sampling error is not the result of human error. Confidence intervals and NHST can help us 

measure the risk of sampling error. Poorly conducted studies, however, are also vulnerable 

to a host of systematic errors, which result from human error. Systematic errors are often a 

more serious problem than sampling errors. 

Whenever we deal with inferential statistics, we must remember that these analyses 

are based on probability. When we estimate parameters using confidence intervals at a 95 

percent confidence level, we are saying that if we conducted repeated surveys, the 

parameter will be within the confidence interval for 95 percent of the surveys. Facts based 

on samples are probabilistic. We do not have 100 percent certainty. This is why we never 

consider the null hypothesis to be true when we fail to reject it. Similarly, when we reject 

the null hypothesis, we are not declaring the alternate hypothesis true. When rejecting the 

null hypothesis, all we are saying is that the data do not support the null hypothesis. 

Anything stronger is folly that divulges the author’s hubris.  
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While often misinterpreted, p-values merely use probability theory to measure how 

compatible the data are with the null hypothesis. Rejecting or failing to reject the null 

hypothesis says nothing about the size of the effect. In addition, statistical significance does 

not imply any practical, real-world significance. We could fail to reject the null hypothesis 

even though the effect has practical, real-world importance. As we have shown, we could 

also reject the null hypothesis when the effect has no practical implication. It is only with 

multiple replications of a study’s results that a research hypothesis might begin to rise to 

the level of a theory. 

To repeat, facts are not 100 percent certain. This should lead us to two attitudes: 

Humility and skepticism. As for humility, we must not overstate the importance of our 

findings. And, we must remain skeptical and open to new information that might change 

our findings. One of the best descriptions of scientific skepticism comes from data scientist 

Cathy O’Neil, author of Weapons of Math Destruction: How Big Data Increases Inequality and 

Threatens Democracy. In in her pamphlet, On Being a Data Skeptic, Dr. O’Neil writes: 

A skeptic is someone who maintains a consistently inquisitive attitude 
toward facts, opinions, or (especially) beliefs stated as facts. A skeptic asks 
questions when confronted with a claim that has been taken for granted. 
That’s not to say a skeptic brow-beats someone for their beliefs, but rather 
that they set up reasonable experiments to test those beliefs.5 
 
Following the advice of the late Richard P. Feynman, delivered in his famous 

commencement address to the 1974 graduating class of the California Institute of 

Technology, we must be aware of the risks of fooling ourselves. For decades, statisticians 

have been debating whether inferential statistics as it is taught and conducted, is blinding 

us to the real implications of our data. We will turn to the short-comings of NHST in Section 

IV of this module. 
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III. Where We Go From Here: What is Covered in More Advanced Courses 

Statistics is a multifaceted discipline fundamental to so many fields that its breadth cannot 

be adequately covered in an introductory course. Most disciplines in the social sciences and 

many in the natural sciences use statistical techniques even though they often employ 

widely different approaches. The broad application of statistics was noted by Tukey, who 

famously said, “The best thing about being a statistician is that you get to play in everyone’s 

backyard.”6 

Clear-Sighted Statistics was written to introduce students to the basic statistical 

methods used in business and the social sciences. More advanced statistics courses delve 

deeper into inferential statistics as well as other topics. Let’s discuss some of these new 

areas that would be introduced before we discuss some of the more advanced concerns 

about inferential statistics that are currently being discussed by practitioners.  

A) New Topics 

New topics include: 1) Time series analysis and forecasting, 2) Decision Theory, 3) 

Statistical Process Control, and 4) Meta-Analysis. 

Time series analysis involves analyzing data that have been collected over time. 

You will recall that this type of data is called longitudinal data. A goal of time series analysis 

is forecasting the future, which is a serious issue for decision-makers in business and 

government.  

Time series analysis is based on four types of trends: 

1. Secular Trends: The long-term non-periodic variation in the longitudinal 
data. The timescale used is a key determinant on whether longitudinal data 
are perceived as a secular trend. Examples of secular trends include: 1) The 
aging of the population in advanced post-industrial countries, 2) Expansion 
of digital technologies, 3) The reliance on fossil fuels like coal, oil, and natural 
gas, and 4) Trends in global warming. 
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2. Cyclical Variations: These are oscillating movements in time series data. 

