












concentrated product (Fig. 4B). As expected, no such signal was detected in the
supernatant from cells harboring the empty vector Yeplac181PGK1p.

Beads coated with AD-� bound preferentially to strain �1278b cells. Strain
�1278b AD-coated beads were aggregated with strain �1278b or S. cerevisiae var.
diastaticus cells and then vortex mixed, and the number of beads that adhered to the
cells was quantified. A majority of the beads were bound to strain �1278b cells,
whereas most uncoated beads were not bound to cells (Fig. 5). Binding was dependent
on FLO11 expression, because flo11Δ mutant cells bound poorly. In contrast, there was
no significant difference in the binding of uncoated beads or strain �1278b AD-coated
beads to S. cerevisiae var. diastaticus FLO11 or flo11Δ mutant cells (Fig. 5).

Beads coated with AD-S bound preferentially to S. cerevisiae var. diastati-
cus. Sequences encoding the amino-terminal domain of Flo11p from the S288C strain
background (AD-S) were also amplified and cloned into the vector. This AD-S sequence
is identical to that from S. cerevisiae var. diastaticus (Fig. 3). Since it has been established
that Flo11p is a glycoprotein (16), we also investigated the possibility that different
glycosylation patterns of different strains of yeast may yield Flo11p proteins with
different properties. Therefore, the plasmid with the cloned AD-S domain was used to
transform cells of three different strain backgrounds, namely, S. cerevisiae var. diastati-
cus, �1278b, and S288C.

The culture supernatants from all three strains were concentrated, and equal
amounts of peptides were used to coat Dynal M-450 tosyl-activated microscopic beads
(Dynal Biotech, Lake Success, NJ) in accordance with the manufacturer’s instructions.
The coated beads were mixed with cells of the different yeast strains, and bead-to-cell
adhesion was observed microscopically. The strain of yeast from which the protein was
derived did not significantly affect the binding properties of the beads (Fig. 6A). Beads
coated with AD-S bound very effectively to cells of strain S. cerevisiae var. diastaticus,
which is a highly flocculent strain, but much less effectively to cells of strain �1278b,
which flocculates poorly (Fig. 6A). Binding was dependent on the presence of Flo11p

FIG 4 SDS-PAGE and Western blotting of the purified peptide. (A) SDS-PAGE (4% stacking and 15%
resolving gels) and Coomassie blue staining of purified supernatant (Sup). Lanes: 1, empty; 2,
supernatant from an overnight culture before concentration; 3, Rainbow colored protein high-
molecular-weight markers; 4, supernatant from an overnight culture after concentration. (B) Western
blot assay probed with peroxidase-conjugated anti-His antibody. Lanes: 1, His tag marker (HisM); 2,
supernatant from vector only (negative control); 3, supernatant from overnight culture after
concentration.
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on the cells, since strains with deletions of FLO11 did not bind the coated beads.
Virtually no binding to strain S288C, which does not express FLO11, was detected.
Control reactions with uncoated beads also showed no significant binding (data not
shown). These data are similar to those previously obtained with beads coated with the
entire Flo11p protein (16).

Western blot assays of culture supernatant with anti-His6 antibodies revealed a
peptide of ~23 kDa from all three plasmid-bearing strains (Fig. 6B). This molecular mass
is very close to that predicted from the amino acid sequence of this domain. Therefore,
if this domain is posttranslationally modified, the modification is insufficient to cause a
shift in gel mobility.

Flo11p AD-S is as effective as �GPI-Flo11p-S in causing adhesion to cells.
We compared the activity of AD-S with that of corresponding intact ΔGPI-Flo11p-S,
which lacks only the GPI addition signal. Both versions of the protein were produced in
strain �1278b. Equimolar amounts of the concentrated AD-S and ΔGPI-Flo11pS288C

proteins were used to coat beads, the beads were mixed with different yeast strains,
and the fraction of beads bound to cells was determined. Figure 6C shows that
AD-S-coated beads bound to flocculent S. diastaticus cells almost as well as beads
coated with equimolar amounts of ΔGPI-Flo11p-S. Strains of the �1278b background,
which did not flocculate, exhibited much less binding to beads coated with either AD-S
or ΔGPI-Flo11p-S (Fig. 6C, middle). However, AD-S-coated beads bound slightly more to
strain �1278b cells than did ΔGPI-Flo11p-S-coated beads. Strain S288C cells, which do
not express FLO11, did not bind either type of bead. Therefore, the amino-terminal
domain mediates adhesion activity similar to that of the full-length Flo11p protein.

