
City University of New York (CUNY) City University of New York (CUNY)

CUNY Academic Works CUNY Academic Works

Computer Science Technical Reports CUNY Academic Works

2002

TR-2002009: A Formal Semantics for UML with Real-Time TR-2002009: A Formal Semantics for UML with Real-Time

Constructs Constructs

Subash Shankar

How does access to this work benefit you? Let us know!

More information about this work at: https://academicworks.cuny.edu/gc_cs_tr/210

Discover additional works at: https://academicworks.cuny.edu

This work is made publicly available by the City University of New York (CUNY).
Contact: AcademicWorks@cuny.edu

https://academicworks.cuny.edu/
https://academicworks.cuny.edu/gc_cs_tr
https://academicworks.cuny.edu/
http://ols.cuny.edu/academicworks/?ref=https://academicworks.cuny.edu/gc_cs_tr/210
https://academicworks.cuny.edu/gc_cs_tr/210
https://academicworks.cuny.edu/?
mailto:AcademicWorks@cuny.edu

A Formal Semantics for UML with Real-Time

Constructs

Subash Shankar

Hunter College and the Graduate Center,

City University of New York (CUNY),

695 Park Ave.

New York, NY 10021, USA,

subash.shankar@hunter.cuny.edu

Abstract

This paper describes a formal framework for expressing the semantics
of UML augmented with real-time constructs. The formalized aspects of
UML consist of concurrent statecharts to represent the dynamic behav-
ior of objects along with interaction diagrams to represent inter-object
communication with real-time constraints. The approach is based on a
two-dimensional temporal logic to independently capture
ow of control
as well as
ow of time. The paper de�nes this logic, shows how the se-
mantics can be captured in this logic, and outlines techniques for using
these semantics for formal veri�cation. The goal is to provide a simple,
intuitive, and validatable semantics that can be used for further formal
analysis.

1 Introduction

Formal methods have successfully been applied in many domains including hard-
ware, protocols, and to a lesser degree, software. The goals of formal methods
are not limited to analysis and veri�cation, as the process of formalization itself
often increases the quality of a design. Additionally, a formal model of linguistic
constructs often results in a better understanding of the constructs and some-
times leads to improved language design. However, many formal notations are
too complicated or are tightly linked with an underlying veri�cation system,
thus making them less applicable than a more simple and intuitive notation.

The Uni�ed Modeling Language (UML) is a semi-formal language that is the
defacto standard for expressing aspects of object-oriented software. In partic-
ular, UML can be used to model the structure and behavior of object-oriented
software diagrammatically. It contains four types of diagrams to model the
behavior of objects: statecharts, activity diagrams, and two di�erent forms of
interaction diagrams (sequence and collaboration diagrams). Two important

1

aspects of object behavior are the state transitions that an individual object
goes through, and inter-object communication through message passing. Al-
though these can be modeled in several di�erent ways in UML, one direct and
intuitive method is to use statecharts for object behavior and sequence diagrams
for inter-object communication, and relating the two diagrams on the statechart
by using event variables corresponding to messages.

Although the UML has been widely used for modeling traditional object-
oriented systems, it does not directly support the modeling of real-time systems.
The primary problem is the lack of constructs to express time and time-related
properties. The Object Management Group (OMG) has recently produced a
draft speci�cation for augmenting UML with support for various system is-
sues including concurrency, schedulability, and time [Obj02]. The speci�cation
includes a common model of resources (the \general resource model"), along
with a number of derived domain-speci�c pro�les for each of these classes of
issues. These pro�les are intended to be used independently; for example, a
modeler interested in concurrency and real-time issues may include the concur-
rency and real-time pro�les, but exclude the other pro�les. The real-time pro�le
includes (among other things) support for timing mechanisms (clocks for mea-
suring elapsed time and timers for timeouts), and several new timing marks for
time-related message attributes (e.g., the time a message event is sent, the time
an action begins execution in response to a message). UML diagrams may then
be annotated with these timing marks along with constraints on these marks,
with sequence diagrams being particularly well-matched for representing timing
relationships pictorially. However, like the rest of UML, there are no formal
semantics for these new real-time constructs.

