
City University of New York (CUNY)
CUNY Academic Works

Computer Science Technical Reports Graduate Center

2005

TR-2005008: Toeplitz and Hankel Meet Hensel
and Newton Modulo a Power of Two
Victor Y. Pan

Brian Murphy

Rhys E. Rosholt

Xinmao Wang

Follow this and additional works at: http://academicworks.cuny.edu/gc_cs_tr

Part of the Computer Sciences Commons

This Technical Report is brought to you by CUNY Academic Works. It has been accepted for inclusion in Computer Science Technical Reports by an
authorized administrator of CUNY Academic Works. For more information, please contact AcademicWorks@gc.cuny.edu.

Recommended Citation
Pan, Victor Y.; Murphy, Brian; Rosholt, Rhys E.; and Wang, Xinmao, "TR-2005008: Toeplitz and Hankel Meet Hensel and Newton
Modulo a Power of Two" (2005). CUNY Academic Works.
http://academicworks.cuny.edu/gc_cs_tr/263

http://academicworks.cuny.edu?utm_source=academicworks.cuny.edu%2Fgc_cs_tr%2F263&utm_medium=PDF&utm_campaign=PDFCoverPages
http://academicworks.cuny.edu/gc_cs_tr?utm_source=academicworks.cuny.edu%2Fgc_cs_tr%2F263&utm_medium=PDF&utm_campaign=PDFCoverPages
http://academicworks.cuny.edu/gc?utm_source=academicworks.cuny.edu%2Fgc_cs_tr%2F263&utm_medium=PDF&utm_campaign=PDFCoverPages
http://academicworks.cuny.edu/gc_cs_tr?utm_source=academicworks.cuny.edu%2Fgc_cs_tr%2F263&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=academicworks.cuny.edu%2Fgc_cs_tr%2F263&utm_medium=PDF&utm_campaign=PDFCoverPages
http://academicworks.cuny.edu/gc_cs_tr/263?utm_source=academicworks.cuny.edu%2Fgc_cs_tr%2F263&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AcademicWorks@gc.cuny.edu%3E

Toeplitz and Hankel Meet Hensel and

Newton Modulo a Power of Two ∗†

Victor Y. Pan, Brian Murphy, Rhys E. Rosholt
Department of Mathematics and Computer Science
Lehman College of CUNY, Bronx, NY 10468, USA

vpan@lehman.cuny.edu
bmurphy@lehman.cuny.edu
rosholt@lehman.cuny.edu

and
Xinmao Wang

Ph.D. Program in Mathematics
Graduate School of CUNY, New York, NY 10016, USA

xwang2@gc.cuny.edu

June 16, 2005

Abstract

We extend Hensel lifting for solving general and structured linear sys-
tems of equations to the rings of integers modulo nonprimes, e.g. modulo
a power of two. This enables significant saving of word operations. We
elaborate upon this approach in the case of Toeplitz linear systems. In
this case, we initialize lifting with the MBA superfast algorithm, estimate
that the overall bit operation (Boolean) cost of the solution is optimal up
to roughly a logarithmic factor, and prove that the degeneration is un-
likely even where the basic prime is fixed but the input matrix is random.
We also comment on the extension of our algorithm to some other fun-
damental computations with (possibly singular) general and structured
matrices and univariate polynomials as well as to the computation of the
sign and the value of the determinant of an integer matrix.

2000 Math. Subject Classification: 68W30, 68W20, 65F05, 68Q25
∗Some results of this paper have been presented at the Annual International Conference on

Application of Computer Algebra, Volos, Greece, June 2002; ACM International Symposium
on Sympolic and Algebraic Computation, Lille, France, July 2002; and the 5th Annual Con-
ference on Computer Algebra in Scientific Computing, Yalta, Crimea, Ukraine, September
2002.

†Supported by NSF Grant CCR 9732206 and PSC CUNY Awards 65393–0034 and 66437–
0035

1

Key Words: Solving linear systems, Hensel’s lifting, Computations modulo
a power of two, Toeplitz matrices.