DISCUSSION

Our data help to resolve a long-standing paradox about the Flo11p adhesin of
S. cerevisiae: that Flo11p mediates strong flocculation in some strains and its floccula-
tion activity is weak in others, but it has strong activity in the formation of fungal mats

FIG 5 Adhesion to beads coated with the strain �1278b Flo11p AD. (A) Beads coated with the strain �1278b Flo11p AD (AD-�) were allowed to adhere
to cells of S. cerevisiae var. diastaticus and strain �1278b, mixed, and photographed. Dark particles are protein-coated beads. Beads were counted and
separated into two categories, those bound to yeast cells and those not bound to yeast cells, with a light microscope with a 40� objective (Leica
Microsystems, Inc., Allendale, NJ). Strain �1278b AD-coated beads bound specifically to Flo11p-expressing cells of strain �1278b and poorly to those of
S. cerevisiae var. diastaticus. Uncoated beads were used to control for nonspecific binding. (B) Quantification of the ability of beads coated with the Flo11p
amino-terminal domain of strain �1278b (AD-�) to adhere to different yeast strains. Uncoated beads represent nonspecific binding. Unpaired t tests were
used, and data are expressed as the mean � the standard deviation (n � >3); asterisks denote statistically significant differences (***, P < 0.001). Each
column represents at least three independent experiments, with at least 200 beads counted for each. w.t., wild type.
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and in agar invasion. The differences in flocculation activity result from allelic differ-
ences in the sequence of Flo11p, rather than from differences in gene expression levels
or posttranslational modification.

Flo11p from either S. cerevisiae strain �1278b or S288C mediated the formation of
cellular aggregates. However, the aggregates of S. cerevisiae var. diastaticus were much
larger (Fig. 5). In contrast, flo11� mutant cells and strain S288C cells failed to bind to
beads coated with either AD, consistent with the requirement for homotypic binding
(7, 16). Therefore, there was homotypic binding in strain �1278b, as well as in
S. cerevisiae var. diastaticus Flo11p, but in strain �1278b, it is not strong enough to
cause macroscopic flocculation (16).

Flo11p from nonflocculent strain �1278b is composed of 1,360 amino acid residues,
compared to 1,361 in alleles from S. cerevisiae var. diastaticus and strain S288C.
Nevertheless, the sequence alignment shows that Flo11p sequences of nonflocculent
strain �1278b exhibited substantial variations in comparison to S. cerevisiae var. dia-
staticus and strain S288C (Fig. 3). The sequence of the strain �1278b Flo11p AD has
15 amino acids inserted at residue 115 in the AD (NTDWIDNPLVSRCDE), as well as
several amino acid substitutions. The insertion is between �-strands 5 and 6 and is close
to two Trp residues that mediate essential hydrophobic-effect interactions between
ADs. Therefore, the insertion would be expected to reduce Flo11p homotypic interac-
tions and decrease flocculation activity in strain �1278b, either because the insertion
alters the conformation in this critical region or because it sterically masks part of the

FIG 6 Characteristics of ADs from S. cerevisiae S288C. (A) Quantitative bead adhesion assay data show that
Dynal beads coated with the same amount of secreted AD-S protein produced by �1278b strain L5478,
S. cerevisiae var. diastaticus strain YIY345, or S288C strain BY4741 bound to different strains of yeast. Each
column represents the mean � the standard deviation of three independent experiments, with at least 200
beads counted per experiment. (B) Sequences encoding the amino-terminal domain (AD-S) of Flo11 from the
S288C strain background were used to transform cells of three different backgrounds, namely, strain �1278b,
S. cerevisiae var. diastaticus, and strain S288C. Western blot assays of culture supernatant with anti-His6

antibodies revealed a peptide of approximately 23 kDa from all three plasmid-bearing strains. (C) Quantitative
bead adhesion assay data show that Dynal beads coated with the same number of moles of either secreted
AD-S or �GPI-Flo11p-S produced in �1278b strain L5478 bound to S. cerevisiae var. diastaticus cells. Each
column shows the mean � the standard deviation of three independent experiments, with at least 200 beads
counted per experiment. w.t., wild type.
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binding site (6, 7). It is less likely but possible that amino acid substitutions alter the
domain conformation. Three of these substitutions are conservative (D54N, Q176E, and
S179C), and two are nonconservative (W94S in strand �-4 and D189Y in strand �-10).
Thus, the 15-residue insertion in strain �1278b is likely to prevent the strong homotypic
interactions characteristic of flocculation.

The Flo11p ADs showed allele-specific binding specificity, as expected if the se-
quence differences in the ADs are important. Beads coated with AD purified from strain
�1278b or S288C (identical to the sequence of S. cerevisiae var. diastaticus) showed
preferential binding to cells expressing the homologous adhesin (Fig. 5 and 6). In
addition, the Flo11p AD from strain S288C showed similar binding specificity when
expressed from any of three strains, S. cerevisiae var. diastaticus, �1278b, or S288C. This
result implies that differences in binding specificity and flocculation induction are not
due to strain-specific posttranslational processing of Flo11p.

Binding activity and specificity were also similar for beads coated with the AD only
or with ΔGPI-Flo11p-S, which lacks only the C-terminal 30 of the 1,360 amino acids
(Fig. 6C). This protein includes extensively glycosylated serine/threonine-rich regions
that form stiff rod-like structures that facilitate extracellular exposure of the amino-
terminal domain (24). In Candida albicans Als5p, as well as in Flo1p and in S. cerevisiae
var. diastaticus Flo11p, this region folds into multiple small compact domains that are
unfolded by extension in the atomic force microscope (23, 26, 38, 39). Indeed, in the
C. albicans adhesin Als5p, the repeats interact through a hydrophobic effect and
stabilize binding to fibronectin (28). In Flo1p, the results are consistent with homotypic
binding between the repeats, and variations in repeat numbers cause phenotypic
variations in flocculation (23, 25, 26). The Flo11p sequences show a high degree of
sequence similarity between the Flo11p repeats in the three strains, but at least 15
insertion/deletion events are evident between the strain �1278b allele and the S. cerevi-
siae var. diastaticus allele. There have been two insertion/deletion events in this region
between S. cerevisiae var. diastaticus and strain S288C. Because the ADs are sufficient to
confer flocculation specificity (Fig. 5 and 6), changes in the tandem repeats appear to
cause secondary or minor differences in Flo11p flocculation activity.

