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Abstract

A quantum-kinetic equation accounting for the electron-phonon interaction is solved
by a Monte Carlo (MC) approach. The equation solved here is simplified Barker-
Ferry (B-F) equation written for the case of zero electric field. The original formu-
lation of the B-F equation accounts for the action of the electric field during the
process of collision.

The sensitivity of the MC solution for the electron energy distribution is inves-
tigated empirically, using various sequential and parallel pseudo-random number
generators (prng’s). The results obtained for the computational cost of the MC al-
gorithm, the accuracy and the bias in the MC solution can be used to guide the
treatment in the general case.

Key words: Barker-Ferry quantum-kinetic equation, Markov chain, Transition
density function, Parallel and sequential pseudo-random number generators

1 The quantum-kinetic equation

The Barker-Ferry equation [1] was developed as a physical model to describe
the femtosecond relaxation process of initially excited electrons by a laser
pulse [10]. For zero electrical field, the equation can be written in the following
integral form:
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where k is the momentum, f(k,?) is the distribution function and ¢(k) is the
positive initial condition. In the kernel (2), nq is the Bose function, V' is the
volume and Q(k', k) = (e(k') — e(k) — hiwg)/h. The phonon energy is fiwg,
which generally depends on q = k' — k, and (k) = hk?/2m is the electron
energy. The coupling
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applies to the Frohlich interaction, and (e4,) and (e5) are the optical and static
dielectric constants. The damping factor I'(k’, k) = I'(k’) + I'(k) is related to
the finite carrier lifetime for the scattering process:
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In spherical coordinates (k, 6, @), with the k! axis oriented along k and zero
lattice temperature (nq = 0), the equation (1) can be rewritten as a one-
dimensional integral in k [5]:
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The functions I'(k’, k) and Q(k’, k) depend only on the radial variables k and
k' and are denoted by 'y, and € j, respectively where
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0, if k2 < w1,

with w; = 2mw,/h, ¢y = (mew,/h?)|1/es — 1/¢,|.



The Neumann series corresponding to equation (3) converges [5] and a MC
approach can be applied to evaluate the electron energy distribution. We note
that this approach can be generalized for finite temperatures in a straightfor-
ward way.

2 Monte Carlo approach

Define a terminated Markov chain (ko,79) = ... = (k;,75) = ... = (Ki., 7.),
such that every point (k;,7;) € (0, Q) x (0,7;_1), j =1,2,...,1 (¢ is the
truncation parameter) is sampled using an arbitrary transition density func-
tion 7(k, k', t,t") which is tolerant ' to both kernels in equation (3).

The biased Monte Carlo estimator for the solution of equation (3) at the fixed
point k = kg at the time ¢t = 7y using backward time evolution of the numerical

trajectories has the following form: l

&Ko, o] = B(Ko) + Y Wida(k;), (4)
j=1
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Pat (Kj—1, Ky Tj—1, 7))
The probabilities p, (= 1,2) are related to the choice of one of the kernels.
Now we can define a Monte Carlo method

We=we, L, We=1,a=12j=0,...,1I.
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where &_[ko, T0])1, &1 [Ko, T0])2, - - -, &i.[Ko, To]) v are independent values of the

estimator (4) and L5 means stochastic convergence as N — 0o. The relation
(5) still does not determine the computation algorithm: we must specify the
modeling function (sampling rule) &._[ko, 70] = (b1, - - -, Bn), Where B1, ..., By,
are uniformly distributed random numbers in the interval (0, 1). Now both
relations (5) and the sampling rule define a Monte Carlo algorithm for (4).

Thus we can say [12] the constructive dimension (c.d.) of the algorithm is n,
i.e. c.d. = n. Clearly, the variance of the MC estimator (4) does not depend
on the c.d. Nevertheless, the c.d. has suggested a classification of sampling
rules and an ordering of tests for pseudo-random numbers.

The transition density function in the Markov chain can be chosen in the
following way 7o (k,t, k', t") = r(k, k")r(t,t"/k, k"), a=1,2, where
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L r(z) is tolerant of g(z) if r(z) > 0 when g(z) # 0 and r(z) > 0 when g(z) = 0.



The normalized density function r(k, k') can be expressed as an infinite weighted
sum of other density functions by expanding (k'/k)In ((k + &")/(|k — K'|)), i.e.
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The decomposition MC approach can be applied to sample k'

1. Generate 31, fa, (3 uniform on [0, 1];

2. Define C'; by B; using decomposition MC techniques.

3. Sample k' with the i-th density function r;(k, k'), namely, &' = k(ﬁg,)#"‘l,
if 8,Q < k. Otherwise, k' = k/[1 — B3(1 — (k/Q)%~1)]7.

