
City University of New York (CUNY) City University of New York (CUNY) 

CUNY Academic Works CUNY Academic Works 

Publications and Research Brooklyn College 

2018 

Very low-carbohydrate, high-fat, weight reduction diet decreases Very low-carbohydrate, high-fat, weight reduction diet decreases 

hepatic gene response to glucose in obese rats hepatic gene response to glucose in obese rats 

Kathleen V. Axen 
CUNY Brooklyn College 

Marianna A. Harper 
CUNY Brooklyn College 

Yu Fu Kuo 
CUNY Brooklyn College 

Kenneth Axen 
CUNY Brooklyn College 

How does access to this work benefit you? Let us know! 

More information about this work at: https://academicworks.cuny.edu/bc_pubs/218 

Discover additional works at: https://academicworks.cuny.edu 

This work is made publicly available by the City University of New York (CUNY). 
Contact: AcademicWorks@cuny.edu 

https://academicworks.cuny.edu/
https://academicworks.cuny.edu/bc_pubs
https://academicworks.cuny.edu/bc
http://ols.cuny.edu/academicworks/?ref=https://academicworks.cuny.edu/bc_pubs/218
https://academicworks.cuny.edu/bc_pubs/218
https://academicworks.cuny.edu/?
mailto:AcademicWorks@cuny.edu


RESEARCH Open Access

Very low-carbohydrate, high-fat, weight
reduction diet decreases hepatic gene
response to glucose in obese rats
Kathleen V. Axen*, Marianna A. Harper, Yu Fu Kuo and Kenneth Axen

Abstract

Background: Very low carbohydrate (VLC) diets are used to promote weight loss and improve insulin resistance
(IR) in obesity. Since the high fat content of VLC diets may predispose to hepatic steatosis and hepatic insulin
resistance, we investigated the effect of a VLC weight-reduction diet on measures of hepatic and whole body
insulin resistance in obese rats.

Methods: In Phase 1, adult male Sprague-Dawley rats were made obese by ad libitum consumption of a high-fat
(HF1, 60% of energy) diet; control rats ate a lower-fat (LF, 15%) diet for 10 weeks. In Phase 2, obese rats were fed
energy-restricted amounts of a VLC (5%C, 65%F), LC (19%C, 55%F) or HC (55%C, 15%F) diet for 8 weeks while HF2
rats continued the HF diet ad libitum. In Phase 3, VLC rats were switched to the HC diet for 1 week. At the end of
each phase, measurements of body composition and metabolic parameters were obtained. Hepatic insulin
resistance was assessed by comparing expression of insulin-regulated genes following an oral glucose load,that
increased plasma insulin levels, with the expression observed in the feed-deprived state.

Results: At the end of Phase 1, body weight, percent body fat, and hepatic lipid levels were greater in HF1 than LF
rats (p < 0.05). At the end of Phase 2, percent body fat and intramuscular triglyceride decreased in LC and HC (p < 0.05),
but not VLC rats, despite similar weight loss. VLC and HF2 rats had higher HOMA-IR and higher insulin at similar
glucose levels following an ip glucose load than HC rats (p < 0.05). HC, but not VLC or HF2 rats, showed changes in
Srebf1, Scd1, and Cpt1a expression (p < 0.05) in response to an oral glucose load. At the end of Phase 3, switching from
the VLC to the HC diet mitigated differences in hepatic gene expression.

Conclusion: When compared with a high-carbohydrate, low-fat diet that produced similar weight loss, a commonly
used VLC diet failed to improve whole body insulin resistance; it also reduced insulin’s effect on hepatic gene
expression, which may reflect the development of hepatic insulin resistance.

Keywords: Very low-carbohydrate diet, Weight loss, Insulin resistance, Lipogenesis, Gene expression, Obesity

Background
Very low carbohydrate (VLC, < 10% of energy) diets that
are used to reduce body weight and improve glycemic
control and insulin sensitivity in obese individuals [1, 2]
generally provide > 50% of energy as fat [3–5]. High
levels of dietary fat are implicated in the development of
hepatic steatosis [6–8] which is prevalent in the obese
population and is associated with hepatic insulin resist-
ance and development of Type 2 diabetes mellitus [9].

Since obese individuals who are at risk for Type 2 dia-
betes mellitus may utilize a VLC diet to lose weight, it is
important to understand the effect of VLC diets on hep-
atic response to insulin.
Although VLC diets have been used successfully for

weight loss [10] and management of post-meal glycemia
in humans [1, 11, 12], their impact on hepatic or whole
body insulin resistance remains unclear [13]. Long-term,
ad libitum consumption of a VLC diet by lean rats pro-
duced diabetes [14];in another study, consumption of a
VLC diet by lean rats lowered their fasting blood glucose
and insulin levels, but also produced glucose intolerance
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[15, 16], as well as hepatic and whole body insulin resist-
ance when compared with an isocaloric
high-carbohydrate, low-fat diet [15]. Previous studies
from our laboratory in obese rats showed that an
energy-restricted VLC diet produced less reduction in
visceral fat, and hepatic and intramuscular lipid levels,
and less improvement in glucose tolerance than an iso-
caloric high-carbohydrate, low-fat diet that yielded simi-
lar weight loss [17, 18]. The correlation between hepatic
lipid concentration and glucose intolerance in that study
[18] provided the impetus for the present investigation
of the effects of a VLC weight-reduction diet on hepatic
and whole body insulin resistance.
Ketosis diets, which are used to treat epilepsy in chil-