The business cycle with its swings between boom and bust are a classic 
example of cyclical variations. 

 
3. Seasonal Variations: These are repeated patterns of changes in time series 

data within a year. Ice cream sales on the Coney Island boardwalk, for 
example, have a distinct seasonal variation. The number of people employed 
at ski resorts or sales of Christmas trees are also longitudinal data with 
strong seasonal variations. 

 
4. Irregular or Random Variations: These are variations in the time series 

data that do not follow a predictable model and are, therefore, not 
predictable. An example of irregular or random variation would be the 
impact on the American economy of impeaching the President of the United 
States. 

 
With time series data, we often calculate moving or rolling averages in an attempt to 

smooth random fluctuations in the data so that trends might be easier to detect. 

With a moving average, individual observations are adjusted by the mean of that 

observation and the observations that precede and follow it. Moving averages are 

often used in financial analysis. Moving averages are considered a trend-following or 

lagging indicator because they are based on historical data.  

Decision Theory deals with a branch of statistical science that evaluates decision-

makers’ choices based on the possible outcomes that might occur in an uncertain future. 

With statistical decision theory, statistical information informs the decision-maker of the 

uncertainties—the probabilities—involved in a decision. In Module 7, Basic Concepts of 

Probability, we briefly discussed Pascal’s Wager as a rudimentary example of decision 

theory. Decision theory is a major topic in graduate-level management curriculum. 

Statistical Process Control, SPC, is a collection of techniques used to improve the 

quality of manufacturing processes. W. Edwards Deming was a leading innovator in SPC. 

One of the best known SPC techniques, Six Sigma (6σ), was developed by William B. Smith 
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at Motorola in the 1980s. Six Sigma is a data-driven process that seeks to reduce 

manufacturing errors to no more than 3.4 out of a million randomly selected production 

units. The name, Six Sigma, comes from the fact that the error goal of one in 3.4 million 

would be six standard deviations from the mean.7  

Meta-Analysis is a collection of quantitative procedures that synthesizes the 

findings from a review of the research on the topic under investigation. We will briefly 

discuss meta-analysis in Section IV. 

B) A Deeper Investigation Into Inferential Statistics 

1) Effect Size, Statistical Power, and the Probability of Type II Errors 

Effect size, practical versus statistical significance, statistical power, and the probability of 

Type II errors receive limited attention in introductory statistics courses if they are even 

mentioned at all. Advanced statistics courses would delve more deeply into these topics. 

NHST focuses on whether an effect exists (the alternate hypothesis) or whether it does not 

exist (the null hypothesis).  

In contrast to most introductory textbooks, Clear-Sighted Statistics presented an 

elementary discussion of effect sizes. We used the tables for the interpretation of effect 

sizes which Jacob Cohen cautiously introduced in his ground-breaking book, Statistical 

Power Analysis in the Social Sciences. These thresholds have become the standard way to 

interpret the magnitude of effect size. Gene Glass, one of the leading developers of meta-

analysis and an effect size theorist, argued against reducing effect size to “tee shirt” sizes. 

Glass and his co-authors wrote: 

There is no wisdom whatsoever in attempting to associate regions of the 
effect size metric with descriptive adjectives such as “small,” “moderate,” 
“large,” and the like. Dissociated from a context of decision and comparative 
value, there is little inherent value to an effect size of 3.5 or .2. Depending on 
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what benefits can be achieved at what cost, an effect size of 2.0 might be 
“poor” and one of .1 might be “good.”8 
 
There is much more to learn about effect sizes. There are many types of effect size 

each with their own advantages, disadvantages, and applications. A more nuanced 

interpretation of effect size than the one presented in Clear-Sighted Statistics should be 

studied in advanced courses because the magnitude of the effect size helps us determine 

whether our findings have practical significance. Practical significance focuses on a very 

important question: Do the findings have real world importance? In addition, we did not 

develop confidence intervals for effect sizes, which some contemporary statisticians argue 

is very important. 