The strains also showed differences in the expression levels of Flo11p and in the
contribution of Flo11p to surface hydrophobicity. FLO11 transcriptional regulation
depends on the growth phase; there was significantly higher expression in the station-
ary phase of each strain than in the log phase (Fig. 1A). These data are consistent with
the previous findings that FLO11-dependent phenotypes are more prominent during
glucose starvation (8, 14). Interestingly, FLO11 mRNA expression in strain �1278b was
significantly higher than that in S. cerevisiae var. diastaticus (Fig. 1B). Despite its lower
transcript level, Flo11p in S. cerevisiae var. diastaticus is sufficient to ensure a high level
of flocculation.

In strain �1278b, Flo11p contributed about 40% of the surface hydrophobicity.
S. cerevisiae var. diastaticus was substantially more hydrophobic, and partitioning to the
nonpolar phase was three times as great. Deletion of FLO1 decreased nonpolar parti-
tioning by about 10% in each strain, but the difference was a greater fraction of the
partition in strain �1278b, because of its lower basal hydrophobicity. Indeed, hydro-
phobicity analyses of Flo11p sequences of strain �1278b and S. cerevisiae var. diastati-
cus show similar hydrophobicity profiles for both alleles (http://web.expasy.org/
protscale/) (27, 29). Therefore, neither transcription level nor surface hydrophobicity
accounted for the activity differences in the FLO11 products.

In summary, our data support the idea that strain-specific differences in the level of
flocculation are due to sequence differences in the ADs. The sequence of the AD of
nonflocculent strain �1278b varies significantly from that of highly flocculent S. cerevi-
siae var. diastaticus, and each allele showed strain-specific homotypic binding. These
results were similar, regardless of the strain used to produce the Flo11 AD, a result
demonstrating that strain-specific differences in the expression level or posttransla-
tional modifications have little effect. In addition, allelic differences outside the ADs had
little effect on binding specificity. Thus, the data are consistent with the idea that
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sequence differences in the AD (including a 15-amino-acid insertion near the binding
surface in a nonflocculent strain) determine the flocculation activity of Flo11p.

MATERIALS AND METHODS
Real-time qRT-PCR analysis for assessment of FLO11 mRNA expression. The yeast strains listed in
Table 2 were grown overnight in yeast extract-peptone-dextrose medium at 30°C to an optical density
at 600 nm (OD600) of ~0.8 for log phase or to an OD600 of ~2.8 for stationary phase. Total RNA was
isolated by the hot acidic-phenol method (30). Each sample was treated with RNAsecure reagent
(Ambion, Inc., Austin, TX). Extracted total RNA was further treated with RNase-free DNase (Qiagen, Inc.,
Valencia, CA) to get rid of any DNA contamination and purified with the RNeasy kit in accordance with
the manufacturer’s instructions (Qiagen, Inc., Valencia, CA). Quantitation of RNA was performed by
measuring the A280 with RNase-free water as the blank. Bio-Rad MyIQ single-color real-time PCR detection
systems were used with the iScript kit (Bio-Rad Laboratories, Hercules, CA) and real-time PCR amplifica-
tion with the same amount of RNA for all samples. Expression of FLO11 mRNA was normalized to the
relative expression value of the housekeeping gene PDA1 (31) in each sample. The qRT-PCR cycling
conditions were 50°C for 2 min, 95°C for 10 min, and 40 cycles of 95°C for 15 s and 59°C for 1 min. The
primers used for amplification of FLO11 mRNA were Forward FLO11 (5= TCGCTTATTTGGTCCTTTCG 3=)
and Reverse FLO11 (5= AAGTTGGGACAGCCATTAAC 3=), and those used for the housekeeping gene PDA1
were Forward PDA1 (5= GGAATTTGCCCGTCGTGTT 3=) and Reverse PDA1 (5= GCGGCGGTACCCATACC 3=).

Hydrophobicity assay. Yeast cell surface hydrophobicity was assessed by an aqueous-hydrocarbon
biphasic hydrophobicity assay adapted from a method previously described (15, 32). Briefly, cells were
grown in synthetic complete (SC) medium to an OD600 of ~3.0; cells were then resuspended to an OD600

of ~0.8. A 1.2-ml culture sample was added to a 13- by 100-mm borosilicate glass tube. A 600-�l volume
of octane was used to overlay the cell suspension, which was then vortexed for 3 min. The biphasic layers
were allowed to separate, and then the OD600 of the aqueous layer was measured. The relative difference
between the OD600 of the aqueous phase before and after the addition of octane was used to determine
the percentage of hydrophobicity.