1 Introduction

1.1 Lifting for structured linear systems (some motiva-
tion)

Hensel lifting in the field of integers modulo a prime is a well and long known tool
for the solution of general linear systems of equations with integer coefficients
(see Moenck and Carter 1979 [MC79], Dixon 1982 [D82]). Lifting computations
are performed with a lower precision, which gives them advantage over numerical
approach where the systems are ill-conditioned. This is frequently the case
where the input coefficent matrix is structured, e.g., this is the case for every
positive definite Hankel matrix (see Tyrtyshnikov 1994 [T94]).

For structured input matrices the power of lifting is the greatest. In partic-
ular, lifting supports a nearly optimal randomized upper bound on the overall
bit operation complexity of the solution of a Toeplitz or Hankel linear system
of n equations with n unknowns. For integer input values in nO(1), this upper
bound is within a roughly logarithmic factor from the information lower bound
of n2 logn bit operations (see Theorem 9.1 and Table 9.1). Lifting also enables
low cost solution of a block Hankel linear system, and this immediately implies
a substantial improvement of a recent advanced and widely acclaimed algorithm
for computing the determinant of an integer matrix (see Section 12.3).

The lifting algorithm remains highly effective for various other classes of
structured linear systems such as Hankel, Toeplitz/Hankel-like, block and poly-
nomial Hankel/Toeplitz, and banded systems. More precisely, the algorithm
is effective as long as the integer, rational, or polynomial input matrix and its
preconditioned inverse (or the inverse of its largest nonsingular submatrix) can
be multiplied by a vector fast in the ring of integers modulo a fixed integer m.
We list some important extensions and applications in Section 12, and we refer
the reader to the bibliography on structured matrices in Kailath and Sayed 1999
[KS99] and Pan 2000, 2001, and 2004 [P00], [P01], [P04].

1.2 Lifting in the rings of integers modulo nonprimes

Our main technical contribution, however, is the extension of lifting and its
initialization to the ring of integers modulo a prime power, e.g., modulo 2w.
This extension seems to be completely missing from the literature, although it
enables binary computations and the saving of lifting steps and word operations,
whereas in terms of the bit operation complexity, our solution cost remains
nearly optimal for a Toeplitz input. To yield saving, we begin lifting with
M−1 modulo m where log2 m is slightly less than the length λ of a computer
word. We call this policy saturated initialization. In practice 2λ is huge, and

2

it is inconvenient to deal with primes m that large. The most attractive choice
seems to be m = 2w, a power of two, allowing binary computations.

Lifting modulo nonprimes, however, leads to some technical challenges, par-
ticularly regarding degeneration and initialization. To meet these challenges,
we first introduce a simple concept of factor nonsingularity of an integer ma-
trix; then we modify the algorithm to perform it modulo a prime power. For
the initialization modulo a prime power we adjust the MBA divide-and-conquer
algorithm by Morf 1974 and 1980 and Bitmead and Anderson [M74], [M80], and
[BA80] and also propose two alternative algorithms.

We prove that our initialization rarely degenerates even where we fix the
basic prime but choose the input matrix at random; furthermore, we propose
some heuristic recipes to counter the unlikely degeneration if it still occurs.

1.3 Some extensions and applications

Our algorithm can be extended to some fundamental computations with pos-
sibly singular Toeplitz matrices such as computing their determinants, their
ranks, and the vectors in their null spaces. Further applications include com-
puting the gcd, lcm and resultant of a univariate polynomial, as well as Padé
approximations and interpolating rational functions. We still nearly optimize
the word and bit operation complexity in all these computations.

Our lifting algorithm is effective for any sparse and/or structured integer or
rational matrix if its preconditioned inverse can be multiplied by a vector fast.
Our analysis can be readily extended from the case of a Toeplitz input matrix
except for the estimates for the probability of degeneration in the reduction
modulo a power of a fixed prime. We only have such estimates in the cases of
general and Toeplitz random input matrices, and we present some experimental
results for tridiagonal and five-diagonal matrices.