The main problem in formal modeling, analysis, and veri�cation of UML
designs is the lack of a formal semantics. There have been numerous attempts
to provide formal semantics for each type of UML diagram, with statecharts
receiving particular attention. However, there are numerous semantic ambigui-
ties that complicate the problem; in fact, 21 statechart variants (including some
with time constructs predating the real-time pro�le) are discussed in [vdB94],
each corresponding to a di�erent semantics. One approach to formal semantics
might select one statechart variant along with a set of pro�les, and provide for-
mal semantics for such a combination. Of course, a di�erent semantics is then
needed for each such combination, thus leading to combinatorial explosion in
the number of semantics. An alternative approach is to show how to extend any
semantics with real-time constructs.

This paper takes the latter approach, with the following primary goals:

� Independence of the semantics of time-related constructs from the seman-
tics of the underlying UML diagram

� Simplicity of formalism, for understandability and to allow for independent
semantic variation in UML subcomponents

� Relevance and conciseness of the formal model, by avoiding the modeling
of language artifacts that are not apparent at the speci�cation level (e.g.,

2

an underlying execution engine that can be used to animate the model)

� Intuitive nature of formalism, to allow for validation of the semantics
themselves (against a very informal English model, or against a semi-
formal UML speci�cation)

� Closeness of formalism to languages that can be used to express typical
system speci�cation criteria, such as performance, liveness, and safety

Temporal logics are the predominant logical formalism for speci�cation of
program properties (see, for example, [MP92] for representing liveness and safety
properties using linear-time temporal logic, and [CES86] for representing and
verifying such properties using model checking). A [linear-time] propositional
temporal logic (PTL) formula corresponds essentially to a state machine, and it
is thus conceptually simple to model statecharts using PTL by mapping state
transitions in statecharts onto time transitions in the temporal logic. For exam-
ple, a transition from state s0 to state s1 can be modeled using a PTL formula
whose English reading is: 'if the system is currently is in state s0, then it will be
in state s1 at the next time'. A similar technique has been used by [Kro87] to
model a generic concurrent language using temporal logic. In the UML world,
[LQV01] uses such a technique to model UML statecharts using �rst order tem-
poral logic; however, this technique needs to restrict all state transitions to be
associated with times, rather than the general form of instantaneous as well as
timed transitions supported by statecharts.

There are several complications that arise when attempting to use PTL for
modeling general time-constrained inter-object communication. For example, if
some statechart transitions are instantaneous and another transition is depen-
dent on an event from another object that requires 5 time units to transmit,
it is not possible to directly capture the transmission time. The fundamental
problem is that there are two distinct notions of
ow: the
ow of micro-time as
objects make [typically] instantaneous state transitions, and the
ow of macro-
time as objects communicate with each other. The presence of these two dis-
tinct time modalities is further complicated by UML constructs that rely on
both modalities (for example, when an otherwise instantaneous transition must
wait for an incoming event from another object).

A recent trend in logics is the use of polymodal logics, which combine
multiple modalities to provide logics capable of expressing properties with-
out resorting to a more complicated �rst order or higher order logic. Several
such logics and combination techniques have been proposed (see for example
[FG92, FG96, KW91, BR97]). Two particularly common applications are log-
ics combining time and belief modalities to model multi-agent systems where
beliefs change over time, and logics combining transaction-time and valid-time
modalities to model the evolution of temporal databases. This paper shows a
new application of polymodal logics, by introducing a two-dimensional tempo-
ral logic that independently captures micro-time (referred to as state), as well
as macro-time (referred to as time). The logic is a polymodal logic that is
essentially the independent fusion of two PTLs.

3

The paper is organized as follows. Section 2 outlines the UML features that
we intend to formalize. Section 3 introduces the formal syntax and semantics
of the two-dimensional logic, and Section 4 then shows how to capture UML
semantics in this logic. There are several useful applications of the resulting
semantics, and Section 5 discusses the particularly useful veri�cation applica-
tion. Finally, Section 6 summarizes the paper and outlines future research and
conclusions.

2 The UML Variant

As mentioned earlier, this paper uses statecharts to model the states that an
object transitions through, and sequence diagrams to model inter-object mes-
sages. Our primary goal in this paper is to show how the formal semantics
of such a model can be extended to cover some real-time constructs similar to
those in the UML real-time pro�le. In particular, our goal is not to provide yet
another statechart variant with a new semantics. Thus, we �rst stipulate one
simple statechart variant in this section.

