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1 Introduction

The Logic of Proofs (LP) was introduced by Sergei Artemov in [1, 2] and
answered a long standing question about the intended provability semantics
for the modal logic S4 and for intuitionistic propositional logic. In addition
to classical propositional logic, LP contains new atoms of sort t :F , where
F is a formula and t is a special proof term called a proof polynomial. The
intended semantics of t :F is t is a proof of F, and was formalized in [1, 2].

Proof polynomials are built from variables and constants by three oper-
ations “·” (application), “!” (proof checker), and “+” (union), where proof
checker is a unary operation and application and union are binary ones.
Under the standard provability interpretation, proof polynomials denote the
obvious computable operations on proofs.

The axioms and rules of LP are:

A0. classical axioms
A1. t:(F ⊃ G) ⊃ (s:F ⊃ (t·s):G) (application)
A2. t:F ⊃ F (explicit reflexivity)
A3. t:F ⊃ !t:(t:F ) (proof checker)
A4. s:F ⊃ (s+t):F , t:F ⊃ (s+t):F (sum, or union)
R1. Modus Ponens
R2. ` c:A, where A ∈A0-A4,

c is any proof constant. (axiom necessitation)
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2 Melvin Fitting

There is an analogue of the Necessitation Rule

` F
` �F

in LP. It has the form of an admissible rule of Explicit Necessitation ([1, 2]):

` F
` p:F

for some proof polynomial p.

The Logic of Proofs is an explicit version of S4: the “forgetful” projection
of LP, where t :F is systematically replaced by �F , coincides with S4 ([2],
Lemma 9.1). The key property of LP is its ability to emulate the whole
of S4, the Realizability Theorem (Theorem 9.4 from [2]). This theorem
states that if S4 derives F then one can find an assignment r of proof
polynomials to the �’s of F in such a way that the resulting formula F r

is derivable in LP (actually, this is a weak version of the full result, which
will be stated properly below). Artemov’s proof of the Realization Theorem
goes through cut-elimination for S4, which puts serious limits on finding
explicit counterparts for other modal logics, since many of them do not
enjoy cut-elimination. One of Artemov’s problems (number 14 from the list
of problems posted on http://www.cs.gc.cuny.edu/∼sartemov) asks for
a proof of the realization theorem which does not depend on cut-elimination
for S4.

In this paper I offer an alternative semantical proof of the Realization
Theorem which does not rely on cut-free derivations thus solving the above
problem. In addition, the proof presented here clarifies the role of the oper-
ation “+” in the realization of modal logic. I show that there is a realization
of S4 into the “+”-free fragment LP− of LP, which then can be transformed
into Artemov’s realization by a limited use of “+” axioms of LP.

Any terminology or results not included here can be found in [2].

2 Statement of Results

Let ϕ be a monomodal formula, fixed for the rest of this report. I will
make use of ϕ and its subformulas, but by subformula I mean subformula
occurrence. Strictly speaking, I should be working with a parse tree for ϕ,
but I am attempting to keep terminology as simple as possible. So in the
following, for ‘subformula’ read ‘subformula occurrence.’

Let A be an assignment of a proof polynomial variable to each subformula
of ϕ of the form �X that is in a negative position. I will assume that A
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assigns different variables to different subformulas—this plays a role in the
proof of Proposition 5.1. First, I define a mapping wA, which was used in
Artemov’s Realization Theorem.

wA assigns a set of LP formulas to each subformula of ϕ, as follows.

1. If P is an atomic subformula of ϕ, wA(P ) = {P} (this includes the
case that P is ⊥).

2. If X ⊃ Y is a subformula of ϕ, wA(X ⊃ Y ) = {X ′ ⊃ Y ′ | X ′ ∈
wA(X) and Y ′ ∈ wA(Y )}.

3. If �X is a negative subformula of ϕ, wA(�X) = {x : X ′ | A(�X) =
x and X ′ ∈ wA(X)}.

4. If �X is a positive subformula of ϕ, wA(�X) = {t : X ′ | X ′ ∈
wA(X) and t is any proof polynomial}.

I also define a similar mapping vA from subformulas of ϕ to sets of LP
formulas. Its definition is the same as that for wA except for item 4, which
reads as follows:

4. If �X is a positive subformula of ϕ, vA(�X) = {t : (X1 ∨ . . . ∨Xn) |
X1, . . . , Xn ∈ vA(X) and t is any proof polynomial}.