Using the normalized conditional probability density function r(¢,t"/k, k') we
can sample t" = log(Bs(exp(T'xxt) — 1) + 1)/Tk 47, where Sy € (0, 1). Finally,
we generate 35 € (0, 1) and choose one of the kernels K, (k, &', t,t"), a =1,2
using probabilities p, = |Ky(k, &', t,t")|/(|K1(k, k', t,t")| + | K2 (k, k', ¢, ")]).
Summarizing, we have used 5 uniform random numbers fSi,..., 35 in order
to construct the MC estimator (4) for one transition (k,t) — (k',t") in the
Markov chain.

The computational complexity of the obtained iterative MC algorithm can be
measured by the quantity F' = N X t,, x E(l.). We note that the number of
the random walks, N, and the average number of transitions in the Markov
chain, E(l.), are connected with stochastic and systematic errors [5]. However
the mean time for modeling one transition, t¢,,, (no = 5) depends on the
complexity of the transition density functions and the choice of the random
number generator. It is strongly recommended that all simulations be done
with two or more different generators, and the results compared to check
whether the prng is introducing a bias.

The c.d. of this algorithm can be defined as the average number of uniformly
distributed random numbers necessary for carrying out one trial, i.e. c.d. =
noE(l;). Thus we can use parallel prng’s that produce ny = 5 independent
and non-overloping random sequences in order to compute every transition in
the Markov chain as well as sampling 5 consecutive pseudo-random numbers
from a sequential generator.



3 Numerical results and discussions

The simulation results are obtained for GaAs with material parameters taken
from [10]. The initial condition is a Gaussian function of the energy. The
solution f(k,t) is estimated by the MC estimator in 60 points of the simulation
domain between 0 and Q = 66 x 107/m.

The iterative MC algorithm is realized using the following sequential prng’s

1. CLCG-PL, Combined linear congruential generator with parameters recom-
mended by P. L’Ecuyer [7];

2. EICG, Explicit inversive congruential generator [2];

ICG, Inversive congruential generator [3];

4. LCG-F, Linear congruential generator with parameters recommended by
Fishman [4];

5. LCG-PM , Linear congruential generator with parameters recommended by
Park and Miller [11];

6. MT-MN, Mersenne Twister generator by Matsumoto and Nishimura [9];

@

as well as the following parallel prng’s

1. SNWS and SNWS-1, Shuffled nested Weyl sequences [6] with a multiplier
M = 1234567 and M = 65539, respectively. To produce 5 random sequences
we use the following seeds: v = {2/2}, {31/2}, {5!/2}, {7'/?} and {11'/2}.

2. SPRNG, the Scalable Parallel Random Number Generator Library [8,14].

3. ParPRNG, as a collection of the last 5 sequential generators above, that are

taken from the pseudo-random number generator (PRNG) library written
by Otmar Lendl [13].

The MC algorithm were implemented in the C language. Numerical tests were
performed on a Sun Ultra Enterprise 450 with 4 Ultra-SPARC, 400 MHz CPUs
running Solaris.

In all our tests € = 0.0001. Such a choice of the truncation parameter allow
us to ignore the systematic error [5] and to investigate whether any generator
under consideration is introducing a bias when different stochastic errors are
fixed. The quantity presented on the y-axes in all figures below, kf(k,t), is
proportional to the electron energy distribution function multiplied by the
density of states. The quantity k? given on the z-axes in units of 10*/m? is
proportional to the electron energy.

Figure 1 compares the solutions for evolution times 100 femtoseconds (fs),
150fs and 200fs obtained by using the SNWS, SPRNG and ParPRNG par-
allel prng’s. The number of realizations of the MC estimator (4) are 1 million
(mln), 5 mln and 10 mln, respectively. We see that the solutions coincide. Ta-
ble 1 shows the mean square error, u, and the absolute error for the 3 values
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Fig. 1. Comparison of the electron energy distribution kf(k,t) versus k2 obtained
by using of SNWS and SPRNG (on the left picture) and SNWS and ParPRNG (on
the right picture) parallel prng’s.

4000

SNWS SPRNG ParPRMG

N k kfi — p kfs  p kfs p lfi—fol  [fi— fs
48.00 9.81924+0.0038  9.7896 £0.0038  9.7999 4+0.0037 6.2 x 10°* 4.0 x 104
1 48.75 10.455740.0039 10.4595+0.0039 10.4694 +£0.0039 7.8 x 10°° 2.8 x 104
min  49.50 10.7340+0.0039 10.7024 £0.0039 10.7245+0.0039 6.4 x 10~* 1.9 x 10~*
48.00 14.6451 £0.0041 14.7029 +£0.0042 14.7158 £0.0041 1.2 x 1073 1.5 x 1073
5 48.75 15.687740.0043 15.7370+0.0043 15.7118 £0.0042 1.0 x 1072 4.9 x 10~*
mln  49.50 15.4964 +0.0042 15.5394 +0.0042 15.5406 +0.0041 8.7 x 10~* 8.9 x 10~*
48.00 17.1504 +0.0066 16.9636 +0.0066 17.1119+0.0066 3.9 x 10~3 8.0 x 1074
10 48.75 18.2430+0.0066 18.0536 +0.0067 18.2496 +0.0067 3.9 x 1073 1.4 x 1074
min  49.50 17.7436 £0.0064 17.6170 +£0.0064 17.7391 £0.0064 2.6 x 10~% 0.9 x 10~*