A statechart contains a number of states, along with transitions between
these states. This paper assumes that the statechart has been
attened to
eliminate hierarchy, and also avoids discussion of the numerous semantic issues
resulting from ambiguities in statechart semantics (the reader is referred to
[vdB94] for discussion of these issues). Suppose there is a transition, t, from
state s1 to s2, which is labeled by ev[c]=a. Then, if the object is in state s1
and the trigger event ev is received while the guard condition c is satis�ed,
the object emits event a and transitions to state s2. The guard condition is
evaluated only once when the trigger occurs, and the transition is not taken if
it is false on that evaluation - ev needs to be retriggered for the guard to be
evaluated again. Harel's original de�nition of statecharts ([Har87]) and most
statechart variants assume the perfect synchrony hypothesis, which essentially
states that the transition occurs instantaneously. This hypothesis is intended
to capture the relatively fast execution of a program so that it reacts to events
fast enough to make all necessary state transitions before the next event occurs.
We denote such transitions as state transitions (to distinguish them from time
transitions).

Sequence diagrams are used to represent inter-object events. We do not
distinguish events from messages. Each triggering event, evi, and corresponding
action is associated with four timing marks:

� sendTime (sendi): the time event i was sent by the sender

� receiveTime (reci): the time the event message was received by the re-
ceiver

� startTime (starti): the time the execution of the corresponding action
commenced

� endTime (endi): the time the execution of the corresponding action ended

4

These are similar to the timing marks provided by the UML real-time pro�le.
Time is assumed to be discrete here.

The perfect synchrony hypothesis ensures that transitions occur instanta-
neously (unless otherwise stated), while constraints based on timing marks may
be used for transitions that require time. Although [plain] UML allows events to
correspond to the passing of time, the association of time with state transitions
is often too simple a model for real-time applications, and constraints on timing
marks are needed. For example, it might be desirable to model the constraint
that the di�erence between a message's sendTime and its receiveTime is less
than 5, and this can be done by adding a timing constraint to the correspond-
ing sequence diagram. Thus, there are three types of transitions from a timing
perspective: instantaneous, timed where the time is a function of the transition,
and timed where the time is derived from sequence diagram annotations for the
triggering event. This paper denotes the micro-time instantaneous transitions
as state transitions, and the macro-time timed transitions as time transitions.

3 The Two-Dimensional Temporal Logic L2

This section de�nes the syntax and semantics of the two-dimensional temporal
logic, L2, which is essentially an independent fusion of two traditional linear-
time propositional temporal logics (PTLs).

3.1 Syntax

The language of PTL consists of a countable number of quanti�er-free pred-
icates1, A, the operators of traditional propositional logic: >, ?, : (not), ^
(and), _ (or), ! (implication), and $ (i�), and the temporal operators: Æ
(next),2 (henceforth, or always), 3 (eventually), and U (strong until). The Æ,
2, and 3 operators are unary future-only operators, while the other temporal
operators are dyadic future-only operators. As usual, the U operator is the
strong version, which asserts that the second operand does indeed hold at the
current or some future time. Only the U and Æ operators are actual parts of the
logic, as other temporal operators are in reality merely abbreviations:

� 3P � >UP

� 2P � :3:P

However, we de�ne the logic to include the complete set of operators for sim-
plicity. For notational simplicity, we also impose bounds on temporal operators
by aÆxing an interval as a superscript; for example, 2[2;10] is read as 'all times
between 2 and 10 time units (inclusive) from now', and 3[0;3] is read 'within 3
time units (inclusive) from now'. These are purely syntactic sugar since equiv-
alent formulas may be expressed as conjunctions or disjunctions of plain PTL

1It is technically incorrect to refer to this logic as propositional since predicates may include

function and relation symbols. However, these symbols may be considered to be uninterpreted

for the purposes of this paper.

5

t

R

Q

P

t’
Time

S
t
a
t
e

s

Figure 1: Two-dimensional space for L2

formulas. Similarly, iterated unary operators are represented using superscripts
- for example, Æn indicates n Æ symbols.