By LP− I mean LP without the ‘sum’ axioms.

Theorem 2.1 ϕ is a theorem of S4 if and only if there are ϕ1, . . . , ϕn ∈
vA(ϕ) such that ϕ1 ∨ . . . ∨ ϕn is a theorem of LP−.

Theorem 2.2 ϕ is a theorem of S4 if and only if there is some ϕ′ ∈ wA(ϕ)
such that ϕ′ is a theorem of LP. (This is Corollary 9.5 from [2].)

Both of the theorems above are actually shown in a stronger form than
is stated. Proofs in LP− and LP can be taken to be injective, meaning that
each constant introduced by rule R2 is unique—no proof constant serves to
‘justify’ more than one axiom. It is this stronger form of Theorem 2.2 that
is proved in [2].

3 First Part of Proof

Following [2], if Y is a formula of LP, then Y ◦ is the monomodal formula
that results by replacing each subformula of the form t : Z with �Z.
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Lemma 3.1 Let X be a subformula of ϕ, and let Y ∈ vA(X). Then Y ◦ ≡ X
is a theorem of S4. (In fact, the primary tool needed is the formula scheme
(A ∨A) ≡ A.)

Proof A straightforward induction on the degree of X.

Now it is easy to see (induction on proof length) that the forgetful pro-
jection, replacing t : X by �X, turns an LP− proof into a correct S4 proof.
This, and a little more work, gives us half of Theorem 2.1.

Proposition 3.2 If there are ϕ1, . . . , ϕn ∈ vA(ϕ) such that ϕ1 ∨ . . .∨ϕn is
a theorem of LP−, then ϕ is a theorem of S4.

Proof Using the observation above, provability of ϕ1 ∨ . . . ∨ ϕn in LP−

implies provability of ϕ◦1 ∨ . . . ∨ ϕ◦n in S4, and by the Lemma, this implies
provability of ϕ in S4.

4 Second Part of Proof

This Section is devoted to showing that if ϕ is provable in S4, then ϕ1 ∨
. . . ∨ ϕn is provable in LP− for some ϕ1, . . . , ϕn ∈ vA(ϕ).

Once and for all, let us select a constant specification that is injective,
that is, a 1−1 assignment of a proof constant to each axiom of LP−. When
rule R2 is applied in a proof, adding c : A where A is an axiom, it is assumed
that c is the constant associated with A by this constant specification.

Call a set S of LP− formulas inconsistent if there is some finite subset
{X1, . . . , Xn} ⊆ S such that (X1 ∧ . . . ∧ Xn) ⊃ ⊥ is a theorem of LP−.
Call S consistent if it is not inconsistent. Let G be the set of all maximally
consistent sets of LP− formulas. If Γ ∈ G, let Γ# = {X | (t : X) ∈
Γ, for some t}. And set ΓR∆ if Γ# ⊆ ∆. This gives us a frame, 〈G,R〉.
The ‘explicit reflexivity’ axiom scheme of LP− implies the frame is reflexive,
and the ‘proof checker’ axiom scheme implies it is transitive, hence it is an
S4 frame. Finally, define a forcing relation by specifying it at the atomic
level: Γ  P if and only if P ∈ Γ. This gives us an S4 model M = 〈G,R,〉.

If X is a subformula of ϕ I will write ¬vA(X) for {¬X ′ | X ′ ∈ vA(X)}.
Note that ¬vA(X) is very different in meaning from vA(¬X).

Proposition 4.1 In the S4 model M = 〈G,R,〉, for each Γ ∈ G:

1. If ψ is a positive subformula of ϕ and ¬vA(ψ) ⊆ Γ then Γ 6 ψ.
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2. If ψ is a negative subformula of ϕ and vA(ψ) ⊆ Γ then Γ  ψ.

Proof The proof, of course, is by induction on the complexity of ψ. The
atomic case is trivial. I will cover the remaining cases in detail.