2) ANOVA Tests: 

Advanced statistics courses would explore more sophisticated ANOVA analyses: 

1. One-Way Repeated Measures ANOVA: These ANOVA tests make repeated 
measures of over time.  

 
2. Two-Way Anova Without Replication: An ANOVA Test with two sets of 

independent variables or treatments. Excel’s Data Analysis ToolPak can 
conduct this test. 

 
3. Two-Way Anova With Replication: An ANOVA Test with two sets of 

independent variables or treatments. Replication refers to whether the 
researcher is replicating the test with multiple groups. Excel’s Data Analysis 
ToolPak can conduct this test. 

 
4. Factorial ANOVA: These tests are similar to two-way ANOVA test with 

additional independent variables, treatments, or factors. 
 

5. MANOVA: Multivariate Analysis of Variance: An ANOVA test with more than 
one dependent variable. 

 
6. ANCOVA (Analysis of Covariance): An extension of ANOVA used to 

determine whether the treatments are equal across independent variables. 
 

7. MANCOVA (Multivariate Analysis of Covariance): An extension of 
ANCOVA for multiple dependent variables. 



 

 
8. Kruskal-Wallis H test: A nonparametric version of a One-Way ANOVA test. 

 
3) Regression: 

While Clear-Sighted Statistics covered simple linear regression, advanced statistics courses 

focus on more sophisticated types of regression. These include: 

1. Multiple Regression: Linear regression for modeling the relationship 
between one dependent variable and more than one independent or 
predictor variables. 

 
2. Spearman’s Rho: A nonparametric test of the strength of the association 

between two variables. 
 
3. Kendall’s Tau: A nonparametric test of the strength of the association 

between two ordinal-level variables. 
 
4. Logistic Regression: A regression model used when the dependent variable 

is binary: Either/Or, Yes/No, etc. 
 
5. Multinomial Logistic Regression: A logistic regression model with more 

than two outcomes. 
 
6. Structural Equation Modeling: Very sophisticated models that use 

mathematical and computer algorithms to construct causal models. 
 

4) Nonparametric Techniques 

There are a variety of sophisticated tests used by analysts to determine whether 

parametric tests like z-tests, t-tests, or ANOVA tests are appropriate. These tests would be 

covered in more advanced statistics courses. Dedicated statistical software, like SPSS, 

makes running these tests very easy. More advanced statistics classes would introduce 

dedicated statistical software like SPSS, Stata, or R to test the assumptions of parametric 

tests. Should our data fail to meet the requirements for parametric tests, we would use the 

appropriate nonparametric test. We should consider using nonparametric techniques 

when: 



 

• The data are not normally distributed. 
 

• The sample size is too small to run parametric tests (of course, small 
samples reduce statistical power and increase the risk of Type II errors). 

 
• The data contain outliers that cannot be removed. 

 
• The data are heavily skewed, and as a result, a decision is made to use the 

median instead of the mean. 
 
While nonparametric tests have less statistical power than parametric tests, they 

are more robust. Recall that robustness means the test provides useful results even when 

one or more key assumptions are violated. 

While Clear-Sighted Statistics covered only one nonparametric technique, chi-square 

tests, advanced statistics courses would cover other nonparametric tests. Table 1 shows 

some of the basic parametric tests and their nonparametric equivalents.  

Table 1: Parametric Tests and Their Nonparametric Equivalent 
Parametric Test Nonparametric Tests 

One-sample z-test, One-sample t-test Sign test 
One-sample z-test, One-sample t-test Wilcoxon Signed Rank test 
Two-sample t-test for independent means Wilcoxon-Mann-Whitney test 
One-way ANOVA test Kruskal-Wallis test and Mood’s Median test 
Two-way ANOVA test Friedman test 
Coefficient of Correlation Spearman Rank Correlation 

 
5) Bayesian Inference: 

We briefly touched on Bayes’ Theorem when we reviewed probability. Bayesian inference, 

however, is a sophisticated topic that might be covered in more advanced statistics courses. 

