Three-Dimensional Brain MRI for DBS Patients within Ultra-Low Radiofrequency Power Limits

SUBHENDRA N. SARKAR
CUNY New York City College of Technology

Efstathios Papavassiliou
David Hackney
David Alsop
Ananth Madhuranthakam

See next page for additional authors

Follow this and additional works at: https://academicworks.cuny.edu/ny_pubs

Part of the Geriatrics Commons, Medical Neurobiology Commons, Neurology Commons, Neurosciences Commons, Other Physics Commons, Psychiatry Commons, Radiology Commons, and the Surgery Commons

How does access to this work benefit you? Let us know!

Recommended Citation

This Article is brought to you for free and open access by the New York City College of Technology at CUNY Academic Works. It has been accepted for inclusion in Publications and Research by an authorized administrator of CUNY Academic Works. For more information, please contact AcademicWorks@cuny.edu.
Three-Dimensional Brain MRI for DBS Patients Within Ultra-Low Radiofrequency Power Limits

Subhendra N. Sarkar, PhD,1* Efstatios Papavassiliou, MD,2 David B. Hackney, MD,1 David C. Alsop, PhD,1 Ludy C. Shih, MD,3 Ananth J. Madhuranthakam, PhD,4 Reed F. Busse, PhD,5 Susan La Ruche, BS5 and Rafefeque A. Bhadella, MD1

1Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; 2Division of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; 3Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; 4Applied Science Laboratory, GE Healthcare, Boston, Massachusetts, USA; 5Applied Science Laboratory, GE Healthcare, Madison, Wisconsin, USA

ABSTRACT

Background: For patients with deep brain stimulators (DBS), local absorbed radiofrequency (RF) power is unknown and is much higher than what the system estimates. We developed a comprehensive, high-quality brain magnetic resonance imaging (MRI) protocol for DBS patients utilizing three-dimensional (3D) magnetic resonance sequences at very low RF power.

Methods: Six patients with DBS were imaged (10 sessions) using a transmit/receive head coil at 1.5 Tesla with modified 3D sequences within ultra-low specific absorption rate (SAR) limits (0.1 W/kg) using T2, fast fluid-attenuated inversion recovery (FLAIR) and T1-weighted image contrast. Tissue signal and tissue contrast from the low-SAR images were subjectively and objectively compared with routine clinical images of six age-matched controls.

Results: Low-SAR images of DBS patients demonstrated tissue contrast comparable to high-SAR images and were of diagnostic quality except for slightly reduced signal.

Conclusions: Although preliminary, we demonstrated diagnostic quality brain MRI with optimized, volumetric sequences in DBS patients within very conservative RF safety guidelines offering a greater safety margin. © 2014 International Parkinson and Movement Disorder Society

Key Words: conditional magnetic resonance imaging; deep brain stimulation; low specific absorption rate; radiofrequency heating; Parkinson’s disease

The advantages of magnetic resonance imaging (MRI) for mapping deep brain stimulation (DBS) lead position1 or postoperative function2 have already been demonstrated. However, local absorbed radiofrequency (RF) power during routine MRI (specific absorption rate [SAR]) at the electrodes is several times more than that from whole-head SAR,3,4 creating significant risks for such patients.5-7 DBS manufacturers7 have labeled their devices as magnetic resonance (MR) conditional by specifying a limit to head SAR of 0.1 W/kg at 1.5 Tesla (T) and RF exposure limited only to the head by using a local (transmit/receive) head coil. The main reason for heating concern is due to the “critical length” of DBS leads (odd multiples of half wavelengths at 1.5 T or 3 T), producing unknown local heating8 that varies with implantation techniques, including lead geometry, patient posture in the MRI bore, chosen MR sequences, and scanner hardware.

Given the increasing number of patients being treated with such devices, a high-quality, low-SAR brain MRI could be valuable, although it is not currently available. For MRI of patients with DBS, some centers have chosen to reduce the applied SAR by restricting imaging volume or sequence types9,10 whereas others have used high-SAR MRI on DBS patients based on the low-incidence track records.11-14 Three-dimensional (3D) fast spin echo (FSE) sequences using reduced angle refocusing pulses are promising and require one-third the SAR of 2D FSE while preserving most of the tissue contrasts.15-18 In this work, we modified a recent work that resulted in ultra-low-SAR 3D MRI for normal volunteers19 and developed a comprehensive brain MRI protocol that included T1, T2, and fluid-attenuated inversion recovery (FLAIR) imaging at 10-fold to 30-fold lower SAR for DBS recipients.