1.4 Organization of our paper

We state some basic definitions and auxiliary results in the next section. We
cover Hensel’s and Newton’s lifting algorithms for linear equations and matrix
inversion in the rings of integers modulo an integer q in Sections 3 and 4. We
initialize lifting in Section 5 and Appendix A. We recall the techniques for the
recovery of the rational solution from its truncated q-adic extension in Sections
6, 7, and 8. We estimate the computational complexity of our algorithm in
Section 9. In Section 10, we study the degeneration problem and include the
results of our experiments. In Section 11, we demonstrate our algorithms with
some simple examples. In Section 12 we comment on the extensions of our study.
Section 10.4 is due to the fourth author, the implementation of the algorithms
to the second and third authors, and all other parts of the work and the paper
to the first author.

Acknowledgements. Our thanks go to Mark Giesbrecht and Arne Storjo-
hann for the (p)reprints of the papers Eberly et al. 2000 [EGV00], Mulders and

3

Storjohann 2004 [MS04], and Storjohann 2003 [S03], and to Richard Isaac for
suggesting a format for the statistical tests reported in Section 10.4.

2 Definitions and basic facts

Hereafter z mod q for z, q ∈ Z, q > 1 is a unique integer zq such that q divides
z − zq and 0 ≤ zq < q. We write log for log2, Z for the ring of integers, Zq for
the ring of integers modulo an integer q, and Q for the field of rational numbers.

2.1 General matrices

Definition 2.1. M = (mi,j)
k,l
i,j=1 ∈ Rn×n is a k × l matrix with entries mi,j

in a ring R. v = (vi)k
i=1 is a vector. I is the identity matrix of a proper size.

Il is the l × l identity matrix. MT is the transpose of M ; M (h) is the h × h
leading principal, that is, northwestern, submatrix of M. A matrix M of rank r
has generic rank profile if its submatrices M (k) are nonsingular for k = 1, . . . , r,
that is, up to the rank size r × r. M is strongly nonsingular if it is nonsingular
and has generic rank profile.

Definition 2.2. detM and adj M are the determinant and the adjoint of a
matrix M, respectively. (adj M = M−1 det M if M is nonsingular.)

Definition 2.3. |M | = ||M ||1 = maxj

∑
i |mi,j| is the column norm of a matrix

M = (mi,j)i,j; |v| =
∑

i |vi| is the �1-norm of a vector v = (vi)i; α(M) =
maxi,j |mi,j|, β(v) = maxi |vi|.
Definition 2.4. vS ≤ 2n2 − n and iS are the minimum numbers of arithmetic
operations sufficient to multiply a given n×n matrix S by a vector and to invert
it, respectively.

Definition 2.5. dk = dk(M) is the k-th determinantal divisor of a matrix
M ∈ Zn×n for k = 1, . . . , n, that is, the greatest common divisor (gcd) of all its
k × k minors (subdeterminants). s0 = d0 = 1, sk = sk(M) = dk/dk−1 are the
k-th Smith invariant factors of M for k = 1, . . . , n.

Hadamard’s estimate below is known to be sharp in the worst case but is an
over-estimate on the average according to Abbott et al. 1999 [ABM99].

Fact 2.1. | detM | ≤ ∏
j (Σim

2
i,j)

1/2 ≤ (α(M)
√

n)n, | detM | ≤ |M |n, | adjM |
≤ nα(adjM), and so | adjM | ≤ (α(M)

√
n − 1)n−1n, | adjM | ≤ n|M |n−1 for

an n × n matrix M = (mi,j)i,j .

It is easily deduced (see Newman 1972 [N72]) that s1, . . . , sn ∈ Z and
| detM | = s1 · · ·sn. Therefore

sn ≤ | detM | ≤ |M |n. (2.1)

Hereafter b �= 0, n > 2, |M | > 2, and so log n > 1, log |M | > 1.

4

Definition 2.6. For two integers q > 0 and s > 1, a matrix M in Zn×n
qs is

factor-q nonsingular modulo qs if there exists a matrix Q in Zn×n
s such that

MQ mod (qs) = qI (2.2)

or equivalently if there exists the s-adic expansion qM−1 = q
∑∞

i=0 Qis
i, Q0 =

Q, Qi ∈ Zn×n
s for all i.