Table 1

Comparison of the accuracy of the solution obtained with the SNWS, SPRNG and
ParPRNG generators for the 3 points with the biggest variance. The evolution time
is 100fs in the case N = 1 mln, 150fs in the case N = 5 mln and 200fs in the case
N = 10 mln, respectively.

of the momentum £ with the biggest variance using the SNWS, SPRNG and
ParPRNG generators. In this “the worst” case of the variance compared with
the variance at the other points, we have ; = O(10~3) and absolute errors are
in agreement with the mean square error. Let us note that the exact solution
of the B-F equation is unknown. Given the excellent agreement and similar
variances, we can take any MC solution from Fig. 1 as a “correct” solution.

Figures 2 — 6 compare “correct” solutions (using the results with the SNWS
generator) for the evolution times 100fs, 150fs and 200fs with the quantum
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Fig. 2. Comparison of the electron energy distribution obtained by using of LCG-F
and LCG-PM generators with the ”correct” solution on the left and the right pic-
tures, respectively.
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Fig. 3. Comparison of the electron energy distribution obtained by using of ICG
and SNWS generators with the ”correct” solution on the left and the right pictures,
respectively.

solutions obtained using all the sequential and parallel prng’s when the mean
square error is O(1072). The number of realizations of the MC estimator are
N = 30000, 150000 and 750000. Results obtained when k? < 2000 for & f (k, t)
using the sequential generators when compared with the “correct” solution
show systematic differences. The best case occurs when using the CLG-MP,
minimal standard, generator. However, for all times it exhibits small consistent
differences.

Systematic differences in the MC solution with increasing evolution time ap-
pear when LCG-F, ICG, EICG and MT-MN are used. Random “noise” in
the MC solution is observed when the CLCG-PL generator is used, which,
however, is unbiased. When k% > 2000 the results using any prng’s disagree
in the first peak of the distribution. This can be explained because the prod-
uct kf(k,t) for bigger values of k is sensitive to even small errors in the MC




Solution-au.

Solution-au.

T T T T T T
i N=30000, EICG 100fs -— i 1| N=30000, ParPRNG 100fs -—
i ‘correct’ sol. 100fs —+- H k) ‘correct’ sol. 100fs —+-- |
i N=150000, EICG 150fs -&-- g 1 {N=150000, ParPRNG 150fs -&--
H ‘correct’ sol. 150fs -x: i i ‘correct’ sol. 150fs -
i é N=750000, EICG 200fs -&-- &|N=750000, ParPRNG 200fs -a--
i3 ‘correct’ sol. 200fs - - l ‘correct’ sol. 200fs -
[N i
1 i i
‘}Ea iy i
i 4
| 5 i
i < il
: i
\ s |
I’ =
i s
1 ©
& n
i
1000 1500 2000 2500 3000 3500 4000 1000 1500 2000 2500 3000 3500 4000
k*k k*k
)

Fig. 4. Comparison of the electron energy distribution obtained by using of EICG

and ParPRNG generators with the ”correct” solution on the left and the right
pictures, respectively.
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Fig. 5. Comparison of the electron energy distribution obtained by using of MT-MN

and SPRNG generators with the ” correct” solution on the left and the right pictures,
respectively.

solution.

Table 2 shows the computational complexity (CPU time for all 60 points) of
the algorithm using all the prng’s. The results in the top of Table 2 are obtained
with the “cc” compiler at optimization level “-fast” and the other results
are obtained with the “gcc” compiler. We see that the computational cost is
the least when MT-MN generator is used. The CPU time of the algorithm
using the SNWS and SNWS-1 prng’s is approximately the same and they are

somewhat faster than SPRNG. The ICG generator delays the ParPRNG and

therefore the former should not be included for solving this problem. Also, the

quantity E(l.) very slowly increases with increasing evolution time.
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Fig. 6. Comparison of the electron energy distribution obtained by using of
CLCG-PL and SNWS-1 generators with the ”correct” solution on the left and the
right pictures, respectively.

4 Summary

Statistically, the solution of the B-F equation would be expected to be noisier
at O(107?) than at O(107®) mean square error. It is gratifying that the three
parallel prng’s used gave the same answer at O(107%) precision. However, even
at O(1072) mean square error, if the solution was unbiased, we would expect
random fluctuations about the more precise solution. This was only observed
with the CLCG-PL prng. All the other sequential generators exhibited sys-
tematic rather than random differences. Therefore we conclude that parallel
prng’s are preferable to solve this problem as the evolution time increases. In
this case, the CPU time of the algorithm become crucial. Thus, to predict
the solution we need parallel realizations of the algorithm and/or we have to
estimate the solution with coarser stochastic error. In order to obtain a high
parallel efficiency in the case of the parallel realization of the algorithm, the
random sequences have to be produced with similar C' PU times.
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