*Correspondence to: Dr. Subhendra N. Sarkar, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Ansin E/245, Boston, MA 02215; ssarkar@bidmc.harvard.edu

Current address for Ms. La Ruche: Department of Radiology, South Shore Hospital, Weymouth, Massachusetts

Relevant conflicts of interest/financial disclosures: Nothing to report. Full financial disclosures and author roles may be found in the online version of this article.

Received: 7 May 2013; Revised: 2 December 2013; Accepted: 18 December 2013

Published online 17 January 2014 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/mds.25808
Patients and Methods

Two authors (A.J.M. and R.F.B.) who are employees of GE Healthcare were involved in providing the research pulse sequences that were prospectively modified on healthy volunteers and applied on DBS patients in compliance with a retrospective institutional review board.

Patient Selection and Preimaging Requirements

In total, 12 patients (6 women; age range, 45–81 years) were included in this study. Of these, six were DBS recipients (4 with Parkinson’s disease, 2 with essential tremor), and six were age-matched controls without DBS. All patients were screened by earlier MRI to exclude deep brain pathology. Prior to MRI, the pulse generators were inactivated and set to biphasic settings at 0 volts to minimize lead heating or potential device re-activation. The indications for MRI were assessment of targeting accuracy, postoperative complications, or other neurologic conditions; whereas the control patients were free of acute symptoms or space-occupying lesions and underwent routine MRI at high SAR (range, 2.2–3.0 W/kg) using more efficient eight-channel head array coils.

Imaging Sequences and SAR Reduction Steps

The details of MR sequences are as follows (Table 1): (1) 2D FSE T₂ (control group, SAR = 2.2 W/kg) and 3D FSE T₂ (DBS group, SAR ≤ 0.1 W/kg); (2) 2D FLAIR (control group, SAR = 1.5 W/kg) and 3D FLAIR (DBS group, SAR ≤ 0.1 W/kg); and (3) 3D inversion-recovery spoiled gradient recalled-echo (IR-SPGR) (T₁) identical for both groups: SAR ≤ 0.1 W/kg). 3D FSE T₂ and 3D FLAIR sequences were modified from 3D-Cube research FSE sequence (GE Healthcare, Milwaukee, WI) by stretching refocusing RF pulse widths and reducing refocusing flip angles and by linear-modulation view ordering with skipping corners of k-space. The average SAR for each sequence was verified at the research interface before applying to patients, and the gradient slew rate was maintained below 16 T per meter per second.

Objective Signal-to-Noise Ratio, Relative Tissue Contrast, and Statistical Tests

The noise regions of interest were drawn along the frequency direction in air background for computing the signal-to-noise ratio (SNR). Ten cerebral tissue regions (frontal and parietal gray matter, adjacent white matter, subthalamic nucleus, cerebral peduncle, putamen, globus pallidus, ventricular fluid, and adjacent white matter) were selected from the right hemisphere for computing the tissue SNR and contrast-to-noise ratio (CNR) (CNR = [SNRₜ₁ − SNRₚₐ] / (2 × SNRₚₐ)). A two-tailed Wilcoxon rank-sum test was used to compare tissue SNR as well as tissue CNR for the control and DBS groups. Because SNR is proportional to pixel area, the SNR for 3D T₂ slices (256 × 256 matrix) was scaled down by a factor of 1.56 to compare with 2D slices that had smaller pixels (resolution, 320 × 320). In addition, the scan time normalized SNR was computed defined by SNR/Scan time).

Subjective Quality Assessment Relative to an Implant-Free “Reference” Patient

One of the six implant-free control patients who had a tissue SNR matching that of the control group average was used as reference (assigned score = 0) for comparing image quality. Two senior neuroradiologists (D.B.H., R.A.B.) with over 25 years’ experience subjectively evaluated the image appearance and signal characteristics based on SNR, cerebrospinal fluid intensity, gray/white matter contrast, and artifacts on...
a 5-point scale (−2, −1, 0, +1, and +2, with −2 indicating the worst and +2 indicating the best).

Results

All low-SAR imaging studies were completed without any complications. Figure 1 compares images from typical DBS patients with images from controls. From top to bottom, the rows show 3D FLAIR, 3D T2-weighted, and 3D T1-weighted images at ultra-low SAR (0.1 W/kg) (Fig. 1, left column) and images for a clinical reference patient at routine clinical SAR (range, 2.2–3.0 W/kg) (Fig. 1, right column).