2.2 Polynomial and integer multiplication

Let m(n) field operations be required to multiply two polynomials of degree
n − 1 or less. We have m(n) ≥ 2n − 1 (this is an information lower bound),
m(n) = O(n log n) over the fields or rings that support FFT, and

m(n) ≤ cclassn
2, m(n) ≤ cknlog 3, m(n) ≤ (cckn log n) log log n (2.3)

over any field, ring with unity, or algebra. Here and hereafter log stands for log2

unless we specify otherwise, so that log 3 = 1.58496 . . .; cclass, ck, and cck are
three constants, 0 < cclass < ck < cck, and the above bounds are supported by
the classical, Karatsuba’s, and Cantor and Kaltofen’s algorithms; the practical
choice among them depends on the degree n (see Bernstein 2003 [B03], [GG03]).

Each arithmetic operation over integers modulo q, represented with the d-
bit precision for d = �log q�, can be performed by using O(µ(d)) bit operations,
where µ(d) denotes the bit operation complexity of multiplication of two integers
modulo q, µ(d) ≥ 2d− 2 (an information lower bound),

µ(d) ≤ Cclassd
2, µ(d) ≤ Ckdlog 3, µ(d) ≤ (Cssd logd) log log d, (2.4)

Cclass, Ck, and Css are three constants, 0 < Cclass < Ck < Css, and the above
bounds are supported by the classical algorithm and those of Karutsuba 1963
and Schönhage and Strassen 1971 (see Knuth 1998 [K98], [B03], [GG03]).

2.3 Toeplitz and Hankel matrices

Definition 2.7. T = (ti,j)i,j is a Toeplitz matrix if ti,j = ti+1,j+1 for every
pair of its entries ti,j and ti+1,j+1. Z(v) is the lower triangular Toeplitz matrix
defined by its first column v. H = (hi,j)i,j is a Hankel matrix if hi,j = hi−1,j+1

for every pair of its entries hi,j and hi−1,j+1. J = (jg,h)n−1,n−1
g,h=0 is the unit

Hankel (reflection) matrix where jg,n−1−g = 1 for g = 0, . . . , n− 1, jg,h = 0 for
h + g �= n − 1. (J (vi)n−1

i=0 = (vn−i−1)n−1
i=0 , J2 = I.)

TJ and JT are Hankel matrices if T is a Toeplitz matrix, and HJ and JH
are Toeplitz matrices if H is a Hankel matrix. Therefore, Toeplitz and Hankel
linear systems are immediately reduced to each other, and we just study the
Toeplitz case.

5

Theorem 2.1. Multiplication of an n × n Toeplitz matrix T by a vector is a
subproblem of multiplication of two polynomials of degrees 2n−2 and n−1 whose
coefficients are given by the entries of the input matrix and vector, respectively,
that is, vT ≤ m(3n−3) for vT and m(n) in Sections 2.1 and 2.2. If the Toeplitz
matrix T is triangular and m = n, then both of these polynomials have degree
n − 1, that is, in this case vT ≤ m(2n − 2).

Proof. See, e.g., [P01, pages 27–28].

The next theorem of Heinig 1979 [H79] (cf. Heinig and Rost 1984 [HR84])
extends the Gohberg–Semencul formula of 1972.

Theorem 2.2. Let T = (ti,j)n−1
i,j=0 be a nonsingular Toeplitz matrix, let t−n

be any scalar (e.g., t−n = 0), and write ti−j = ti,j for i, j = 0, . . . , n − 1;
pn = −1, t = (ti−n)n−1

i=0 , p = (pi)n−1
i=0 = T−1t, q = (pn−i)n−1

i=0 , v = T−1e1,
e1

T = (1, 0, . . . , 0)T , u = ZJv. Then T−1 = Z(p)ZT (u) − Z(v)ZT (q).

Hereafter the n× 2 matrix (v, p) for the above vectors v and p = p(T, t−n)
is called a generator for T−1. The next theorem is a corollary of Theorems 2.1
and 2.2.