PCR amplification of the sequencing product. Yeast genomic DNA from S. cerevisiae var. diastaticus
strain YIY345 (generously provided by I. Yamashita; Table 2) was extracted from the overnight culture.
PCR primers were designed on the basis of the strain S288C FLO11 DNA sequence and amplified for DNA
sequencing. Because the serine/threonine-rich region was too repetitive to permit the design of a unique
specific primer, sequencing was done by amplifying 1.8 kb of the repeat region with forward and reverse
primers designed on the basis of the sequences upstream and downstream of the repeat. PCR was
carried out at 94°C for 4 min; 94°C for 1 min, 58°C for 1 min 30 s, and 72°C for 3 min for 25 cycles; and
a final extension at 72°C for 10 min. The amplified product was digested with restriction enzymes MmeI
and SfcI (New England Biolabs, MA). The gel-purified digested product was ligated with a linker having
a universal primer site at the 5= end (t7, 5= TAATACGACTCACTATAGGG 3=; GENEWIZ, North Brunswick,
NJ). The resulting product was purified with the QIAquick PCR purification kit (Qiagen, Valencia, CA) to
eliminate linkers. The purified ligated product was then amplified by PCR with specific primers homol-
ogous to the linker sequence and the genomic DNA sequence. The amplified PCR product was further
purified with the QIAquick PCR purification kit (Qiagen, Valencia, CA) in accordance with the manufac-
turer’s protocol. Sequencing was done with primers specifically designed by the GENEWIZ sequencing
facility (North Brunswick, NJ).

Plasmid construction. Plasmid YEplac181-PGK1p-MUC1-GPIΔ (16, 33), having the FLO11 sequence
from the strain S288C background, was initially digested with restriction enzymes EcoRI and SalI (New
England Biolabs, MA) to cut out the FLO11 gene. Purification of the empty vector Yeplac181PGK1p was
performed with the Qiaex II gel extraction kit (Qiagen, Inc., Valencia, CA) in accordance with the
manufacturer’s recommendation. The insert DNA, having the AD from the strain �1278b (encoding
AD-�) background (generously provided by members of the laboratory of Gerald Fink; Table 2) without

TABLE 2 Yeast strains and plasmids used in this study

Strain name Background Genotype or description Reference or source

Strains
YIY345 S. cerevisiae var. diastaticus MATa ura3 leu2-3,112 his4 35
YIY345flo-1 S. cerevisiae var. diastaticus MATa ura3 leu2-3,112 his4 flo11::URA3 17
L5487 �1278b MAT� leu2::hisG ura3-52 36
L5487flo11Δ �1278b MAT� leu2::hisG ura3-52 flo11::URA3 14
L5486 �1278b MATa leu2::hisG ura3-52 36
FY2 S288C MAT� ura3-52, GAL2� 37
BY4741 S288C MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 SGDa

Plasmids
pFLO11 YEplac181-PGK1p-FLO11-S-GPIΔ 16
pAD-FLO11-� YEplac181-PGK1p-FLO11-�-AD This work,b 16
pAD-FLO11-S YEplac181-PGK1p-FLO11-S-AD This work,b 16

aSGD, Saccharomyces Genome Database.
bDerived from pFLO11.
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a GPI anchor, was created. Primers 5= CGAGAATTCATGCAAAGACCATTTCCATTCGCTTATTTGGTCCTTTCG
CTTC 3= and 5= ATCGTCGACTTAGTGGTGATGGTGATGATGACAATTGTTGTCACAATCTATGTTCC 3=, having
EcoRI and SalI restriction sites and a His6 tag at the 5= end, were used to amplify the AD of strain �1278b.
The PCR amplification cycles were programmed as follows: 94°C for 4 min (denaturation); 94°C for 1 min,
50°C for 1 min 30 s, and 72°C for 3 min for 25 cycles; and a final extension at 72°C for 10 min.

For pADFLO11-GPIΔ for the AD-S, the BamHI site in the multicloning region was deleted, leaving the
BamHI site at the end of the signal sequence in FLO11 as a unique restriction site in the resulting
construct, pFLO11-GPIΔ-Bamless. pFLO11-GPIΔ-Bamless was digested with BamHI and PstI to release
most of the coding sequence of FLO11 (including nucleic acids 88 to 3993). The remaining 7.4-kb plasmid
fragment containing the FLO11 signal sequence and a His6 tag was gel purified with a gel extraction kit
(Qiagen Inc., Valencia, CA) and served as the vector for DNA encoding the AD of Flo11 (pAD). The AD of
Flo11p from S. cerevisiae var. diastaticus was amplified by PCR with a forward primer with a BamHI site
and a reverse primer with a PstI site. The forward primer was 5= ATTCCTGGATCCTCCGAAGGAACTAGC
TG 3=, and the reverse primer was 5= ATCTCACTGCAGACTTCGTACCGCCACAATTATTGT 3= (the restriction
sites are in bold).

After amplification, to create padflo11-gpiΔ (for AD-�), the amplified product was first purified with
the QIAquick PCR purification kit (Qiagen, Inc., Valencia, CA). The PCR product was then digested with
restriction enzymes EcoRI and SalI (New England Biolabs, MA) and ligated into the cleaved EcoRI and SalI
sites of the vector. For padflo11-gpiΔ (for AD-S), after purification, the amplified PCR product was
digested with restriction enzymes BamHI and PstI (New England Biolabs, MA) and ligated into the cleaved
BamHI and PstI sites of the vector. Both of the plasmids were transformed into E. coli Library Efficiency
DH5� competent cells (Invitrogen Life Technologies, Carlsbad, CA) in accordance with the manufacturer’s
instructions.