dren [19], contain 0–10% carbohydrate (C), < 5% protein
(P) and > 80% fat (F) [20]. Ketosis diets can increase per-
cent body fat and hepatic triglyceride levels [21–23], and
produce inflammation [23–25], liver damage [23, 24]
and hepatic apoptosis [26] in rodents. Although ketosis
diets lowered basal blood glucose and insulin levels in
normal mice [27] and murine models of type 2 diabetes
[23, 28], these diets also produced glucose intolerance,
as well as hepatic [27] and whole body insulin resistance
[29]. These results show that VLC diets with a low pro-
tein content can produce hepatic steatosis and hepatic
insulin resistance.
Since the VLC diets typically used by obese individuals

for weight loss have a moderate or high (≥ 25% of en-
ergy) protein content [3, 5, 30], the present study
employed diets of different carbohydrate and fat, but of
similarly high (26–30%) protein, contents. We compared
the effects of a VLC diet on hepatic response to insulin,
with that of a high-carbohydrate, low-fat diet (HC) that
produced the same weight loss in dietary obese rats.
Hepatic response was defined as the difference between
expression of insulin-regulated genes after an oral glu-
cose load, that raised plasma insulin levels, with expres-
sion of these genes in the feed-deprived state. We

hypothesized that hepatic gene response to insulin
would be impaired in rats on the VLC vs. HC diet, even
with the same weight loss.

Methods
Research design
In order to compare the effects of weight reduction by a
VLC diet with that of a high-carbohydrate, lower-fat diet
(HC), we first made rats obese in Phase 1 by ad libitum
consumption of a high-fat diet for 10 weeks (HF1); rats
consuming a lower-fat diet ad libitum served as a nor-
mal control group (LF, Fig. 1). In Phase 2 (8 weeks),
obese rats from Phase 1 were given energy-restricted
amounts of one of three diets, VLC, HC or LC, adjusted
in amount to ensure similar weight reduction in all three
groups. The LC diet was used to study the effects of a
high-fat intake in the absence of extreme carbohydrate
restriction (Table 1). A fourth group of rats (HF2) con-
tinued to feed ad libitum on the HF diet, to serve as an
obese control. In Phase 3 (1 wk), some of the rats on the
VLC diet in Phase 2 were switched to the HC diet for 3
or 7 days (VC3, VC7) in order to assess the persistence
of the effects of the VLC diet after a switch to a
high-carbohydrate, lower-fat diet. At the end of each of
the three phases, metabolic and body composition ana-
lyses were performed, as well as measurement of hepatic
gene expression both in the feed-deprived and
post-glucose conditions (Fig. 1).

Animals and diets
Male Sprague-Dawley rats (Charles River Laboratories,
MA) ~ 3 months of age (~ 290 g) were divided into two
weight-matched groups. The control group (N = 8) con-
sumed an LF diet (55%C, 15%F; Research Diets, NJ)
(Table 1), similar in macronutrient composition to the
standard AIN-76 diet [31]; the group to be rendered
obese consumed an HF diet (19%C, 55%F) which con-
tained 12% of kcal as sucrose in order to promote

Fig. 1 Experimental Design. GTT, intraperitoneal glucose tolerance test; LF, lower fat; HF, high fat; VLC, very low carbohydrate; LC, low
carbohydrate; HC, high carbohydrate; VC, change from very low carbohydrate to high carbohydrate
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hyperphagia. Ad libitum feed intake, corrected for spill-
age, was measured during wk. 6; body weights were re-
corded twice a week. After 8 wk. of ad libitum HF
feeding, body weight outliers were removed and HF rats
(N = 58) were divided into five groups matched for both
mean and range of body weights; one group of HF rats
(HF1, N = 10) was tested for glucose tolerance and then
dissected at wk. 10 (Fig. 1). During wk. 11–18, the
remaining four groups of obese rats either continued to
consume the HF diet ad libitum (HF2) or received daily
restricted amounts of one of three diets (VLC, LC, or
HC) that provided ~ 70% of the mean LF energy intake
during Phase 1, adjusted as needed to maintain similar
body weights among the groups. This level of energy re-
striction was used to induce a small weight loss in the
growing rats. The VLC group (N = 24) received a 5%C,
65%F diet; the LC group (N = 8) a 19%C, 55%F diet; and
the HC group (N = 8) a 55%C, 15%F diet. The LC and
HC diets had similar macronutrient compositions to the
HF and LF diets, respectively, but unlike those diets,
they were consumed in hypocaloric amounts (Table 1).
All diets had similar protein levels (26–30%), and were
comprised of the same fat sources, resulting in the same
distribution of polyunsaturated fat (36% PUFA) and

monounsaturated fat (38% MUFA) among diets. None of
the three weight-reduction diets contained sucrose. The
VLC group included more rats than the other groups
because VLC rats were later divided into 3
weight-matched groups (each N = 8): one group for dis-
section at wk. 18–19 and two groups for Phase 3 of the
study (Fig. 1). The VLC, LC and HC rats received fresh
rations daily; their feed intakes were measured for three
consecutive days per week during weeks 13 and 16 of
the study. To investigate the reversibility of the effects of
the VLC diet, the VLC rats remaining after wk. 18 were
switched to the HC diet for three (N = 8, VC3) or seven
(N = 8, VC7) days (Phase 3). Rats were housed at 22o C,
on a 12 h:12 h light-dark cycle; all procedures were ap-
proved by the Brooklyn College Institutional Animal
Care and Use Committee (Protocol 248).