In PTL, time is a sequence of positive integers, with propositions taking on
values that may be di�erent at each timepoint. In the two-dimensional logic
L2, propositions take on values that may be di�erent at each (time, state) pair.
For example, Figure 1 shows the grid over which predicates range, along with
3 predicates on this grid. States in this logic are local to timepoints - that is,
each timepoint contains its own full complement of states. L2 contains a full
set of temporal operators for states as well as timepoints: Æ{, 2{ , 3

{
, U
{
, bÆ, b2, b3,

and bU . Time and state operators are distinguished by having either carets or
bars, respectively.

3.2 Semantics

As suggested by Figure 1, a model for L2 is given by a 5-tuple h T; t0; S; s0; � i
where:

� T is a [countably in�nite] sequence of timepoints with initial time t0

� S is a sequence of [countably in�nite] states with initial state s0

� � is a set of mappings �i;j where each �i;j is a valuation function assigning
Boolean values to the elements of A at time i and state j.

Where obvious from context, state indices may be used instead of the state
itself, and likewise for time (e.g., states 2 and s2 are treated synonymously).

Figure 2 gives the model-theoretic semantics of L2 (including abbreviations).
It is similar to PTL semantics; note, in particular, that the operators are re
ex-
ive, and both the U

{
and bU operators are the strong versions, which assert that

their second operands eventually become true.
Satis�ability and validity in L2 are de�ned using an anchored notion rather

than a
oating notion (that is, all formulas are expressed with respect to time
and state 0): A L2 formula F is said to be satis�able if there is some model
M such that M; t0; s0 j= F . Similarly, a L2 formula F is said to be valid
if M; t0; s0 j= F for every model M. For example, Figure 1 shows a model

6

M; t; s j= >
M; t; s 6j= ?
M; t; s j= P i� �t;s(P) = t for P 2 A
M; t; s j= :A i� M; t; s 6j= A
M; t; s j= A ^ B i� M; t; s j= A and M; t; s j= B
M; t; s j= A _ B i� M; t; s j= A or M; t; s j= B
M; t; s j= A! B i� M; t; s j= :A _ B
M; t; s j= A$ B i� M; t; s j= (A! B) ^ (B ! A)
M; t; s j= bÆA i� M; t+ 1; s j= A
M; t; s j= b2A i� M; t0; s j= A for every t0 � t
M; t; s j= b3A i� M; t0; s j= A for some t0 � t

M; t; s j= A bUB i� M; t0; s j= B for some t0 � t and
M; t00; s j= A for every t00 such that t � t00 < t0

M; t; s j= Æ{A i� M; t; s+ 1 j= A

M; t; s j= 2{A i� M; t; s0 j= A for every s0 � s

M; t; s j= 3
{
A i� M; t; s0 j= A for some s0 � s

M; t; s j= AU
{
B i� M; t; s0 j= B for some s0 � s and

M; t; s00 j= A for every s00 such that s � s00 < s0

Figure 2: L2 Semantics

satisfying the following formulas: bÆt Æ{sP , bÆt02{Q, and b23{R. An example of a
valid formula is: b2(2{P ! 3

{
P).

4 Translating the UML Model into L2

It is conceptually simple to translate statecharts into PTL. We start with an
imprecise but descriptive example. The transition, t, from state s1 to s2 and
labeled by evi[cj]=evk, can be translated to:

2((at1 ^ occuri ^ cj)! (occurk ^ Æat2))

where ati holds i� the system is currently in state si, and the occuri and occurk
variables correspond to the occurrence of the transition events evi and evk re-
spectively. As with most axioms, the above axiom states that if a set of pre-
conditions is met, then the appropriate events are triggered and the transition
is taken on the next cycle. As mentioned earlier, the problem occurs when at-
tempting to capture mixed modalities where there is a time component to the
events. Since the state transitions in the UML model are mapped onto time
transitions in the temporal logic, it is not possible to represent both state- and
time- transitions.