Expression and purification. S. cerevisiae var. diastaticus and strains �1278b and S288c were
transformed with pADFLO11-GPIΔ to encode ad-�, AD-S.d., or AD-S and then grown in SC medium
without leucine and with two times the concentration of amino acids in SC medium for growth
enhancement. Incubation at 30°C was carried out until stationary phase, i.e., an OD600 of approximately
4.0; when supernatants were collected. Secreted proteins in the supernatants were concentrated with
Amicon Ultra-4 filter devices with a 10,000 molecular weight cutoff (catalog no. UFC801024; Millipore,
Corp., Billerica, MA). Further concentration of the concentrated proteins was performed with Amicon
Ultra-0.5 filters with a 10,000 molecular weight cutoff. The total protein in the concentrated sample was
quantified by the Bradford method (Coomassie Plus Protein Assay Reagent; Pierce Biotechnology, Perbio,
Rockford, IL). SDS-PAGE of the concentrated product was performed along with culture supernatant of
S. cerevisiae var. diastaticus flo11� mutant cells having Yeplac181PGK1p (vector only) as a negative
control. Protein gel electrophoresis was performed with 4 to 15% SDS-polyacrylamide gel, and samples
were run at 80 V for 120 min. SDS-PAGE gels were stained for 1 h or overnight in 100 ml of Coomassie
blue staining solution with gentle rocking.

Immunoblotting. Immunoblotting of proteins blotted onto polyvinylidene difluoride membrane
(Immobilon Millipore P, Millipore Corp., Billerica, MA) was performed with a mouse IgG2b primary
monoclonal antibody specific for a consecutive sequence of six histidine residues (Invitrogen Life
Technologies, Carlsbad, CA) diluted 1:5,000 in 10 ml of blocking buffer for 3 h at room temperature or
with a mouse immunoglobulin G (IgG) primary monoclonal antibody specific for a consecutive sequence
of five histidine residues (Penta-His; Qiagen, Inc., Valencia, CA) diluted 1:2,000 in Tris-buffered saline with
Tween 20 plus 5% milk for 1 h. Membranes were then exposed to a horseradish peroxidase-conjugated
anti-mouse IgG secondary antibody for 15 min to 1 h at room temperature with gentle agitation.
Detection of the His-tagged protein was done with ECL chemiluminescence assay Western detection
reagents (Amersham Pharmacia Biotech, Inc., Piscataway, NJ) for 30 s in accordance with the manufac-
turer’s instructions.

Preparation of protein-coated beads. Concentrated Flo11p protein was used to coat
p-toluenesulfonyl chloride-activated, tosyl-activated Dynal M-450 beads (Dynal Biotech, Inc., Lake Suc-
cess, NY) by the method of Douglas et al. (16). In a 0.5-ml tube, 107 beads were washed and resuspended
for 2 min in 100 �l of buffer A (0.1 M sodium phosphate, pH 7.4). A 5-�g sample of the Flo11p AD was
added, and the combination was mixed by brief vortexing. Beads were then incubated for ~36 h at 30°C
with slow tilt rotation. Beads were collected with a magnetic stand for 2 min, and the supernatants were
pipetted off to a separate tube (the OD595 of the supernatant was measured again). After the beads were
washed twice for 5 min in phosphate-buffered saline (PBS), pH 7.4, they were collected with a magnetic
stand and the supernatants were discarded. Washing was then performed with 0.2 M Tris, pH 8.5, with
1.5% nonfat dry milk or fetuin as a blocking agent. Incubation was then done at 30°C for 1 h, followed
by ~36 h at 4°C with slow tilt rotation. After the beads were collected with a magnetic stand, washing
was performed in PBS, pH 7.4, for 5 min at 4°C. Beads coated with nonfat dry milk or fetuin only were
included as a control in each experiment.

Bead-based adhesion assay. A bead-based adhesion assay was performed by a modification of the
method of Gaur et al. (34). Cells were grown overnight to a density of ~2 � 108/ml. Aliquots of ~1 � 108

cells were washed twice in deflocculation buffer (20 mM sodium citrate, 5 mM EDTA, pH 4.0), the cells
were resuspended in deflocculation buffer containing 20 mM calcium chloride to promote adhesion (8),
1 � 106 coated beads (2.5 �l) were added to a total volume of 1 ml, and then the cells plus
protein-coated beads were incubated in SC medium with 0.1% glucose for 1 h 30 min at 30°C with slow
tilt rotation. (The assay was carried out in this medium because strain �1278b requires glucose starvation
for maximum Flo11-dependent adhesion.) (15). After the reaction mixture was vortexed vigorously for
~20 s, wet mounts on glass slides were prepared immediately for microscopic viewing. Beads were
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counted and separated into two categories, beads bound to yeast cells and beads not bound to yeast
cells, with a light microscope with a 40� objective (Leica Microsystems, Inc., Allendale, NJ). For each
category, values were calculated and are presented as percentages based on the total number of beads
counted with respect to that category (16).