Theorem 2.3. vT−1 ≤ 4m(2n− 2)+ n for vS in Definition 2.4, m(n) in (2.3),
and a nonsingular Toeplitz matrix T provided the matrix T−1 is given with its
generator, that is, the vectors v and p in Theorem 2.2.

2.4 Rational number reconstruction

Definition 2.8. ordq(m), the order of q in m, is the maximal integer l such
that ql divides m. ν(y) is the numerator, and δ(y) is the denominator in the
ratio y = ν(y)/δ(y) of two coprime integers ν(y) and δ(y).

Modular rational roundoff is the recovery of a rational number x/y from
three integers k, l, and r = (x/y) mod l provided x and y are coprime unless
r = 0, l and y are coprime, |x| < k ≤ l, and 0 < y ≤ l/k. ρ(log l) is the
bit-operation complexity of this recovery. Clearly, we may write x = r, y = 1 if
k > |r|. The pair (x, y) is unique under the additional assumption that 2|x| < k
[GG03].

Theorem 2.4. We have

ρ(d) ≤ cd2, ρ(d) ≤ Cµ(d) logd (2.5)

for µ(d) in (2.4) and two positive constants C and c, c < C.

Proof. To support the theorem, it is sufficient to apply the algorithms in any
of the papers by Pan and Wang 2002 [PW02], 2003 [WP03], 2004 [PW04], or
Monahan 2004 [M04].

6

3 The generalized Hensel’s lifting for linear sys-
tems

Let us generalize Hensel’s lifting algorithm in [MC79], [D82] to perform it in
the rings Zqs for two integers q > 0 and s > 1. Actually we only need the
case where they are the powers of two or another fixed integer m > 1, possibly
a prime. We assume that M is a factor-q nonsingular matrix in Zn×n

qs (see
Definition 2.6) and that we are given the matrix Q satisfying (2.2). In fact it
is sufficient if this matrix is given with a block box for its multiplication by
a vector or with its generator (v,p) in the case of a Toeplitz matrix T (see
Theorem 2.2). Then we compute the first h terms in the s-adic expansion of the
vector qM−1b = q

∑∞
i=0 u(i)si, u(i) ∈ Zn

s , i = 0, 1,

Algorithm 3.1. The generalized lifting (see Examples 11.1–11.3).

Input: a matrix M ∈ Zn×n, a vector b ∈ Zn, three positive integers h, q, and
s, and a matrix Q = (qM−1) mod (qs) satisfying (2.2).

Output: the vector x(h) ∈ Zn such that x(h) = (qM−1b) mod (qsh), that is,
such that Mx(h) = (qb) mod (qsh).

Initialization: r(0) = b.

Computations: for i = 0, 1, . . . , h− 1, compute the vectors

u(i) = Qr(i) mod (qs), r(i+1) = (qr(i) − Mu(i))/(qs).

Output the vector x(h) =
∑h−1

i=0 u(i)si.

The following theorem shows correctness of the algorithm (see part b) and
bounds the precision of its computations. For q = 1 and a prime s, Algorithm
3.1 and the theorem have appeared in [D82].

Theorem 3.1. For r(i) and x(h) in Algorithm 3.1, we have

a) r(i) ∈ Zn for all i;

b) Mx(h) = qb mod (qsh);

c) all components r
(i)
j of all vectors r(i) = (r(i)

j)j satisfy the bounds |r(i)
j | ≤

|bj|/si + αn qs−1
q

∑i
k=1 s−k < β/si + αn(qs− 1)/(qs− q) < γ where M =

(mi,j)n
i,j=1, b = (bj)n

j=1,

β = β(b) = max
j

|bj|, α = α(M) = max
i,j

|mi,j|, γ = 2αn + β. (3.1)

Proof.

7

a) (qr(i)−Mu(i)) mod (qs) = (qI −MQ)r(i) mod (qs), and the claim follows
because MQ = qI mod (qs).

b) Mx(h) =
∑h−1

i=0 Mu(i)si =
∑h−1

i=0 (qr(i) − qsr(i+1))si = qb − qshr(h) =
qb mod (qsh).

c) By definition, all components u
(i)
j of all vectors u(i) satisfy |u(i)

j | ≤ qs− 1,

and so qs|r(i+1)
j | ≤ q|r(i)

j |+αn maxk |u(i)
k | ≤ q|r(i)

j |+(qs−1)αn. The claim
now follows by induction on i.