Positive Implication Suppose ψ is (X ⊃ Y ), ψ is a positive subformula
of ϕ, ¬vA(X ⊃ Y ) ⊆ Γ, and the result is known for X and Y . Note
that X occurs negatively in ϕ and Y occurs positively.

Let X ′ be an arbitrary member of vA(X), and Y ′ be an arbitrary
member of vA(Y ). Then ¬(X ′ ⊃ Y ′) ∈ ¬vA(X ⊃ Y ). Since ¬(X ′ ⊃
Y ′) ∈ Γ, and Γ is maximally consistent, X ′ ∈ Γ and ¬Y ′ ∈ Γ. Since
X ′ and Y ′ were arbitrary, it follows that vA(X) ⊆ Γ and ¬vA(Y ) ⊆ Γ.
Then by the induction hypothesis, Γ  X and Γ 6 Y , hence Γ 6 (X ⊃
Y ).

Negative Implication Suppose ψ is (X ⊃ Y ), ψ is a negative subformula
of ϕ, vA(X ⊃ Y ) ⊆ Γ, and the result is known for X and Y . In this
case, X occurs positively in ϕ and Y occurs negatively.

If ¬vA(X) ⊆ Γ, by the induction hypothesis Γ 6 X, and hence Γ 
(X ⊃ Y ). So now suppose ¬vA(X) 6⊆ Γ. Then for some X ′ ∈ vA(X),
¬X ′ 6∈ Γ, hence by the maximal consistency of Γ, X ′ ∈ Γ. Now, let
Y ′ be an arbitrary member of vA(Y ). Then (X ′ ⊃ Y ′) ∈ vA(X ⊃ Y ),
hence (X ′ ⊃ Y ′) ∈ Γ. Since X ′ ∈ Γ, again by maximal consistency,
Y ′ ∈ Γ. Since Y ′ was arbitrary, we have that vA(Y ) ⊆ Γ, so by the
induction hypothesis, Γ  Y , and again Γ  (X ⊃ Y ).

Positive Necessity Suppose ψ is �X, ψ is a positive subformula of ϕ,
¬vA(�X) ⊆ Γ, and the result is known for X (which also occurs
positively in ϕ).

The key item to show is that Γ# ∪ ¬vA(X) is consistent. For then
we can extend it to a maximal consistent set ∆. By definition, ΓR∆,
and by the induction hypothesis, ∆ 6 X, hence Γ 6 �X. So I now
concentrate on showing this key item.

Suppose Γ#∪¬vA(X) is not consistent. Then for some Y1, . . . , Yk ∈ Γ#

andX1, . . . , Xn ∈ vA(X), LP− proves (Y1∧. . .∧Yk∧¬X1∧. . .∧¬Xn) ⊃
⊥, and hence LP− also proves (Y1 ∧ . . . ∧ Yk) ⊃ (X1 ∨ . . . ∨Xn). For
each i = 1, . . . , k, since Yi ∈ Γ#, there is some proof polynomial si such
that si : Yi ∈ Γ. Using the analog of the Lifting Lemma (5.4 in [2]) and
the Substitution Lemma, there is a proof polynomial t such that LP−

proves (s1 : Y1 ∧ . . . ∧ sk : Yk) ⊃ t(s1, . . . , sk) : (X1 ∨ . . . ∨Xn). Hence
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t(s1, . . . , sk) : (X1 ∨ . . . ∨ Xn) ∈ Γ, but this contradicts the original
assumption that ¬vA(�X) ⊆ Γ.

Negative Necessity Suppose ψ is �X, ψ is a negative subformula of ϕ,
vA(�X) ⊆ Γ, and the result is known for X (which also occurs nega-
tively in ϕ).

Let X ′ be an arbitrary member of vA(X). Since �X is a negative
subformula of ϕ, x : X ′ ∈ vA(�X), where x = A(�X). Hence
(x : X ′) ∈ Γ. Now if ∆ is an arbitrary member of G with ΓR∆,
by definition Γ# ⊆ ∆, hence X ′ ∈ ∆. Thus vA(X) ⊆ ∆, so by the
induction hypothesis, ∆  X. Since ∆ was arbitrary, Γ  �X.