Metabolic profile
At wk. 9, HF1 (N = 10) and LF (N = 8) rats were feed de-
prived overnight (16 h) and a glucose tolerance test
(GTT) was administered by intraperitoneal (ip) injection
of 50% glucose (1 g/kg of body weight); glucose was
measured in tail blood samples taken before (t = 0) and
at 10, 20, 30, 45 and 75 min after the glucose load.

Table 1 Composition of experimental dietsb

Diet Group

LF HF VLC LC HC

Diet numbera D10112401 D10112402 D10112403 D10112406 D10112404

Ingredients (g/kg of diet)

casein 282.0 321.9 393.8 313.0 274.8

L-cystine 4.2 4.8 5.9 4.6 4.1

corn starch 386.3 10.1 60.4 234.2 503.4

maltodextrin 10 117.5 157.2 0.0 0.0 0.0

sucrose 0.0 62.9 0.0 0.0 0.0

cellulose 94.0 62.9 67.7 61.1 91.6

soybean oil 15.0 72.9 90.0 70.9 14.4

lard 41.8 209.3 258.4 203.6 41.3

high oleic acid safflower oil 5.6 26.4 32.6 25.7 5.2

Total minerals 42.3 56.6 88.6 80.1 60.0

Vitamin mix V10001 9.4 12.6 0 0 0

Vitamin mix V10001C 0 0 2 1.8 1.4

Choline bitartrate 1.9 2.5 2.6 2.4 1.8

Cholesterol (mg/kg of diet) 86.5 215.1 264 209.2 84.7

Energy (kcal/g) 3.8 5.1 5.3 4.9 3.7

% of Energy

Carbohydrate 55 19 5 19 55

Fat 15 55 65 55 15

Protein 30 26 30 26 30
aResearch Diets, New Brunswick NJ
bLF lower-fat, HF high-fat, VLC very low-carbohydrate, LC low-carbohydrate, HC high-carbohydrate
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Similarly, at wk. 17 an ip GTT, along with measurement
of feed-deprived plasma ketone levels, was performed
following overnight feed deprivation on 6 rats from each
of the four diet groups in Phase 2; rats from the
energy-restricted groups were chosen to match body
weights: VLC (640 ± 13 g, mean ± SEM), LC (635 ± 8),
and HC (631 ± 14).

Tissue collection
At the end of Phase 1, 8 LF and 10 HF1 rats were feed
deprived overnight (16–19 h); half of the rats in each
diet group were dissected in the feed-deprived state and
half 3 h after an oral load of 50% glucose administered
by gavage (2 g/kg). The effect of the oral glucose load on
plasma glucose and insulin levels was measured at
30 min intervals (0–90 min) in a separate group of 5 LF
and 6 HF rats, confirming that glucose and insulin levels
remained elevated between 30 and 90 min in both
groups; measurements were made in these other rats to
avoid the stress of blood draws before tissue sampling.
In all phases of the study, the order of diet groups and
conditions (feed-deprived vs. post-glucose) were system-
atically counterbalanced to ensure that they did not dif-
fer among groups. In Phases 2 and 3, all rats to be
dissected were feed deprived overnight and tissue sam-
ples were obtained from each diet group in the
feed-deprived state (N = 4) or 3 h after the first of two
doses of glucose (each 2 g/kg), given by gavage 90 min
apart (N = 4); a higher glucose load than that used in
Phase 1 was employed to provide a stronger stimulus for
insulin release. The VC3 and VC7 groups were similarly
treated and dissected after three or seven days after
switching to the HC diet, respectively.
Rats were anesthetized by ip injection of Na pentobar-

bital (55 mg/kg, Sigma-Aldrich). Liver samples were
freeze clamped and placed in liquid Nitrogen for later
measurement of lipid concentration, or stored in RNAla-
ter (Qiagen) for later extraction of nucleic acids. Blood
(~ 10 mL) was drawn from the descending aorta into a
heparinized syringe (10 USP units/ mL of blood, Schein);
plasma was frozen for later measurement of insulin, lep-
tin, and triglyceride. Fat pads were dissected from the
epididymal, omental-mesenteric, retroperitoneal and en-
tire subcutaneous depots, and covered in plastic until
weights were recorded. Rats died under anesthesia fol-
lowing the blood draw.

Blood and tissue analysis
Triglyceride concentration in plasma and in muscle lipid
extracts was measured using a kit (Wako), as was plasma
concentration of β-hydroxybutyrate (Stanbio Labora-
tory). Blood glucose concentration was measured by
glucometer (One Touch, LifeScan); plasma insulin and

leptin concentrations were measured by radioimmuno-
assay (Millipore).
Total lipid was extracted from homogenized liver sam-

ples [32], and from muscle fibers dissected from lyophi-
lized soleus samples [33]; triglyceride from the muscle
lipid extract was solubilized in isopropanol for assay as
above.