Historically, statisticians tend to be a quarrelsome lot. Tukey joked that the “collective noun 

for a group of statisticians is a quarrel.”9 One of the longest and most acrimonious debates 

in statistics has been between the frequentists and the Bayesians. Nearly all introductory 

statistics textbooks approach statistics from a frequentist orientation, which is based on 
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objective (classical and empirical) probability. Confidence intervals and the 

Fisher/Neyman-Pearson NHST are central to frequentist techniques. Bayesian inference is 

based on Bayes’ Theorem and subjective probability.  

While frequentists still dominate the science of statistics, Bayesian inference has 

been slowly gaining acceptance since the 1970s. Its advocates see Bayesian inference as 

either a useful supplement to frequentist statistical inference, or its replacement.  

We have spent a good deal of time on frequentist NHST, which has become the sine 

qua non of inferential statistics and the cornerstone of most social sciences. Yet, NHST is not 

widely used in physics, chemistry, or biology.  

Let’s devote a couple of paragraphs to Bayesian inference. This discussion is based 

on two sources: 1) Ben Lambert’s introductory textbook, and a wonderful open access 

peer-review monograph written by Alonso Ortega and Gorka Navarrete.10  

Bayesian inference uses Bayes’ Theorem to update evidence in support of both the 

null and alternate hypotheses as more information becomes available. Advocates of 

Bayesian inference contend that this approach allows us to move away from the 

dichotomous frequentist approach that requires either rejecting or failing to reject the null 

hypothesis. Its advocates contend that using Bayesian inferences gives researchers a better 

perspective on the data and the extent to which it supports the null hypothesis or the 

alternate hypothesis. This is something traditional NHST does not do. As we discussed in 

Module 13, NHST focuses on whether the data falsifies the null hypothesis. A central 

feature of NHST is the p-value, which is evidence against the null hypothesis or what one 

philosopher of science said is the degree to which the data are embarrassed by the null 
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hypothesis.11 P-values provide evidence against the null hypothesis. It never produces 

evidence in favor of the null or alternate hypotheses.12 

According to the Bayesians, frequentist NHST has three serious flaws:13 

1) It only provides evidence against the plausibility of the null hypothesis, but 
fails to provide any evidence in favor of the alternate hypothesis. 

 
2) Its inferences are made on hypothetical data distributions (z-, t-, F-, or χ2 

distributions, among others.) instead of being based on actual data. 
 
3) It does not provide clear rules for stopping data collection and as a result any 

null hypothesis can be rejected when the sample is large enough. 
 

The advantage of Bayesian inference , its advocates argue, is that our degree of 

belief in the null and alternate hypotheses—our “prior knowledge”—is updated in light of 

new data. Researchers, therefore, are encouraged to think about the magnitude of evidence 

that supports the existence of an effect, instead of a dichotomous way of thinking where an 

effect either exists or does not exist.  

Bayesian inference obtains information from three sources: 

1) A model that specifies how latent parameters (φ) generate data (D). 
 
2) Prior information about those parameters. 
 
3) The observed data (likelihood). 

 
These sources lead to the construction of Bayes Factors, which are the ratio of the 

likelihood, or probability of the alternate hypothesis to the probability of the null 

hypothesis. The Bayes Factor can be interpreted as the strength of evidence for the 

competing hypotheses.  

Equation 1 shows the formula for calculating Bayes Factors: 

𝐵𝑎𝑦𝑒𝑠 𝐹𝑎𝑐𝑡𝑜𝑟 =
𝑃(𝐷𝑎𝑡𝑎|𝐻1)

𝑃(𝐷𝑎𝑡𝑎|𝐻0)
 

Equation 1: Bayes Factor Equation 



 

 

Table 2 shows how Bayes Factors are interpreted:14 

Table 2: Bayes Factor Interpretation.  