Clearly the arithmetic computational cost of a lifting step is in vM + vQ +
O(n). Here is a coarse bound on the presision of computing.

Lemma 3.1. Algorithm 3.1 operates with integers in the range [−2d1 , 2d1) where

d1 = �log(2qsγ)� (3.2)

for γ in (3.1).

Proof. The lemma follows from Theorem 3.1 a) and c) since the vectors u(i) are
computed in Zqs.

The bit precision of computing in Algorithm 3.1 is at most d1 and is only
�log(qs)� at the stages of computing the vectors u(i). Therefore, each lifting
step requires (vM +O(n))µ(d1)+vQµ(log(qs)) bit operations. If λ is the length
of a computer word and d1 ≤ λ, then all arithmetic operations in the algorithm
are word operations. To save lifting steps and word operations, we apply the
policy of saturated initialization, that is, choose q and s to maximize d1 ≤ λ.

4 Matrix inversion via the generalized Newton’s

lifting

Let us extend the generalized Hensel’s lifting to matrix inversion. Recursively
compute the matrices

X0 = qM−1 mod (qs), Xi = Xi−1(2qI − MXi−1) mod (qs2i

), (4.1)

i = 1, 2, . . . , h. Assuming the reduction modulo qs2i, deduce that qI − MXi =
(qI −MXi−1)2 = (qI −MX0)2

i

= 0, that is, qI = MXi mod (qs2i

). For q = 1,
this is Newton’s lifting for matrix inversion [MC79] whose i-th step squares
the residual matrix I − MXi−1, thus implying guadratic convergence of the
approximations Xi to M−1.

Every Newton’s step (4.1) is essentially reduced to performing n×n matrix
multiplication twice. For Toeplitz matrices, however, we simplify the iteration.
Indeed, for a Toeplitz matrix T = (tk−j)k,j = M/q, e1 = (1, 0, . . . , 0)T and

8

t defined in Theorem 2.2, the inverses Xi = qM−1 mod (qs2i

) in Zqs2i , i =
0, 1, . . ., can be represented with their n× 2 generators Xi(e1, t) = (Xie1, Xit).
In this case our iteration (4.1) takes the following form,

X0(e1, t) = qM−1(e1, t) mod (qs),
Xi(e1, t) = Xi−1(2qI − MXi−1)(e1, t) mod (qs2i

),
(4.2)

i = 1, 2, Its every step is reduced essentially to the multiplication of the
matrix M by the n×2 matrix Xi−1(e1, t) and of the matrix Xi−1 by the resulting
n×2 matrix. This is still O(m(n)) arithmetic operations (see Theorems 2.1 and
2.2), which is much less than the complexity of n × n matrix multiplication.

For q = 1 the iteration processes (4.1) and (4.2) are similar to Newton’s
iteration for numerical inversion of a matrix M [P01, Chapter 6], which takes
the forms

Xi = Xi−1(2I − MXi−1), i = 1, 2, . . . , (4.3)

for a general matrix M and

Xi(e1, t) = Xi−1(2I − MXi−1)(e1, t), i = 1, 2, . . . , (4.4)

for a Toeplitz matrix M .

Remark 4.1. Striking similarity can be also observed between the algebraic
Algorithm 3.1 for Hensel’s lifting and the celebrated algorithm for iterative im-
provement of numerical solution to a linear system of equations. (Compare
Golub and Van Loan 1996 [GL96, Section 3.5.3], Skeel 1980 [S80], Higham
1996 [H96], and our Algorithm 3.1.) This similarity was exploited in Pan 1992
[P92a] and Emiris et al. 1998 [EPY98] to improve the solution algorithm. The
improvement relies on extending modular arithmetic to binary rational numbers
to avoid computations with the vanishing leading bits of the residuals.