RNA extraction and quantitative real-time PCR analysis
Total liver RNA was isolated using the RNeasy mini kit
(Qiagen), and reverse transcribed using the High Cap-
acity cDNA Reverse Transcription Kit (Applied Biosys-
tems). Gene expression was measured using TaqMan
expression assays and master mix (Life Technologies)
under conditions specified for the product; two assays
were performed for each sample for every gene of inter-
est (CFX Connect, BioRad). Each PCR run included trip-
licates of cDNA (5 ng total cDNA) for each gene and a
no-template control, as well as a calibrator from pooled
samples in that phase of the study in order to document
inter-run comparability for all genes. Relative expression
was normalized for transcript levels of the reference
gene, ribosomal protein P2 (Rplp2), whose expression
was unaffected by diet or feed-deprived vs. post-glucose
conditions.
The effect of diet on hepatic insulin resistance was

assessed by comparing post-glucose with feed-deprived
expression of genes known to be regulated by insulin.
SREBP1c (Sterol Regulatory Element Binding Protein), a
major regulator of lipogenesis whose gene (Srebf1) tran-
scription is increased by insulin, is attached to the endo-
plasmic reticulum via the protein Insig2 (Insulin-induced
gene 2); once released, the mature form of SREBP1c is
transported to the nucleus where it binds to regulatory el-
ements of its target genes, including Acaca (Acetyl-CoA
Carboxylase), Fasn (Fatty Acid Synthase), Scd (Stearoyl--
CoA Desaturase1), and Gck (Glucokinase). Insulin de-
creases the expression of Insig2, thereby promoting the
action of SREBP1c. Insulin also decreases expression of
Pck1 (Phosphoenolpyruvate Carboxykinase), and Cpt1a
(Carnitine Palmitoyl Transferase 1).

Statistical analysis
Data are shown as means ± SEM. The area, above
feed-deprived levels, under the glucose vs. time curve
(AUC) for the ip glucose tolerance test was calculated as
follows:

AUC ¼ −55 G0 þ 10 G10 þ 10 G20 þ 12:5 G30

þ 15 G45 þ 7:5 G75

Where G represents the blood glucose concentration
and the subscript represents the sampling time in mi-
nutes after the glucose load.
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Analyses were performed using SPSS version 24 soft-
ware. Comparisons between diet groups and between
conditions were analyzed by Analysis of Variance and
post hoc Bonferroni analyses; body weight changes
within subjects were analyzed by repeated measures
one-way ANOVA. For PCR results, data for each phase
were analyzed both as 2 –dCt and log-transformed as
dCt; significant effects were essentially the same for both
methods, but because variances among diet groups were
unequal for several genes using 2-dCt but not using dCt,
significance is reported based on dCt values. Differences
with values of p < 0.05 were considered to be significant.

Results
Food intake and body composition
Ad libitum energy intake, measured at wk. 6 of Phase 1,
was greater in HF1 vs. LF rats (106 ± 2 vs. 94 ± 3 kcal/
day, p < 0.001). By the end of Phase 1 (wk 10), body
weights, visceral fat, total body fat (sum of dissected fat),
% body fat (total body fat × 100%/ body weight) (p <
0.01), hepatic lipid levels (p < 0.05, Table 2) and plasma
leptin levels (p < 0.001) were greater in HF1 vs. LF rats,
demonstrating that HF1 rats were obese and had hepatic
steatosis (> 5% of liver weight as lipid) at the end of
Phase 1. Soleus intramuscular triglyceride (TG) levels
did not differ between HF1 and LF rats (8.1 ± 0.4 vs. 5.9
± 1.7 mg/g).
Calculated energy intakes were similar at wk. 13 vs.16

in the three energy-restricted groups; intakes at those
times were lower in LC (63 ± 2 kcal/d) than VLC (69 ±
1) or HC (68 ± 0.3) groups (p < 0.01). As intended, these
restricted daily energy intakes were lower than those of
the LF (94 ± 3) or HF1 (106 ± 2 kcal/day) groups in
Phase 1 (p< 0.001). Body weights did not differ among
the energy-restricted groups throughout wk. 11–18, and

all three groups weighed less than the HF2 group
throughout wk. 13–18 (p < 0.001). Although visceral,
total and % body fat (p < 0.001), as well as soleus intra-
muscular TG (p < 0.05), decreased in LC and HC groups
from that in the HF1 group at the end of Phase 1 (Table
2), no significant reduction in these measures was ob-
served in the VLC group. Body weight and visceral, total
and % body fat did not change in HF2 rats between wk.
10 and 18. Plasma leptin concentration was higher in
HF1 (wk 10) and HF2 (wk 18) than in VLC, LC or HC
groups at wk. 18 (p< 0.0001). HF1 and HF2 rats had the
same level of hepatic lipid, while rats on the VLC and
HC, but not LC, diets decreased hepatic lipid concentra-
tion during Phase 2 (p < 0.01).
Total weight loss after the switch from the VLC to the

HC diet in Phase 3 did not differ between rats on the
HC diet for 3 days (VC3: 30 ± 2 g) or 7 days (VC7: 25 ±
5 g). Like VLC rats, body weights of VC3 and VC7 rats
remained lower than that of HF2 rats, and concentra-
tions of hepatic lipid and plasma levels of leptin (Table
2) were lower than those of HF1 or HF2 rats (p < 0.05).
In contrast, the switch from the VLC to the HC diet re-
sulted in lower intramuscular TG levels in VC3 and
VC7 than in HF1 or HF2 rats. These results support the
lower effectiveness of the VLC vs. the HC diet in redu-
cing muscle lipid during weight loss.