Bayes Factor Interpretation 
> 100 Extreme evidence for the alternate hypothesis 
30 – 100 Very strong evidence for the alternate hypothesis 
10 - 30 Strong evidence for the alternate hypothesis 
3 - 10 Moderate evidence for the alternate hypothesis 
1 - 3 Anecdotal evidence for the alternate hypothesis 
1 No evidence 
1/3 - 1 Anecdotal evidence for the null hypothesis 
1/3 – 1/10 Moderate evidence for the null hypothesis 
1/10 – 1/30 Strong evidence for the null hypothesis 
1/30 – 1/100 Very strong evidence for null hypothesis 
<1/100 Extreme evidence for the null hypothesis 

 
A major obstacle to Bayesian inference, besides the hostility of frequentists like 

Ronald A. Fisher, was that it requires complex calculations. Starting in the 1990s, however, 

Bayesian software was introduced. Here are just a few statistical applications for Bayesian 

analysis: BayesiaLab, JAGS, JASP, Stan, and WinBugs.  

IV. Where is Statistics Going? The Many Second Thoughts About NHST 

We may be witnessing a paradigm shift in inferential statistics. In 1962, philosopher of 

science, Thomas S. Kuhn coined the term paradigm shift in his widely read book, The 

Structure of Scientific Revolutions.15 A paradigm shift is the messy way important changes in 

science happen when the scientific community fundamentally alters accepted thinking and 

methods. According to Kuhn, there are four stages to a paradigm shift: 

1) Normal Science: In this stage the dominant paradigm is active and widely 
supported. Kuhn’s examples of normal science include Newtonian physics, 
caloric theory, and the theory of electromagnetism. The dominant paradigm 
defines how science is conducted. 

 
2) Extraordinary Research: The dominant paradigm becomes suspect when 

researchers find anomalies. This throws the scientific discipline into a state of 
crisis. “Confronted with anomaly or with crisis,” Kuhn declares, “scientists take a 
different attitude toward existing paradigms, and the nature of research changes 
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accordingly.”16 In essence, scientists begin to experiment with new ideas and 
new methods. 

 
3) Adoption of a New Paradigm: Scientists conducting extraordinary research 

eventually develop a new paradigm. This is the messy stage. Many scientists 
refuse to adopt the new paradigm. To illustrate this point, Kuhn quotes Max 
Planck, the German theoretical physicist, “…a new scientific truth does not 
triumph by convincing its opponents and making them see the light, but rather 
because its opponents die, and a new generation grows up that is familiar with 
it.”17 The adoption of a new paradigm takes time because the older scientists 
have to die off. 

 
4) Aftermath: The new paradigm becomes dominant. When dominant, it becomes 

institutionalized; which is to say, it guides the conduct of science and how the 
discipline is taught to students.  
 

A) The NHST Paradigm:  

Is the science of statistics now in the midst of a paradigm shift? Is NHST on its way out, 

ready for the dustbin of history like the geocentric model of the universe that placed Earth 

at its center? 

The NHST paradigm was established in the mid-1920s and 1930s. As practiced in 

the second half of the twentieth century and the first part of the twenty-first century, NHST 

is an amalgam of two different and incompatible approaches. The first approach is Ronald 

A. Fisher’s Significance Testing, which gave us the null hypothesis, significance levels, and p-

values. The second approach, called Hypothesis Testing, was developed by Jerzy Neyman 

and Egon Pearson, the son of Karl Pearson. The Neyman-Pearson approach gave us two 

hypotheses (the null and alternate) and Type I and Type II errors. We need not get into the 

details, but Fisher and Neyman strongly disagreed about their approaches to inferential 

statistics. Today some of the critics of NHST claim that many of the problems with how 

NHST is conducted stem from the inherent incompatibility of Fisher’s significance testing 

and Neyman-Pearson’s hypothesis testing.  