Proposition 4.2 If, for every ϕ1, . . . , ϕn ∈ vA(ϕ), it is the case that ϕ1 ∨
. . . ∨ ϕn is not a theorem of LP−, then ϕ is not a theorem of S4.

Proof Assume ϕ1∨ . . .∨ϕn is not a theorem of LP− for every ϕ1, . . . , ϕn ∈
vA(ϕ). It follows that ¬vA(ϕ) is consistent. For otherwise there would be
ϕ1, . . . , ϕn ∈ vA(ϕ) such that (¬ϕ1 ∧ . . . ∧ ¬ϕn) ⊃ ⊥ would be a theorem
of LP−, and hence so would ϕ1 ∨ . . . ∨ ϕn, contrary to assumption. Since
¬vA(ϕ) is consistent, extend it to a maximal consistent set Γ. Γ ∈ G and
so, by the previous Proposition, Γ 6 ϕ, hence ϕ is not a theorem of S4.

5 Third Part of Proof

Half of Theorem 2.2 has an easy proof. If ϕ′ ∈ wA(ϕ), and ϕ′ has an LP
proof, replacing each modality t : by � throughout the proof converts it to
a proof in S4 of ϕ. It is the converse half that is difficult. In this section I
provide a new proof for this.

A substitution is a mapping from a finite set of proof polynomial variables
to proof polynomials. I denote the substitution that maps each xi to ti, i =
1, . . . , k, by {x1/t1, . . . , xk/tk}; it has domain {x1, . . . , xn}. I will generally
use σ, with and without subscripts, for substitutions. I will denote the
result of applying the substitution σ to the LP formula Z by Zσ. If σ1

and σ2 are substitutions whose domains do not overlap, then σ1 ∪ σ2 is
again a substitution. Recall that I required the assignment A of variables to
negative necessity subformulas of ϕ to associate distinct variables to different
subformulas. Consequently, if X and Y are different subformulas of ϕ, and
X ′ ∈ vA(X) and Y ′ ∈ vA(Y ), and σX′ and σY ′ are substitutions whose
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domains are the variables of X ′ and Y ′ respectively, σX′ and σY ′ have non-
overlapping domains, and hence σX′∪σY ′ is again a substitution. This plays
a role in the proof of the Proposition that follows.

Proposition 5.1 For every ψ that is a subformula of ϕ, and for each ψ1,
. . . , ψn ∈ vA(ψ), there is a substitution σ and a formula ψ′ ∈ wA(ψ) such
that:

1. If ψ is a positive subformula of ϕ, (ψ1 ∨ . . . ∨ ψn)σ ⊃ ψ′ is a theorem
of LP.

2. If ψ is a negative subformula of ϕ, ψ′ ⊃ (ψ1 ∧ . . . ∧ ψn)σ is a theorem
of LP.

Proof By induction on the complexity of ψ. If ψ is atomic the result is
immediate, since vA(ψ) and wA(ψ) are both {ψ}, so we can take ψ′ to be
ψ, and use the empty substitution. I’ll cover the non-atomic cases in detail.

Positive Implication Suppose ψ is (X ⊃ Y ), ψ is a positive subformula of
ϕ, and the result is known for X and Y . Note that X occurs negatively
in ϕ and Y occurs positively.

Say ψi = (Xi ⊃ Yi), where Xi ∈ vA(X) and Yi ∈ vA(Y ). By the
induction hypothesis there are substitutions σX and σY , and there are
X ′ ∈ wA(X) and Y ′ ∈ wA(Y ) such that X ′ ⊃ (X1 ∧ . . . ∧ Xn)σX

and (Y1 ∨ . . . ∨ Yn)σY ⊃ Y ′ are both theorems of LP. Without loss
of generality we can assume the domain of σX is exactly the set of
variables of X1 ∧ . . . ∧Xn, and similarly for σY . Then, if we let σ be
σX ∪ σY , by classical logic, the following is valid: [(X1 ⊃ Y1) ∨ . . . ∨
(Xn ⊃ Yn)]σ ⊃ (X ′ ⊃ Y ′), which establishes this case.

Negative Implication Suppose ψ is (X ⊃ Y ), ψ is a negative subformula
of ϕ, and the result is known for X and Y . Note that X occurs
positively in ϕ and Y occurs negatively.