Metabolic profile
Feed-deprived values for plasma glucose and insulin
concentrations did not differ between LF and HF1 rats
at wk. 6, nor did glucose tolerance differ, as assessed by
the area under the glucose vs. time curve (AUC) during
the ip GTT (Table 3).
At the time of dissection, plasma levels of glucose and

insulin did not differ between LF and HF1 rats in either

Table 2 Effects of diet on body composition in male rats1

DIET Body Visceral Total Body Liver Muscle Leptin

Weight (g) Fat (g) Fat (g) Fat (%) Lipid (mg/g) TG (mg/g) ng/mL

Phase 1

LF 558 ± 24b 39 ± 5.1b 67.2 ± 8.3c 11.3 ± 1.2b 49.9 ± 5.8c 5.9 ± 1.7bcd 11.6 ± 2.1b

HF1 665 ± 32a 69.0 ± 11.1a 130 ± 17.3ab 19.1 ± 1.9a 73 ± 5.2a 8.1 ± 0.4ab 42.6 ± 8.2a

Phase 2

HF2 748 ± 13a 78.2 ± 7.2a 148 ± 9.6a 19.7 ± 1.0a 72.1 ± 6.9a 9.5 ± 0.7a 38.9 ± 5.9a

VLC 628 ± 14b 51.1 ± 3.7ab 92.9 ± 7.8bc 14.7 ± 1ab 52.5 ± 6bc 6.9 ± 1.4bc 14.1 ± 2.2b

LC 613 ± 0.9b 42.2 ± 3.6b 75.6 ± 5.4c 12.3 ± 0.8b 67.8 ± 4.9ab 5.5 ± 0.7cd 8.7 ± 1.1b

HC 610 ± 11b 37.9 ± 2.5b 72.5 ± 6.1c 11.9 ± 1b 53 ± 6.9bc 4.5 ± 0.7cd 7.9 ± 1.0b

Phase 3

VC3 632 ± 10b 60.8 ± 4.2bc 3.4 ± 0.1e 8.6 ± 1.8b

VC7 644 ± 11b 54.1 ± 3.5bc 4.9 ± 1.1cd 7.4 ± 1.4b

1Values are means ± SEM. Labeled means in a column without a common letter differ, P < 0.05; the letter a represents the highest value .HOMA-IR units are
(mmol/L)(μU/mL)/22.5. LF, lower-fat; HF1, high-fat Phase 1; HF2, high-fat Phase 2; VLC, very low-carbohydrate; LC, low-carbohydrate; HC, high-carbohydrate
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the feed-deprived or post-oral glucose conditions (Fig. 2).
Plasma triglyceride (TG) levels were higher in the LF vs.
the HF1 group (p < 0.05).
Feed-deprived levels of plasma glucose did not differ

among any groups (t = 0, ipGTT, Table 3); the higher
corresponding levels of insulin in LF, HF1, HF2, and
VLC groups vs. the HC group resulted in higher
HOMA-IR values in the LF, HF1, HF2 and VLC groups
vs. the HC group (p < 0.05). Similarly, higher
feed-deprived levels of insulin in the HF1 group resulted
in higher HOMA-IR values in the HF1 than the LC
group (Table 3, p < 0.05). These data provide evidence
for whole body insulin resistance in the HF1 rats before
weight reduction, and in the VLC rats after weight re-
duction. The ip glucose load resulted in similar AUC
values in all groups in Phase 2 (Table 3). Although both
VLC and HC groups showed a reduction from the HF1
group’s AUC values (p < 0.05), and glucose values of
VLC and HC rats did not differ at any time point, the
VLC group had a higher insulin concentration at 30 min
post-injection than the HC group (p < 0.01); the higher
plasma insulin for the same glucose level in VLC vs. HC
rats provides evidence for whole body insulin resistance
in VLC rats. Plasma β-hydroxybutyrate levels, measured
after an overnight fast during wk. 17, were in the ketotic
range (> 0.5 mmol/L) for all Phase 2 groups and did not
differ among the four diet groups; these levels of
β-hydroxybutyrate exceeded those we previously re-
ported for VLC or HC rats in the fed state [18], demon-
strating that prolonged feed-deprivation can raise
plasma ketone levels in rats, even if they consume a
high-carbohydrate diet.
In blood samples obtained from anesthetized rats

during dissection, feed-deprived glucose levels did not
differ among groups, but only HF1 rats still showed
an elevation in glucose at 3 h after the oral glucose
load (p < 0.001, Fig. 2). However, VLC rats had higher

than feed-deprived insulin levels at 3 h after the oral
load (p < 0.05); such persistent elevation in insulin
levels is consistent with insulin resistance in VLC
rats. Feed-deprived levels of plasma triglyceride were
elevated in the HC group (HC > VLC ~ LC ~ HF2, p
< 0.05) and remained high after the oral glucose load.
The increase in plasma TG levels by the glucose load
(p < 0.02) in both VLC and LC groups is consistent
with insulin resistance.
Phase 3: Switch from VLC to HC Diet At the time

of Phase 3 dissection, plasma insulin levels were
higher (p < 0.05) in feed-deprived VC3 than they had
been in VLC or LC rats at wk. 18, but this difference
was no longer significant by day 7 after the switch to
the HC diet (VC7 group).