ACKNOWLEDGMENTS
We thank Yang Yang for help in sequencing the genes. Isak S. Pretorius, Florian Bauer,
and Marco Gagiano kindly sent us the plasmid Yeplac181-PGK1p-MUC1.

This work was financially supported by NIH grant R15AI43927 and NSF grant
MCB-9973776 to Anne M. Dranginis.

FUNDING INFORMATION
This work, including the efforts of Anne M. Dranginis, was funded by HHS | National
Institutes of Health (NIH) (R15AI43927). This work, including the efforts of Anne M.
Dranginis, was funded by National Science Foundation (NSF) (MCB-9973776).

REFERENCES
1. Verstrepen KJ, Derdelinckx G, Verachtert H, Delvaux FR. 2003. Yeast

flocculation: what brewers should know. Appl Microbiol Biotechnol
61:197–205. http://dx.doi.org/10.1007/s00253-002-1200-8.

2. Sampermans S, Mortier J, Soares EV. 2005. Flocculation onset in
Saccharomyces cerevisiae: the role of nutrients. J Appl Microbiol 98:
525–531. http://dx.doi.org/10.1111/j.1365-2672.2004.02486.x.

3. Goossens KV, Ielasi FS, Nookaew I, Stals I, Alonso-Sarduy L, Daenen
L, Van Mulders SE, Stassen C, van Eijsden RG, Siewers V, Delvaux FR,
Kasas S, Nielsen J, Devreese B, Willaert RG. 2015. Molecular mecha-
nism of flocculation self-recognition in yeast and its role in mating and
survival. mBio 6:e00427-15. http://dx.doi.org/10.1128/mBio.00427-15.

4. Alexandre H. 2013. Flor yeasts of Saccharomyces cerevisiae—their ecol-
ogy, genetics and metabolism. Int J Food Microbiol 167:269 –275. http://
dx.doi.org/10.1016/j.ijfoodmicro.2013.08.021.

5. Zara S, Bakalinsky AT, Zara G, Pirino G, Demontis MA, Budroni M.
2005. FLO11-based model for air-liquid interfacial biofilm formation by
Saccharomyces cerevisiae. Appl Environ Microbiol 71:2934 –2939. http://
dx.doi.org/10.1128/AEM.71.6.2934-2939.2005.

6. Goossens KV, Willaert RG. 2012. The N-terminal domain of the Flo11
protein from Saccharomyces cerevisiae is an adhesin without mannose-
binding activity. FEMS Yeast Res 12:78 – 87. http://dx.doi.org/10.1111/
j.1567-1364.2011.00766.x.

7. Kraushaar T, Brückner S, Veelders M, Rhinow D, Schreiner F, Birke R,
Pagenstecher A, Mösch HU, Essen LO. 2015. Interactions by the fungal
Flo11 adhesin depend on a fibronectin type III-like adhesin domain
girdled by aromatic bands. Structure 23:1005–1017. http://dx.doi.org/
10.1016/j.str.2015.03.021.

8. Bayly JC, Douglas LM, Pretorius IS, Bauer FF, Dranginis AM. 2005.
Characteristics of Flo11-dependent flocculation in Saccharomyces
cerevisiae. FEMS Yeast Res 5:1151–1156. http://dx.doi.org/10.1016/
j.femsyr.2005.05.004.

9. Smit G, Straver MH, Lugtenberg BJ, Kijne JW. 1992. Flocculence of
Saccharomyces cerevisiae cells is induced by nutrient limitation, with cell
surface hydrophobicity as a major determinant. Appl Environ Microbiol
58:3709 –3714.

10. Straver MH, vd Aar PC, Smit G, Kijne JW. 1993. Determinants of
flocculence of brewer’s yeast during fermentation in wort. Yeast
9:527–532. http://dx.doi.org/10.1002/yea.320090509.

11. Wilcocks KL, Smart KA. 1995. The importance of surface charge and
hydrophobicity for the flocculation of chain-forming brewing yeast
strains and resistance of these parameters to acid washing. FEMS Mi-
crobiol Lett 134:293–297. http://dx.doi .org/10.1111/j .1574
-6968.1995.tb07953.x.

12. Cullen PJ, Sprague GF, Jr. 2000. Glucose depletion causes haploid
invasive growth in yeast. Proc Natl Acad Sci U S A 97:13619 –13624.
http://dx.doi.org/10.1073/pnas.240345197.

13. Guo B, Styles CA, Feng Q, Fink GR. 2000. A Saccharomyces gene family
involved in invasive growth, cell-cell adhesion, and mating. Proc Natl
Acad Sci U S A 97:12158 –12163. http://dx.doi.org/10.1073/
pnas.220420397.

14. Lo WS, Dranginis AM. 1998. The cell surface flocculin Flo11 is required

for pseudohyphae formation and invasion by Saccharomyces cerevisiae.
Mol Biol Cell 9:161–171. http://dx.doi.org/10.1091/mbc.9.1.161.

15. Reynolds TB, Fink GR. 2001. Bakers’ yeast, a model for fungal biofilm
formation. Science 291:878 – 881. http://dx.doi.org/10.1126/
science.291.5505.878.