Again say ψi = (Xi ⊃ Yi), where Xi ∈ vA(X) and Yi ∈ vA(Y ). This
time, by the induction hypothesis there are substitutions σX and σY ,
and there are X ′ ∈ wA(X) and Y ′ ∈ wA(Y ) such that (X1 ∨ . . . ∨
Xn)σX ⊃ X ′ and Y ′ ⊃ (Y1 ∧ . . . ∧ Yn)σY are theorems of LP. As in
the previous case, we can assume σX and σY have non-overlapping
domains. Then again, if we set σ = σX ∪ σY , by classical logic the
following is valid: (X ′ ⊃ Y ′) ⊃ [(X1 ⊃ Y1) ∧ . . . ∧ (Xn ⊃ Yn)]σ,
establishing this case.
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Positive Necessity Suppose ψ is �X, ψ is a positive subformula of ϕ, and
the result is known for X (which also occurs positively in ϕ).

In this case ψ1, . . . , ψn are of the form t1 : D1, . . . , tn : Dn, where
each ti is some proof polynomial and Di is a disjunction of members
of vA(X). Let D = D1 ∨ . . .∨Dn be the disjunction of the Di. By the
induction hypothesis there is some substitution σ and some member
X ′ ∈ wA(X) such that Dσ ⊃ X ′ is a theorem of LP. Consequently
for each i, Diσ ⊃ X ′ is a theorem of LP, and hence there is a proof
polynomial ui such that ui : (Diσ ⊃ X ′) is an LP theorem. But
then, (ti : Di)σ ⊃ (ui · tiσ) : X ′ is also an LP theorem (application
axiom, and the fact that (ti : Di)σ = (tiσ) : (Diσ)). Let s be the
proof polynomial (u1 · t1σ) + . . .+ (un · tnσ). It follows from the sum
axiom that LP proves (ti : Di)σ ⊃ s : X ′, for each i, and hence
that (t1 : D1 ∨ . . . ∧ ∨n : Dn)σ ⊃ s : X ′ is an LP theorem. Since
s : X ′ ∈ wA(�X), this concludes the positive necessity case.

Negative Necessity Suppose ψ is �X, ψ is a negative subformula of ϕ,
and the result is known for X (which also occurs negatively in ϕ).

In this case ψ1, . . . , ψn are of the form x : X1, . . . , x : Xn, where Xi ∈
vA(X) and x = A(�X). By the induction hypothesis there is some
substitution σ and some X ′ ∈ wA(X) such that X ′ ⊃ (X1∧ . . .∧Xn)σ
is a theorem of LP. Without loss of generality, we can assuume x
is not in the domain of σ. Now, for each i = 1, . . . , n, the formula
X ′ ⊃ Xiσ is a theorem of LP, and so there is a proof polynomial
ti such that ti : (X ′ ⊃ Xiσ) is an LP theorem. Let s be the proof
polynomial t1 + . . . + tn. Then by the sum axiom, s : (X ′ ⊃ Xiσ) is
an LP theorem, for each i. It follows by the application axiom that
x : X ′ ⊃ (s ·x) : (Xiσ) is an LP theorem, for each i. If we let σ′ be the
substitution σ ∪ {x/(s · x)}, we have the LP provability of x : X ′ ⊃
(x : Xi)σ′ for each i, and hence of x : X ′ ⊃ (x : X1 ∧ . . . ∧ x : Xn)σ′,
which establishes the result in this case.

This concludes the proof.

Now the hard half of Theorem 2.2 follows quickly. Suppose ϕ has an S4
proof. By Theorem 2.1, there are ϕ1, . . . , ϕn ∈ vA(ϕ) such that ϕ1∨ . . .∨ϕn

is an LP− theorem, and hence an LP theorem. By Proposition 5.1 there is
a substitution σ and a formula ϕ′ ∈ wA(ϕ) such that (ϕ1∨ . . .∨ϕn)σ ⊃ ϕ′ is
an LP theorem. Since ϕ1∨ . . .∨ϕn is provable in LP, so is (ϕ1∨ . . .∨ϕn)σ,
by the Substitution Lemma, and the provability of ϕ′ follows.
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