Hepatic gene expression
The effects of the HF diet on regulation of hepatic gene
expression by insulin was assessed by comparing levels
of mRNA, transcribed from insulin-regulated genes, in
liver samples obtained from rats in the feed-deprived
state vs. those obtained at 3 h after an oral glucose load,
which was used to raise plasma insulin levels. At the end
of Phase 1, the glucose load increased the expression of
Srebf, whose product SREBP1c is a major regulator of
lipogenesis, as well as its target Fasn, in the LF but not
the HF1 group (p < 0.05, Fig. 3). In response to glucose,
HF1 and LF groups both showed increased expression of
Acaca (target of SREBP1c) and decreased expression of
Insig2. Expression of Scd1 (target of SREBP1c), was
higher in LF vs. HF1 rats in both the feed-deprived and
3 h post- oral glucose conditions (p < 0.01).
At the end of Phase 2, all groups increased Acaca

mRNA after the glucose load (Fig. 4); VLC, LC and HC,
but not HF2, rats showed effects of the load on expres-
sion of Fasn and Gck (increased) or Pck1 (decreased).
Only the HF1 group showed the expected decrease in

Table 3 Dietary Effects on Plasma Levels of Glucose, Insulin and Ketones in Rats1

DIET HOMA-IR Glucose ipGTT AUC ipGTT insulin β-hydroxy butyrate

mmol/L (mM)(min) ng/mL mmol/L

t0 t0 t30

Phase 1

LF 10.9+1.2a 5.5+0.2 542+41ab 1.58+0.12ab

HF1 12.7+1.8a 5.3+0.1 674+38a 1.85+0.22a

Phase 2

HF2 7.8+3.2a 5.9+0.4 453+53ab 1.03+0.41bc 1.97+0.49a* 0.62+2.30

VLC 10.0+2.3a 6.5+0.5 442+22b 1.25+0.29b 2.5+0.61a* 0.5+0.07

LC 3.3+1.0b 6.2+0.1 482+52ab 0.41+0.13cd 1.69+0.20ab* 0.49+0.05

HC 1.3+0.1b 5.7+0.5 442+50b 0.18+0.02d 0.52+0.13b 0.51+0.16
1Values are means + SEM. Labeled means in a column without a common letter differ, P<0.05. * Different from t0, P<0.05. HOMA-IR units are (mmol/L)(μU/mL)/
22.5. LF, lower- fat; HF1, high-fat Phase 1; HF2, high-fat Phase 2; VLC, very low-carbohydrate; LC, low-carbohydrate; HC, high-carbohydrate
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Insig2 mRNA in response to the glucose load. The glu-
cose load increased expression of Srebf1 in HC and LC,
but not VLC or HF2 groups, while stimulation of Scd1
and inhibition of Cpt1a expression were seen only in the
HC group.
In Phase 3, the VC3 group failed to increase Srebf,

Acaca, or Fasn mRNA in response to the glucose load
(Fig. 5), but after 7 days on the HC diet, VC7 rats
showed responses qualitatively similar to those of HC
rats for these genes, although neither group showed the
increase in levels of Scd1 mRNA exhibited by the HC
group. Only VC3 rats decreased expression of Pck1 after
the glucose load; this may reflect the trend toward
higher feed-deprived Pck1 mRNA in VC3 vs. VC7
groups. In VC3 and VC7 rats, overall levels of mRNA

for Srebf1, Insig2, Acaca and Gck were lower (p < 0.05)
than those in VLC or HC rats at end of Phase 2,
even when mRNA levels were analyzed with reference
to a calibrator comprised of pooled samples from the
respective phases (ddCt).

Discussion
Ad libitum consumption of the HF diet for 10 wk.
produced obesity characterized by increased body
weight, % body fat, and plasma leptin levels as com-
pared with the LF control group, as well as hepatic
steatosis. Continued ad libitum consumption of the
HF diet for another 8 weeks in Phase 2 did not
change any of these measures of obesity. Eight weeks
of energy restriction of obese HF2 rats on VLC, LC

Fig. 2 Effect of diet on plasma glucose, insulin and triglyceride levels in rats at dissection. Rats were feed-deprived for 16–19 h; half of the rats were
then given an oral load of 50% glucose. Plasma samples were obtained from anesthetized animals either in the feed-deprived state or 3 h post
glucose. Values are means ± SEM. Labeled means for a given diet group for a particular condition (feed-deprived or post-glucose) without a common
letter differ, p < 0.05. * Different from Feed Deprived, p< 0.05. LF, lower-fat; HF1, high-fat Phase 1; HF2, high-fat Phase 2; VLC, very low-carbohydrate; LC,
low-carbohydrate; HC, high-carbohydrate; VC3, switched from VLC to HC 3 days; VC7, switched from VLC to HC 7 days