16. Douglas LM, Li L, Yang Y, Dranginis AM. 2007. Expression and char-
acterization of the flocculin Flo11/Muc1, a Saccharomyces cerevisiae
mannoprotein with homotypic properties of adhesion. Eukaryot Cell
6:2214 –2221. http://dx.doi.org/10.1128/EC.00284-06.

17. Lo WS, Dranginis AM. 1996. FLO11, a yeast gene related to the STA
genes, encodes a novel cell surface flocculin. J Bacteriol 178:7144 –7151.

18. Reynolds TB, Jansen A, Peng X, Fink GR. 2008. Mat formation in
Saccharomyces cerevisiae requires nutrient and pH gradients. Eukaryot
Cell 7:122–130. http://dx.doi.org/10.1128/EC.00310-06.

19. Yang Y, Dranginis AM. 2009. Structural and functional study of a fungal
adhesin, Flo11p in various strains of Saccharomyces cerevisiae. St. John’s
University, New York, NY.

20. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H,
Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW,
Murakami Y, Philippsen P, Tettelin H, Oliver SG. 1996. Life with 6000
genes. Science 274: , 563–567. http://dx.doi .org/10.1126/
science.274.5287.546.

21. Fichtner L, Schulze F, Braus GH. 2007. Differential Flo8p-dependent
regulation of FLO1 and FLO11 for cell-cell and cell-substrate adherence
of S. cerevisiae S288c. Mol Microbiol 66:1276 –1289. http://dx.doi.org/
10.1111/j.1365-2958.2007.06014.x.

22. Fidalgo M, Barrales RR, Jimenez J. 2008. Coding repeat instability in
the FLO11 gene of Saccharomyces yeasts. Yeast 25:879 – 889. http://
dx.doi.org/10.1002/yea.1642.

23. Chan CXJ, El-Kirat-Chatel S, Joseph IG, Jackson DN, Ramsook CB,
Dufrêne YF, Lipke PN. 2016. Force sensitivity in Saccharomyces cerevi-
siae flocculins. mSphere 1:e00128-16. http://dx.doi.org/10.1128/
mSphere.00128-16.

24. Dranginis AM, Rauceo JM, Coronado JE, Lipke PN. 2007. A biochem-
ical guide to yeast adhesins: glycoproteins for social and antisocial
occasions. Microbiol Mol Biol Rev 71:282–294. http://dx.doi.org/10.1128/
MMBR.00037-06.

25. Verstrepen KJ, Jansen A, Lewitter F, Fink GR. 2005. Intragenic tandem
repeats generate functional variability. Nat Genet 37:986 –990. http://
dx.doi.org/10.1038/ng1618.

26. Teunissen AW, Steensma HY. 1995. Review: the dominant flocculation
genes of Saccharomyces cerevisiae constitute a new subtelomeric gene
family. Yeast 11:1001–1013. http://dx.doi.org/10.1002/yea.320111102.

27. Abraham DJ, Leo AJ. 1987. Extension of the fragment method to
calculate amino acid zwitterion and side chain partition coefficients.
Proteins 2:130 –152. http://dx.doi.org/10.1002/prot.340020207.

28. Rauceo JM, De Armond R, Otoo H, Kahn PC, Klotz SA, Gaur NK, Lipke
PN. 2006. Threonine-rich repeats increase fibronectin binding in the
Candida albicans adhesin Als5p. Eukaryot Cell 5:1664 –1673. http://
dx.doi.org/10.1128/EC.00120-06.

29. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A.
2003. ExPASy: the proteomics server for in-depth protein knowledge

Barua et al.

Volume 1 Issue 4 e00129-16 msphere.asm.org 12

http://dx.doi.org/10.1007/s00253-002-1200-8
http://dx.doi.org/10.1111/j.1365-2672.2004.02486.x
http://dx.doi.org/10.1128/mBio.00427-15
http://dx.doi.org/10.1016/j.ijfoodmicro.2013.08.021
http://dx.doi.org/10.1016/j.ijfoodmicro.2013.08.021
http://dx.doi.org/10.1128/AEM.71.6.2934-2939.2005
http://dx.doi.org/10.1128/AEM.71.6.2934-2939.2005
http://dx.doi.org/10.1111/j.1567-1364.2011.00766.x
http://dx.doi.org/10.1111/j.1567-1364.2011.00766.x
http://dx.doi.org/10.1016/j.str.2015.03.021
http://dx.doi.org/10.1016/j.str.2015.03.021
http://dx.doi.org/10.1016/j.femsyr.2005.05.004
http://dx.doi.org/10.1016/j.femsyr.2005.05.004
http://dx.doi.org/10.1002/yea.320090509
http://dx.doi.org/10.1111/j.1574-6968.1995.tb07953.x
http://dx.doi.org/10.1111/j.1574-6968.1995.tb07953.x
http://dx.doi.org/10.1073/pnas.240345197
http://dx.doi.org/10.1073/pnas.220420397
http://dx.doi.org/10.1073/pnas.220420397
http://dx.doi.org/10.1091/mbc.9.1.161
http://dx.doi.org/10.1126/science.291.5505.878
http://dx.doi.org/10.1126/science.291.5505.878
http://dx.doi.org/10.1128/EC.00284-06
http://dx.doi.org/10.1128/EC.00310-06
http://dx.doi.org/10.1126/science.274.5287.546
http://dx.doi.org/10.1126/science.274.5287.546
http://dx.doi.org/10.1111/j.1365-2958.2007.06014.x
http://dx.doi.org/10.1111/j.1365-2958.2007.06014.x
http://dx.doi.org/10.1002/yea.1642
http://dx.doi.org/10.1002/yea.1642
http://dx.doi.org/10.1128/mSphere.00128-16
http://dx.doi.org/10.1128/mSphere.00128-16
http://dx.doi.org/10.1128/MMBR.00037-06
http://dx.doi.org/10.1128/MMBR.00037-06
http://dx.doi.org/10.1038/ng1618
http://dx.doi.org/10.1038/ng1618
http://dx.doi.org/10.1002/yea.320111102
http://dx.doi.org/10.1002/prot.340020207
http://dx.doi.org/10.1128/EC.00120-06
http://dx.doi.org/10.1128/EC.00120-06
msphere.asm.org