Objective Assessments

Compared with high-SAR 2D FLAIR, the scan time normalized SNR from low-SAR 3D FLAIR was 47% for gray matter, 45% for white matter, and 47% for deep nuclei. Similarly, the scan time normalized SNR for low-SAR 3D T2 was 67% for gray matter, 63% for white matter, and 48% for deep nuclei compared with high-SAR. The T1-weighted 3D IR-SPGR sequence produced an SNR of 58% to 68% for DBS compared with controls. The SNR reduction for all three low-SAR sequences compared with high SAR was statistically significant ($P < 0.05$), whereas the tissue contrasts were basically the same for both methods.

Subjective Assessment of Implant Group: Quality Scores and Specific Features

The overall image-quality scores were as follows: Both readers rated the low-SAR FLAIR and IR-SPGR T1 sequences with overall scores close to that of the reference control (DBS group, −0.3; reference control, 0), whereas the low-SAR T2 sequence produced a slightly lower rating compared with the control (DBS group, −0.8; reference control, 0). Overall, the conclusion was that the low-SAR images were adequately diagnostic (score range, −1 to +1). Although a comparison of high and low SARs for various brain pathologies was beyond the scope of this work, pathologies, including infection, infarcts, and subdural hematoma, were observed with low SARs.

Discussion

Whole-head MRI heating when scanning within the conditions of the DBS product label (≤ 0.1 W/kg) should be 20-fold to 30-fold lower than heating from routine MR sequences according to calorimetric principle. In vitro testing that demonstrates an acceptable temperature rise according to American Society for Testing and Materials testing standards is approved by the US Food and Drug Administration, although it does not address the uncertainty in local heating by a “critical length” implant like DBS, nor does it guarantee safety for issues other than RF heating (personal communication, Wolfgang Kainz, PhD, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA).

Currently, a number of groups use low-power 3D magnetization-prepared rapid gradient echo (MPRAGE) for assessing DBS lead placements without directly identifying DBS targets, which can be identified in our approach even at thick slices with T2 or FLAIR sequences. However, adopting a frame-based correction should improve surgical efficacy further. Two-dimensional
imaging produces imperfect slice profiles that overlap (cross-talk), whereas 3D sections are sharp with no overlaps between adjacent slices and, thus, localize electrodes better than 2D for identical slice thicknesses.

Our work was aimed to develop a full range of MR sequences within a very conservative SAR guidance to provide brain imaging for the growing population of DBS patients and to compare the advantages and drawbacks in diagnostic quality for this group compared with routine MRI on implant-free patients at high SAR. Note that, although absolute MR safety cannot be guaranteed, based on calorimetric principles, a 20-fold to 30-fold reduction in applied RF power compared with a conventional high-SAR MRI, as demonstrated here, would lead to a proportional decrease in local tissue temperature and may be preferred when MRI is absolutely needed for an implant patient. It should be noted that the whole-head SAR is an approximate estimate of the energy delivered to the tissue, and there are additional concerns, including gradient-induced effects or open circuits in case of a fractured lead. At present, adverse events, including permanent neurological injury with high-SAR, are rare, although a recent report has expressed concern that MRI at routine power might have caused neurologic deficits in some cases that previously were attributed to surgery.

Low-SAR images had a lower SNR partly due to lower sensitivity (65%) of the transmit/receive coil, whereas the tissue CNR matched well with that of the control group. However, these results should be considered preliminary because of the small sample size. Currently, our quadrature coil does not allow parallel imaging, which could have helped imaging speed and further SAR reduction.

Conclusion

In this preliminary work, by conforming to the strictest MR hardware and RF safety requirements, we have developed a set of brain T1, FLAIR, and T2 MRI sequences for DBS patients at very-low-SAR levels (≤0.1 W/kg) that produce acceptable image quality comparable to high-SAR sequences. With further in vitro testing and regulatory approvals, this approach has the potential for reducing, although not completely eliminating, RF heating risks for some of the urgently desired MR procedures that are currently not recommended by DBS manufacturers.

Acknowledgements: We thank Wolfgang Kainz, PhD (Center for Devices and Radiological Health, US Food and Drug Administration) for valuable discussions on implant safety and Aaron Grant, PhD for discussions on image noise computations.

References