Fig. 3 Effect of glucose on gene expression in rats consuming LF vs. HF1 diets. Liver samples were obtained from rats consuming either an LF (N
= 8) or an HF (N = 10) ad libitum for ten weeks (Phase 1) feed-deprived 16 h (dark bars) and 3 h post-glucose (light bars). Relative hepatic gene
expression is plotted as 2-dCt. Means ± SEM are shown; labelled means, for a given gene and condition, without a common letter differ from each
other, p < 0.05. *Different from Feed-deprived, p < 0.05. Acaca: acetyl-CoA carboxylase; Fasn: fatty acid synthase; Gck: glucokinase; Insig2: insulin
signaling protein 2; Pck1: phosphoenolpyruvate carboxykinase; Scd1: stearoyl-CoA desaturase-1; Srebf1: Sterol regulatory element-binding protein
1. LF, lower-fat; HF1 high-fat Phase 1
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or HC diets produced similar reductions in body
weights and plasma leptin levels.
In rats on the LC and HC, but not VLC, diets vis-

ceral fat, % body fat, and intramuscular TG were sig-
nificantly reduced from that at wk. 10 (end of Phase
1), in agreement with our previous findings using VLC
and HC diets [18]. In contrast, hepatic lipid levels de-
creased from HF1 values in the VLC and HC but not

the LC group; this finding suggests that high dietary
fat, coupled with an adequate amount of carbohydrate,
promoted hepatic fat storage even during weight loss.
These results show that the fat and carbohydrate
compositions of the diets consumed in hypocaloric
amounts during Phase 2 had differential effects on
adipose tissue and hepatic fat loss during energy
restriction.

Fig. 4 Effect of glucose on gene expression in rats consuming HF2 vs. VLC, LC or HC diets. Liver samples were obtained from obese rats
continuing to consume an HF diet ad libitum or VLC, LC or HC diets in restricted amounts for 8 weeks (Phase 2); feed-deprived 16h (dark bars)
and 3 h post-glucose (light bars). Relative hepatic gene expression is plotted as 2-dCt. Means ± SEM are shown; labelled means, for a given gene
and condition, without a common letter differ from each other, p < 0.05. *Different from Feed-deprived, p< 0.05. Ct ranges across all groups and
conditions are shown in Parentheses; Acaca: acetyl-CoA carboxylase (28–32); Cpt1a: carnitine Palmitoyl transferase-1a (24–27); Fasn: fatty acid
synthase (25–32); Gck: glucokinase (24–30); Insig2: insulin signaling protein-2 (24–27); Pck1: phosphoenolpyruvate carboxykinase-1 (21–27); Scd1:
stearoyl-CoA desaturase-1 (24–32); Srebf1: Sterol regulatory element-binding protein(25–29); Rplp2:Ribosomal protein P2 (24–25); HF2, high-fat
Phase 2; VLC, very low-carbohydrate; LC, low-carbohydrate; HC, high-carbohydrate

Fig. 5 Effect of glucose on gene expression in rats switched from VLC to an HC diet. Liver samples were obtained from obese rats that had
consumed restricted amounts of a VLC diet for 8 weeks and then were switched to isocaloric amounts of the HC diet for 3 (VC3) or 7 (VC7) days
(Phase 3); 16 h feed-deprived (dark bars) and 3 h post-glucose (light bars). Relative hepatic gene expression is plotted as 2-dCt. Means ± SEM are
shown. *Different from Feed-deprived, P < 0.05, ** P < 0.01, *** P < 0.001. Acaca: acetyl-CoA carboxylase; Fasn: fatty acid synthase; Gck: glucokinase;
Insig2: insulin signaling protein-2; Pck1: phosphoenolpyruvate carboxykinase-1; Scd1: stearoyl-CoA desaturase-1; Srebf1: Sterol regulatory
element-binding protein-1
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response to the glucose load at the end of Phase 2. This
result supports hepatic insulin resistance in VLC rats,
despite reduction in hepatic lipid levels and body
weights from HF1 levels. The stimulation of Srebf1 ex-
pression by the glucose load in rats on LC or HC diets,
which differed in fat and cholesterol levels, suggests that
their higher carbohydrate intake, vs. that of VLC rats,
had improved their hepatic insulin sensitivity. Regulation
of Srebf1 transcription involves not only insulin, but in-
cludes the liver X receptor (LXR), mechanistic target of
rapamycin complex (mTorc), and positive feedback from
the mature form of SREBP1c [51]. Since dietary protein
levels in VLC, LC and HC diets were similar, differences
in amino acid intake seem unlikely to account for lower
mTorc activation by insulin in the VLC group; similarly
high fat intakes of VLC and LC rats also make it unlikely
that those groups differed in their intake of dietary regu-
lators of LXR.
Failure of a carbohydrate stimulus to increase Srebf1