and analysis. Nucleic Acids Res 31:3784 –3788. http://dx.doi.org/
10.1093/nar/gkg563.

30. Iyer V, Struhl K. 1996. Absolute mRNA levels and transcriptional initi-
ation rates in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A
93:5208 –5212. http://dx.doi.org/10.1073/pnas.93.11.5208.

31. Govender P, Domingo JL, Bester MC, Pretorius IS, Bauer FF. 2008.
Controlled expression of the dominant flocculation genes FLO1, FLO5,
and FLO11 in Saccharomyces cerevisiae. Appl Environ Microbiol 74:
6041– 6052. http://dx.doi.org/10.1128/AEM.00394-08.

32. Hazen KC, Hazen BW. 1987. A polystyrene microsphere assay for
detecting surface hydrophobicity variations within Candida albicans
populations. J Microbiol Methods 6:289 –299. http://dx.doi.org/
10.1016/0167-7012(87)90066-2.

33. Gagiano M, van Dyk D, Bauer FF, Lambrechts MG, Pretorius IS.
1999. Msn1p/Mss10p, Mss11p and Muc1p/Flo11p are part of a signal
transduction pathway downstream of Mep2p regulating invasive
growth and pseudohyphal differentiation in Saccharomyces cerevi-
siae. Mol Microbiol 31:103–116. http://dx.doi.org/10.1046/j.1365
-2958.1999.01151.x.

34. Gaur NK, Klotz SA, Henderson RL. 1999. Overexpression of the Can-
dida albicans ALA1 gene in Saccharomyces cerevisiae results in aggrega-

tion following attachment of yeast cells to extracellular matrix proteins,
adherence properties similar to those of Candida albicans. Infect Immun
67:6040 – 6047.

35. Yamashita I, Maemura T, Hatano T, Fukui S. 1985. Polymorphic
extracellular glucoamylase genes and their evolutionary origin in the
yeast Saccharomyces diastaticus. J Bacteriol 161:574 –582.

36. Roberts RL, Fink GR. 1994. Elements of a single MAP kinase cascade in
Saccharomyces cerevisiae mediate two developmental programs in the
same cell type: mating and invasive growth. Genes Dev 8:2974 –2985.
http://dx.doi.org/10.1101/gad.8.24.2974.

37. Winston F, Dollard C, Ricupero-Hovasse SL. 1995. Construction of a
set of convenient Saccharomyces cerevisiae strains that are isogenic to
S288C. Yeast 11:53–55. http://dx.doi.org/10.1002/yea.320110107.

38. Alsteens D, Garcia MC, Lipke PN, Dufrene YF. 2010. Force-induced
formation and propagation of adhesion nanodomains in living fungal
cells. Proc Natl Acad Sci U S A 107:20744 –20749. http://dx.doi.org/
10.1073/pnas.1013893107.

39. El-Kirat-Chatel S, Beaussart A, Vincent SP, Flos MA, Hols P, Lipke PN,
Dufrene YF. 2015. Forces in yeast flocculation. Nanoscale 7:1760 –1767.
http://dx.doi.org/10.1039/C4NR06315E.

Molecular Basis for Flo11p-Mediated Strain Variation

Volume 1 Issue 4 e00129-16 msphere.asm.org 13

http://dx.doi.org/10.1093/nar/gkg563
http://dx.doi.org/10.1093/nar/gkg563
http://dx.doi.org/10.1073/pnas.93.11.5208
http://dx.doi.org/10.1128/AEM.00394-08
http://dx.doi.org/10.1016/0167-7012(87)90066-2
http://dx.doi.org/10.1016/0167-7012(87)90066-2
http://dx.doi.org/10.1046/j.1365-2958.1999.01151.x
http://dx.doi.org/10.1046/j.1365-2958.1999.01151.x
http://dx.doi.org/10.1101/gad.8.24.2974
http://dx.doi.org/10.1002/yea.320110107
http://dx.doi.org/10.1073/pnas.1013893107
http://dx.doi.org/10.1073/pnas.1013893107
http://dx.doi.org/10.1039/C4NR06315E
msphere.asm.org