Suppose the event evk requires 2 time units to be sent. Then, by going to a

7

Variables Domain English Reading
ati;j boolean State machine i is in state j
occuri boolean Event i has occurred
sendi integer The time that message i was sent
reci integer The time that message i was received
starti integer The time that the action for message i started
endi integer The time that the action for message i �nishes

Figure 3: Variables in TRL's Formal Semantics

two-dimensional temporal logic, the above transition can be translated to:

b2(3{ (at1 ^ occuri ^ cj)! (bÆ2occurk))
b22{ ((at1 ^ occuri ^ cj)! Æ{at2)

Note that the axiom states that the occurk variable becomes true in state 0
2 time units into the future, rather than the current state. In contrast, the
transition to state s2 occurs on the following state in the current timepoint.
Although these particular axioms are imprecise and included solely for explana-
tory reasons, they form the two fundamental structural forms in the translations
below.

Before de�ning the semantics, we �rst de�ne the set of variables that are
used in the semantics. Figure 4 lists these variables, along with their English
readings. All boolean variables vary over both state and time. We also denote
by nS the number of statecharts in the model.

There are several commonly used formulas that are simpler to de�ne as
macros. The step macro de�nes transitioning from state sj to sk in statechart
i:

step(i; j; k) � ati;jU
{
ati;k

Note that the transition need not necessarily occur on the next state; however,
since the U

{
operator is strong, the transition will eventually occur (at the current

timepoint).
The enterState macro de�nes the �rst timepoint at which a state is reached

- that is, enterState(i,j) holds at time-state pair (t; 0) if statechart i transitions
into state sj at some state in time t. This occurs either when transitioning to sj
at some non-negative state, or transitioning to sj at state s0 of some timepoint
where the statechart was not in sj at the end of the previous timepoint:

b2(bÆenterState(i; j) $ (bÆ(:ati;j ^3{ ati;j) _ (3
{
2
{:ati;j ^ bÆati;j))

enterState(i; j) $ 3
{
ati;j

These two axioms capture the meaning of enterState for the positive-time and
zero-time cases.

The translation of UML into L2 is decomposed into two parts: global and
local formulas. Whereas global formulas correspond to properties of all state
machines, local formulas correspond to individual transitions in the model.

8

Global Formulas

There are three classes of global formulas: initial state, �nal state, and control

ow. The initial state formula speci�es that all statecharts start in their initial
state:

nS^
i=1

ati;0 (1)

where the initial state of each statechart is labeled as state 0. Recall that all
formulas implicitly refer to time and state 0.

Similarly, the �nal state global formula ensures that once a statechart tran-
sitions to its �nal state (denoted sf), it does not restart.

nS^
i=1

b22{ (ati;f ! Æ{ati;f) (2)

nS^
i=1

b2(3{ ati;f ! bÆati;f) (3)

Control
ow global formulas ensure that illegal control
ows do not occur.
A statechart can not be in two states at once:

b22{ (ati;j ! :ati;k) (4)

for any i such that 1 � i � nS and for all j, k, such that j 6= k.
If a statechart is in a state si and waiting for a trigger, it does not change

states except when the trigger occurs. The actual state transition is modeled
through the local formulas for the transition, while the global formula ensures
that the transition does not occur on time changes.

b2(3{2{ ati;j ! bÆati;j) (5)

for each i such that 1 � i � nS and for all j where the transition to state sj of
statechart i is non-timed.

Local Formulas

For each transition in the model, there are two components to its formaliza-
tion: the actual state transition, and the actions performed on the transition.
This section �rst formalizes the actual transitions for three types of transitions:
triggerless, time-triggered (i.e., timeout), and regular transitions with triggers,
guards, and actions. In all three cases, the statechart is assumed to be deter-
ministic, either by having only one outgoing transition from each state or by
having mutually exclusive guard conditions on outgoing transitions (the deter-
minism assumption is relaxed later). Then, the actions (for all three types) are
formalized.

9

/evns
j

s
k

Figure 4: Example triggerless transition

s
j

s
k

after(t)/ev n

Figure 5: Example Time-Triggered Transition

Consider the triggerless transition of Figure 4. The formalization of this
transition is simple:

b22{ (ati;j ! step(i; j; k)) (6)

Since multiple statecharts may be running in parallel, the formalization does
not specify the exact state in which the transition occurs, and no restrictions
are imposed on statechart execution (for example, concurrent statecharts may
execute synchronously, be arbitrarily interleaved, or in any other manner). This
assumption is discussed below in more detail.