mRNA by rodents consuming high-fat diets has been at-
tributed to their polyunsaturated fatty acid (PUFA) in-
take [51–53] . This possibility is unlikely to explain the
differences between VLC and LC or HC response for the
following reasons: 1) PUFA (92% n-6) intakes of VLC (~
1.57 g/d) and LC (~ 1.25) groups were similar; 2) in
other studies, PUFA were consumed near the time of
liver sampling, [52–55], whereas rats in our study were
feed-deprived for at least 16 h before dissection, preclud-
ing an acute effect of dietary PUFA; and 3) if chronically
higher PUFA intake were responsible for reducing levels
of Srebf1 mRNA, then lower feed-deprived expression in
HF1, HF2, VLC or LC vs. HC groups would be expected,
but this was not observed.
Only the HC group showed a significant stimulation

of Scd1 expression in Phase 2; overall expression of Scd1
was also higher in LF vs. HF1 rats in Phase 1. High
carbohydrate diets (e.g., LF and HC) stimulate Scd1 tran-
scription via SREBP1c and ChREBP [56]. Normal and
diabetic mice consuming a diet similar to the LC (18%C,
37%F) showed both reduced insulin sensitivity and lower
hepatic expression of Scd1 than mice consuming a diet
similar to the HC or LF diets (63% C, 22%F) [57]; the
small difference in their fat intake suggests that the dif-
ference in carbohydrate intake was responsible for the
effect on Scd1 expression.
No difference in feed-deprived levels of Cpt1a mRNA

was observed between any high-fat group (HF2, VLC or
LC) and the HC group, although Cpt1a mRNA has been
reported to be higher in rats on high-fat vs. low-fat diets
in the feed-deprived state [58]. However, the finding that
only the HC group, but not the HF2, VLC or LC groups,
significantly decreased Cpt1a mRNA after the glucose
load is consistent with the lack of difference in Cpt1a
expression reported between the fed and feed-deprived

state in rats consuming high-fat diets [59]; this lack of
suppression of Cpt1a expression should promote contin-
ued use of fat as a fuel, despite increased availability of
glucose.
In Phase 3, the lower responsiveness of hepatic gene

expression to the glucose load by the VC3 rats, vs. that
of VLC, LC or HC rats at the end of Phase 2, may have
been associated with weight loss during the first 3 days
after the switch to the HC diet. The stabilization of body
weight during days 4–7 on the HC diet by VC7 rats may
have promoted better responses. However, VC7 rats still
differed from HC rats in their lack of increase in Scd1
mRNA in response to glucose, and mRNA levels of
many genes remained below that exhibited by either
VLC or HC rats. These results indicate that full transi-
tion from the effects of the VLC to those of the HC diet
did not occur within 1 week.
The HC diet promoted greater responses of the

insulin-regulated genes, Srebf, Scd1 and Cpt1a, to the
glucose load than the VLC diet. As discussed above, the
higher carbohydrate intake of the HC vs. the VLC or LC
groups is likely to have accounted for the greater Scd1
gene response, and the lower fat intake of the HC vs. the
LC or VLC groups may have accounted for the greater
Cpt1a gene response the glucose load in HC rats. Al-
though the VLC and LC groups had similar fat intakes,
only the LC group increased expression of Srebf in re-
sponse to glucose; the severely restricted carbohydrate
intake of VLC rats may account for their lack of re-
sponse.. However, since it is not possible to vary only fat
or only carbohydrate intake, while holding protein and
energy intake essentially constant, it remains possible
that differences in both fat and carbohydrate intake are
responsible for the observed dietary effects.
VLC, but not LC rats had elevated HOMA-IR and

higher insulin levels after the ip glucose load as com-
pared with HC rats, indicating whole body insulin re-
sistance in VLC rats; since LC and VLC groups had
similar fat intakes, this finding suggests a mitigating
effect of the higher carbohydrate intake of the LC rats.
However, the combined effects of high dietary fat and
stimulation of expression of lipogenic genes (perhaps
including targets of SREBP1c that are involved in
esterification) in the LC group may have promoted
hepatic TG storage [60]. Nonetheless, hepatic steatosis
was not associated with whole body insulin resistance
in weight-reduced rats in the present study. In
addition, loss of the response of hepatic gene
expression to a glucose load was not associated with
hepatic steatosis.; Although hepatic lipid levels were
similar in HF1, HF2 and LC rats, LC rats showed
greater response to the glucose load than HF1 or HF2
rats, or than the VLC group which had lower hepatic
lipid levels.
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In HC rats, the insulin-stimulated increases in hepatic
SREBP1c and its targets would be expected to promote
conversion of glucose to fatty acids and triglyceride; de-
creases in hepatic Cpt1a would be expected to suppress
fat oxidation in favor of glucose oxidation. Both pro-
cesses should support the ability of a given concentra-
tion of insulin to lower plasma glucose levels after a
glucose load; this is consistent with lower whole body in-
sulin resistance in HC rats. Lack of this hepatic response
in VLC rats would be expected to diminish the
glucose-lowering effect of insulin; this is consistent with
the higher insulin levels observed for the same level of
glucose in VLC vs. HC rats.

Conclusion
The carbohydrate and fat contents of diets producing
the same weight loss differentially affected body com-
position and insulin resistance in obese rats. The VLC
diet promoted whole body insulin resistance and dimin-
ished the effect of a glucose load on hepatic expression
of some insulin-regulated genes, as compared with HC
or LC diets. These findings reveal adaptations produced
by a VLC weight loss diet that could promote hepatic in-
sulin resistance, thereby lessening the effect of insulin
on metabolic pathways.
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