 

Critiques of NHST have a long history. Stephen T. Ziliak and Deirdre N. McCloskey, 

who are articulate and thought-provoking critics of NHST, point to a long-forgotten letter 

written by William Gosset to Egon Pearson in 1926 concerning weaknesses in Fisher’s 

approach to Significance Testing. Neyman and Pearson later operationalized Gosset’s 

comments in their version of Hypothesis Testing.18 

In 1951, Frank Yates, a close colleague of Ronald Fisher, placed an article in the 

Journal of the American Statistical Association that praised and criticized significance 

testing. Yates wrote that Fisher’s Statistical Methods for Research Workers has caused 

researchers to “…pay undue attention to the results of the tests of significance they perform 

on their data…and too little to the estimates of the magnitude of the effects they are 

estimating.”19  

Comments’ similar to Yates’ were made during the next twenty years. In 1966, David 

Bakan declared that NHST flaws are apparent to everyone just like the state of undress of 

Hans Christian Anderson’s foolish emperor parading around in his underwear to show his 

subjects his wonderful invisible robe. Bakan, an advocate of Bayesian inference, wrote,  

“…the test of significance does not provide the information concerning 

psychological phenomena characteristically attributed to it; and that, furthermore, 

a great deal of mischief has been associated with its use. What is said in this 

paper is hardly original. It is, in a certain sense, what ‘everybody knows.’ To say 

it ‘out loud’ is, as it were, to assume the role of the child who pointed out that the 

emperor was really outfitted in his underwear.” (Italics added).”20  

 

In 1970, sociologists Ramon E. Morrison and Denton E. Henkel edited an anthology of 

31 articles titled Significance Test Controversy. One contributor compared NHST to “a potent 

but sterile intellectual rake [a shamelessly immoral person or knave] who leaves in his merry 

path a long train of ravished maidens but no viable scientific offspring.”21  



 

A long-time critic of NHST, Jacob Cohen published an article in 1994 in 

American Psychologist entitled “The Earth is Round (p<.05).” Cohen wrote, “After 4 

decades of severe criticism, the ritual of null hypothesis significance testing—

mechanical dichotomous decisions around a sacred .05 criterion—still persists.”22 

Cohen cites three problems with NHST: 

1) The near-universal misinterpretation of p-values as the probability that the null 
hypothesis is false. 

 
2) The misinterpretation that the complement of the p-value is the probability of 

successful replication of the study. 
 
3) The mistaken assumption that if one rejects the null hypothesis, the theory that 

led to the test is affirmed.23 
 
In the quarter century since Cohen’s often-cited article, legions of statisticians have 

published critiques of NHST. What’s wrong with NHST? It does not tell us what we want to 

know: The probability that the null hypothesis is true. It ignores the size of the effect. And, 

as John P. A. Ioannidis, along with other scholars, pointed out most published research 

using NHST is false because of low statistical power and the inability to replicate the 

studies’ findings.24 In “Why Most Published Research Findings are False,” Ioannidis 

developed six corollaries, which take us beyond the narrow issue of NHST: 

1) The smaller the sample sizes, the less likely the research findings are “true.” 
 
2) The smaller the effect sizes, the less likely the research findings are “true.” 
 
3) The greater the number and the lesser the selection of tested relationships in 

a scientific field, the less likely the research findings are “true.” Which is to 
say, the more variables the less likely the model is “true.” 

 
4) The greater the flexibility in designs, definitions, outcomes, and analytical 

modes in a scientific field, the less likely the research findings are “true.” 
 
5) The greater the financial and other interests and prejudices in a scientific 

field, the less likely the research findings are “true.” 
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6) The hotter a scientific field (with more scientific teams involved), the less 

likely the research findings are “true.” 
 

The calls for downplaying NHST testing or replacing it entirely have been 

increasing. In 2016, The American Statistician published an editorial on the use of p-values. 

In their editorial, Ronald L. Wasserstein and Nicole A, Lazar noted: 

Statisticians and others have been sounding the alarm about these matters for 
decades, to little avail. We hoped that a statement from the world’s largest 
professional association of statisticians [the American Statistical Association] would 
open a fresh discussion and draw renewed and vigorous attention to changing the 
practice of science with regards to the use of statistical inference.25 

 
This editorial was published under the title, “ASA Statement on P-Values and 

Statistical Significance.” 