The second type of transition is the time-triggered transition illustrated in
Figure 5. In this case, statechart i needs to stay in state sj for the remaining
states in the current time point and all states in the next t�1 timepoints. This
is formalized by:

b22{ (ati;j ! 2
{ ati;j) (7)

b2(enterState(i; j)! ((

t�1̂

p=1

bÆp2{ ati;j) ^ bÆtati;k)) (8)

Recall that the enterState(i; j) formula was de�ned earlier to essentially cap-
ture the �rst timepoint at which state sj is reached.

Now, consider the full transition of Figure 6. The transition may occur only
if the trigger evm occurs and c holds, at which point the the transition may be
immediately taken:

b22{ ((ati;j ^ occurm ^ c)! step(i; j; k)) (9)

In addition to taking the transition (for all three types of transitions), the
statechart must also perform an operation and emit event evn, possibly subject

ev [c]/ev
m n

s
j

s
k

Figure 6: Example (Regular) Transition

10

start n rec n=
rec n send n-1 < < 4

send n- < 5nend
-rec sendp p < 2

:B:A

ev
n

p
ev

Figure 7: Example Sequence Diagram with Real-Time Constraints

to real-time constraints. UML allows for various types of actions, including
return values, create, and destroy actions; we assume here that an action is an
event message to an existing object, and other types of actions need to be �rst
converted to this simpli�ed action notion. We also assume that all actions are
associated with real-time constraints.

Section 2 listed four timing marks associated with each message: sendTime,
receiveTime, startTime, and endTime. Suppose event evn and its corresponding
action have the following values for these timing marks: sendn, recn, startn,
and endn, and suppose the action results in the generation of evp. Then the
generation of events is formalized by:

b2(enterState(i; k)$ (bÆstartn�sendnoccurn ^ bÆrecp�sendnoccurp)) (10)

Although this axiom only applies to events associated with real-time con-
straints, it is obvious how to generate axioms for instantaneous events.

Note that a statechart may impose a di�erent constraint between evn and
evp, and it may thus be desirable to prove consistency between these two dia-
grams. If the model does not specify speci�c values for the timing marks and
uses constraints instead, (10) is modi�ed. For example, if the model includes
the constraints represented on the sequence diagram of Figure 7, then these
constraints are incorporated into the formalization by modifying (10) to:

b2(enterState(i; k)$ (b3[2;3]occurn ^ b3[2;5]occurp)) (10)

In this case, a desirable property may be that the speci�ed end time, endn,
follows startn, and this property may be expressed as another formula that
needs to be proven from the axioms representing the formalization.

Semantic Variations

As mentioned earlier, the main goal of this paper is to show how real-time con-
structs can be formalized, rather than to provide a formalization of a particular
statechart variant. Thus, it is desirable to show how other statechart variants
can be modeled. First, we relax the determinism assumption. Suppose state sj

11

has multiple outgoing transitions that are not mutually exclusive, and the state-
chart must non-deterministically choose one of these. If none of the transitions is
time-triggered, this is trivial to formalize, since we simply replace the right side
of the implications with the disjunction of the translations for each of the tran-
sitions. In cases where exactly one outgoing transition is time-triggered (i.e., it
acts as a timeout), additional preconditions stating that the other transitions
have not been taken are added to (7) and (8). The case where more than one
outgoing transition is time-triggered results in a new set of ambiguities which
is beyond the scope of this paper.

All formalizations of the transitions allowed for arbitrary interleaving of con-
current statecharts. However, if the statechart variant requires that transitions
occur immediately (as is often the case), (6) and (9) still hold if the step macro
is rede�ned to:

step(i; j; k) � Æ{ati;k

Alternatively, it may be desirable to keep the original de�nition of step, and
prove that the resulting model is deterministic regardless of interleaving by
specifying a determinism property in L2. Several other semantic variations of
statecharts, including ambiguities related to self-triggers, may also be realized
by modifying the step macro accordingly.

Our model also assumed that all inter-object events are associated with
real-time constraints. If this is not the case, (10) needs to be modi�ed to deal
with events that occur at the same time-point but a di�erent state than at
which the state transition was taken. There are several ambiguities in statechart
semantics that deal with when exactly such events occur; however, it is simple to
express appropriate axioms once these ambiguities are resolved and a particular
statechart variant is selected.

Our model of real-time only allowed certain forms of time constraints. We
restricted the form of constraints to make the resulting axioms decidable (un-
der certain restrictions to be discussed later). Although these constraints are
normally suÆcient, more general form of constraints can be supported by intro-
ducing theories of arithmetic as needed to represent and solve such constraints.
We are currently implementing the axioms of this paper and such constraints us-
ing the PVS theorem prover. Another extension of real-time modeling involves
continuous time. It is conceptually simple to vary L2 to support continuous
time over the time axis, and generate a continuous-time semantics; however,
the resulting logic is diÆcult to work with for applications such as veri�cation.

The key point of our approach is that real-time issues are isolated from
other issues. For example, many semantic variations of state charts can be
formalized without a�ecting the real-time axioms (10). Given local formulas
for each transition in the statechart, the resulting collection of global and local
formulas may then be used for further analysis. The next section outlines how
these axioms may be used for one such application: formal veri�cation. We
believe that these axioms are simple and intuitive enough to also support a
number of other applications.

12

5 Veri�cation

Before discussing how to verify real-time UML models, we �rst need to discuss
what to verify.

Properties

The classical veri�cation properties of safety ('P never occurs', where P is an
undesirable property) and liveness ('P eventually occurs', where P is a desir-
able property) are of course still useful. However, there are two special cases to
consider depending on whether instantaneous transitions are to be considered.
In applications where both instantaneous and timed transitions are important,
safety and liveness properties are expressed as b22{:P and b33{P respectively. In
some applications, we are only concerned with observable behavior, and instan-
taneous transitions are not observable. In such cases, the properties only specify
what holds in state 0 of each timepoint. Thus, safety and liveness properties for
these applications are expressed as b2:P and b3P respectively.

Another set of real-time properties deal with performance. These properties
typically state that a certain event or action occurs within t timepoints after
another event. Such properties are simple to model in the same way as for safety
and liveness properties, as long as care is taken to de�ne exactly which model
artifacts are observable.

A third class of properties deal with the validity of the model itself. For
example, we may wish to show consistency properties between a statechart and
a sequence diagram (e.g., the timing constraints on the sequence diagram must
be realizable with the corresponding statechart). As another example, we may
wish to show that a certain apparently non-deterministic UML model is in reality
deterministic. Several such examples were brie
y mentioned in Section 4.

Reasoning

The logic L2 is undecidable, since [Har83] shows that a simpler logic is �
1
1-hard.

However, there are several useful decidable restrictions of L2. In particular, if
the number of transitions in each timepoint is bounded, the logic then becomes
decidable. A suÆcient condition on statecharts to ensure boundedness is that
there are no cycles in instantaneous transitions, and this is a reasonable restric-
tion (in fact, many statecharts variants make a stronger restriction to address
well-known causality issues). If such a boundedness constraint is imposed, it is
possible to fold the two-dimensional model onto a one-dimensional time-line ex-
tending in�nitely into the future, as shown in Figure 8. In prior work ([Sha98]),
we have shown a scheme for automatically translating L2 formulas into the
decidable logic PTL using this folding.

We are currently implementing two tools to support veri�cation. First, we
are implementing a decision procedure that translates L2 formulas to PTL (un-
der the boundedness constraint mentioned above) and then applies traditional

13

a

S
t

t

e

Time

a

S
t

t

e

Time

Figure 8: Mapping the L2 grid onto a PTL line

tableau-based decision procedures for PTL. Second, we are implementing strate-
gies for directly reasoning about L2 statements using the PVS theorem prover.

6 Further Research and Conclusions

As listed in Section 1, the primary goal of our approach was to devise a simple
and intuitive formalism that independently captures the semantics of micro-
time statechart transitions and macro-time constructs similar to those in the
emerging real-time pro�le. We believe that L2 is well suited towards these goals,
as shown by the relative conciseness, simplicity, and independence of concerns
in the axioms of Section 4. Simplicity and intuition are, of course, in the eye
of the beholder; however, we have provided a similar formalization of VHDL in
prior work ([SS97]), and been able to validate the correctness of the semantics
against the Language Reference Manual (chapter 4 of [Sha98]).