Here is a summary what the author of the ASA editorial said about p-values, which 

they define as “…the probability under a specific statistical model that the statistical 

summary of the data…would be equal to or more extreme than its observed value:”26 

1) P-values indicate how incompatible the data are with a specified statistical 
model. 

 
2) P-values do not measure the probability that the studied hypothesis is true, or 

the probability that the data were produced by random chance alone. 
[Researchers often wish to turn a p-value into a statement about the truth of a 
null hypothesis, or about the probability that random chance produced the 
observed data. The p-value is neither. It is a statement about data in relation 
to a specified hypothetical explanation, and is not a statement about the 
explanation itself.] 

 
3) Scientific conclusions and business or policy decisions should not be based 

only on whether a p-value passes a specific threshold. 
 
4) Proper inference requires full reporting and transparency. 
 
5)  A p-value, or statistical significance, does not measure the size of an effect or 

the importance of a result. 
 



 

6) By itself, a p-value does not provide a good measure of evidence regarding a 
model or hypothesis. The statement states that “…data analysis should not 
end with the calculation of a p-value when other approaches are appropriate 
and feasible.” These approaches include: “…confidence, credibility, or 
prediction intervals; Bayesian methods; alternative measures of evidence, 
such as likelihood ratios or Bayes Factors; and other approaches such as 
decision-theoretic modeling and false discovery rates.”27 

 
This statement, however, stopped short of calling for an end of NHST and its p-values.  

In March 2019, the scientific journal Nature published an article by Valentin 

Amrhein, Sander Greenland, and Blake McShane calling for the end of NHST. This article 

had 800 signatories.28 In addition, during the same week, The American Statistician, 

published another editorial on NHST, “Moving to a World Beyond ‘p < 0.05.’” It precedes 43 

articles from prominent statisticians that deal with the contentious issue of how to move 

beyond NHST. 

The authors of this editorial wrote: 

The ASA Statement on P-Values and Statistical Significance stopped just short of 
recommending that declarations of “statistical significance” be abandoned. We take 
that step here. We conclude, based on our review of the [43] articles in this special 
issue and the broader literature, that it is time to stop using the term “statistically 
significant” entirely. Nor should variants such as “significantly different,” “p < 0.05,” 
and “nonsignificant” survive, whether expressed in words, by asterisks in a table, or 
in some other way. 29 

 
The editorialists acknowledge that voices in the 43 papers in this issue “do not sing as one. 

At times in this editorial and the papers you’ll hear deep dissonance, the echoes of 

‘statistics wars’ still simmering today.”30  

Clearly inferential statistics may be entering Stage Three of a paradigm shift as 

outlined by Kuhn: Adoption of a New Paradigm. The exact details of this new paradigm are 

still fuzzy. To quote Yogi Berra, the New York Yankees baseball player, “It’s tough to make 

predictions, especially about the future.”31 Throwing caution to the wind, here is a broad 
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outline of five things to expect. It would be a fool’s errand to predict the likely new 

statistical inference techniques with any more detail. 

A) The terms statistically significant and statistically insignificant will be 

deemphasized, if not banished. 

B) The use of the standard 0.05 significance level will decline along with the 

preeminence of p-values. The significance levels used, or more likely the confidence 

levels, will be selected based on the practical importance of the effect size for the issue 

under investigation. 

C) Confidence intervals will replace NHST. Confidence intervals, which we described as 

the inverse of NHST, provide a range of plausible estimates of the population parameter 

rather than a single dichotomous conclusion of “significant or not significant.” As a 

consequence, confidence intervals provide more useful information than NHST.32  

We looked at the issue of a person’s political affiliation—Republican, Independent, 

or Democrat—and their attitude toward the legalization of marijuana. We conducted this 

analysis three ways. We performed two different null hypothesis tests and we constructed 

confidence intervals.  

In Module 15, we used a two-sample z-test for proportions. This test is 

unsatisfactory because we can only compare two samples at a time. We would have to 

conduct this test three times: 1) Republicans to Independents, 2) Republicans to 

Democrats, and 3) Independents to Democrats. The problem with this method is that the 

probability of a Type I error would greatly increase. 