There are a number of statecharts semantics in the literature, with many
of them providing a detailed operational semantics that essentially translates
statecharts into state transition machines (i.e., a Kripke model). If these state
machines are then integrated with real-time constructs from sequence diagrams,
it is simple to generate the semantics of the resulting model using the two-
dimensional approach of this paper. Thus, we believe that our independence
goal is also met.

To the best of our knowledge, the closest related work is by [LQV01], which
models UML statecharts using a �rst order temporal logic. However, since that
approach must associate a time with every transition, it is forced to disallow
instantaneous transitions. Conversely, the use of a �rst order temporal logic
allows for directly modeling continuous time, though the price for this greater
expressive power is undecidability. In the non-UML world, the work of [Kro87],
which provides a semantics of a generic concurrent language using temporal
logic, is also closely related to our approach. However, the approach there maps
control
ow through the concurrent program onto time
ow in the temporal
logic, thus not allowing for an independent time
ow. An alternative approach
is to use timed automata ([Alu99]). We believe that the use of a two-dimensional

14

logic, though not as general, better satis�es the goals of real-time UML.
We are currently pursuing further research along several lines. First, as

mentioned in Section 5, we are implementing proof procedures for L2, and plan
on using the resulting systems to prove properties of real-time UML diagrams.
Second, we are extending our semantics to cover other real-time constructs in the
real-time pro�le, such as the attributes of timing mechanisms (e.g., clock skew,
drift). Finally, we plan on applying our proof procedures on several real-time
applications expressed using UML.

References

[Alu99] Rajeev Alur. Timed automata. In International Conference on
Computer-Aided Veri�cation (CAV), pages 8{22, 1999.

[BR97] P. Blackburn and M. De Rijke. Why combine logics? Studia Logica,
59:5{27, 1997.

[CES86] E. M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic veri�ca-
tion of �nite-state concurrent systems using temporal logic speci�ca-
tions. ACM Transactions on Programming Languages and Systems
(TOPLAS), 8(2):244{263, April 1986.

[FG92] M. Finger and D.M. Gabbay. Adding a temporal dimension to a logic.
Journal of Logic Language and Information, 1:203{233, 1992.

[FG96] Marcelo Finger and Dov Gabbay. Combining temporal logic systems.
Notre Dame Journal of Formal Logic, Special Issue on Combining
Logics, 37(2):204{232, Spring 1996.

[Har83] David Harel. Recurring dominoes: Making the highly undecidable
highly understandable. In Conference on Foundations of Computation
Theory, pages 177{194, 1983.

[Har87] David Harel. Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8:231{274, 1987.

[Kro87] F. Kroeger. Temporal Logic of Programs. Sprinter Verlag, 1987.

[KW91] Marcus Kracht and Frank Wolter. Properties of independently axiom-
atizable bimodal logics. Journal of Symbolic Logic, 56(4):1469{1485,
December 1991.

[LQV01] Luigi Lavazza, Gabriele Quaroni, and Matteo Venturelli. Combining
UML and formal notations for modelling real-time systems. In Joint
European Software Engineering Conference (ESEC) and International
Symposium on the Foundations of Software Engineering (FSE), pages
196{206, 2001.

15

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Con-
current Systems. Sprinter Verlag, 1992.

[Obj02] Object Management Group. UML Pro�le for Schedulability, Perfor-
mance, and Time Speci�cation, Draft Adopted Speci�cation, January
2002.

[Sha98] Subash Shankar. Formal Veri�cation of VHDL Designs Using Tem-
poral Logics. PhD thesis, University of Minnesota, 1998.

[SS97] S. Shankar and J. Slagle. A polymodal semantics for VHDL. In
Advances in Hardware Design and Veri�cation (CHARME), pages 88{
105. Chapman & Hall, 1997.

[vdB94] Michael von der Beeck. A comparison of statecharts variants. In For-
mal Techniques in Real Time and Fault Tolerant Systems (FTRTFT),
pages 128{148, 1994.

16

	TR-2002009: A Formal Semantics for UML with Real-Time Constructs
	tmp.1429565783.pdf.ZBhUw