In Module 17, we again examined this question using a chi-square contingency table. 

We concluded that a person’s attitudes toward the legalization of marijuana are dependent 
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on political affiliations. The problem is that this test is an omnibus test and we would have 

to conduct a post hoc analysis to determine which of the three pairs are unequal: 1) 

Republicans vs. Independents, 2) Republicans vs. Democrats, and 3) Independents vs. 

Democrats. One post hoc analysis is the LSD confidence interval that we used on Module 16 

for ANOVA tests. So, why not skip this test and resort to using confidence intervals? 

The clearest answer to the question of the association of political affiliation and 

attitudes toward the legalization of marijuana is found in Module 11 on confidence 

intervals, when we addressed this issue with confidence intervals. Because the confidence 

intervals for Republicans, Independents, and Democrats do not overlap, we concluded that 

Democrats are more likely to favor the legalization of marijuana than Independents, who 

are more likely to favor the legalization of marijuana than Republicans. This conclusion can 

be presented is a chart the provides a clear illustration of this conclusion. See Figure 1: 

 
Figure 1: Confidence Interval Chart 

 

D) Effect sizes will be reported using confidence intervals. Researchers will cease 

reporting the magnitude of effects in “tee shirt” sizes—small, medium, and large—based on 
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effect size thresholds developed decades ago. They will use their judgment and the 

collective wisdom of experts in the field to determine the practical importance of the effect. 

E) Meta-analysis will continue to grow in importance. Meta-analysis is a collection of 

statistical techniques for combining the results of multiple studies. Meta-analyses are 

useful for reconciling discrepancies regarding the effect size found in the research 

literature.  

One final point: We are in an uncertain transition to a new paradigm. While 

statisticians argue vociferously for one approach or another, it would be easy to fall into a 

naïve cynicism. After all, if the leading statisticians are arguing that the methods developed 

a hundred years ago are seriously flawed and yet they cannot agree on the best way 

forward, you may jump to the conclusion that this statistics stuff is just a bunch of useless 

malarkey, hogwash, and hokum. Resist this temptation. All sciences undergo paradigm 

shifts. So, stay skeptical. Do not dismiss the discipline of statistics. Remember John Tukey’s 

sage advice: “The most important maxim for data analysis to heed, and one which many 

statisticians seemed to have shunned is this: ‘Far better an approximate answer to the right 

question, which is often vague, than an exact answer to the wrong question, which can 

always be made precise.’”33 

V. Exercises 

1. What is a major lesson you should have learned from Clear-Sighted Statistics? 
 
2. Inferential Statistics is based on probability. How does this affect our 

understanding of the “truth”? 
 
3. True or False: Statisticians are convinced that the way Statistics is taught and 

practiced is beyond reproach. 
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4. When Gov. Cuomo speaks about COVID, he uses a 3-day average, not a daily 
average. Why? 

 
5. When should nonparametric tests be considered? 
 
6. Multiple Choice: Compared to parametric tests, nonparametric tests have… 

o More Statistical Power 
o The same Statistical Power 
o Less Statistical Power 

 
7. Multiple Choice: p-values provide… 

o No useful information whatsoever 
o Evidence in favor of the null hypothesis 
o Evidence in favor of the alternate hypothesis  
o Evidence against the null hypothesis 

 
8. Multiple Choice: Bayesian Statistics… 

o Is based on Bayes Theorem and subjective probability 
o Updates evidence supporting both the H0 and H1 
o Rejects the dichotomous approach of traditional NHST 
o Was not eagerly adopted by most statisticians  
o All of the above  

 
9. True or False: Since at least 1950, Statisticians have criticized NHST 
 
10. In Jacob Cohen’s article, “The Earth is Round (p < 0.05),” what are his criticisms 

of NHST? 
 
11. What are John P. A. Ioannidis’ six corollaries on NHST? 

  



 

 

Except where otherwise noted, Clear-Sighted Statistics is licensed under a  

Creative Commons License. You are free to share derivatives of this work for 

non-commercial purposes only. Please attribute this work to Edward Volchok. 
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