In h steps, the generalized Newton lifting achieves as much as the gen-
eralized Hensel’s in 2h steps, but the precision of computing is roughly dou-
bled in every Newton’s step, reaching the level of (2h log s + log q)-bit preci-
sion in h steps. As is easily verified, the overall asymptotic bit operation cost
estimate slightly increases versus the generalized Hensel’s lifting even where
µ(d) = O((d logd) log log d), but the Newton’s approach enables some saving of
the word operations in the case where initially the ratio �log(2qsγ)�/λ is small.
In this case we may apply the generalized Newton’s steps as long as the precision
of computing stays within a bound w which we fix a little below the length of
a computer word. If the precision at the next step would exceed w, we switch
to the generalized Hensel’s lifting, thus yielding its saturated initialization.

5 Initialization of the generalized lifting

In this section we study the following problem.

Problem 5.1. Initialization of the generalized lifting.

9

Input: a nonsingular matrix M ∈ Zn×n, a prime p, and two positive integers
λ, the length of a computer word, and w such that

�log(2pwγ)� = λ (5.1)

for γ in (3.1).

Output: either FAILURE or two integers q > 0 and s > 1, both the powers
of p and such that logp(qs) = w, and a matrix Q satisfying (2.2).

Due to Lemma 3.1, the subsequent lifting steps require a precision within λ.
With a smaller value of w, we would have needed some extra lifting steps and
word operations.

5.1 Solution in the case of general input matrix

Gaussian elimination with column pivoting enables us to solve Problem 5.1 for
a general matrix M .

Algorithm 5.1. Initialization via Gaussian elimination.
For a fixed prime p, compute w in (5.1), and apply Gaussian elimination

to invert the matrix M . Perform the computations in Zpw . Apply column
pivoting to avoid divisions by the multiples of p, that is, at every elimination
step interchange the rows to minimize the order of p in the pivot entry (cf.
Definition 2.8 on the order of p). If at some step the order exceeds w, output
FAILURE and stop. Otherwise continue the elimination until M is diagonalized.
Then choose v = ordp(sn) for sn = sn(M) denoting the Smith leading invariant
factor of the matrix M in Definition 2.5, that is, choose v equal to the maximal
order in p among all pivot entries (which are the diagonal entries of the output
diagonal matrix). Finally fix the positive integer u = w − v and compute the
matrix Q satisfying (2.2) for q = pv and s = pu.

The algorithm does not fail if and only if

w ≥ ordp(sn(M)) (5.2)

for w in (5.1). Due to (2.1) it is sufficient if w ≥ n logp |M |. In Section 10 we
show the failure probability for this computation in the case of a random choice
of p or M .

Algorithm 5.1 uses the order of n3 arithmetic operations performed with the
precision of �log(qs)�. If (5.1) holds, they are word operations. This cost bound
is the same as or is dominated at the lifting stage. (We ignore the chances
for theoretical asymptotic acceleration and minor practical speed up based on
fast matrix multiplication, on which we refer the reader to Kaporin 2004 [K04],
Dumas et al. 2004 [DGP04], and the bibliography therein.)

10

5.2 Solution in the case of a Toeplitz input matrix

In the case of a Toeplitz input matrix, we replace Algorithm 5.1 by adapt-
ing the MBA divide-and-conquer algorithm, which requires only O(m(n) log n)
arithmetic operations.

Recall that we cannot perform division in Zpw if p divides the divisor. In the
MBA algorithm, we can avoid such divisions if and only if the input matrix M
is strongly nonsingular in the field Zp (see [P01, Chapter 5]). Let us list some
relevant results on strong nonsingularity from Section 10 and [P01]:

• A random n×n integer Toeplitz matrix is likely to be strongly nonsingular
modulo any fixed prime p >> n (Theorem 10.4).

• If M is not strongly nonsingular in Zp for a random prime p sampled from
a large range, then M is unlikely to be strongly nonsingular even in Z (in
virtue of Theorem 10.1).

• The matrices MT M and MMT are strongly nonsingular in Z if M is
nonsingular in Z [P01] and are likely to remain strongly nonsingular in Zp

for a larger random prime p (in virtue of Theorem 10.1).

Having the matrices MT M or MMT inverted, we obtain

M−1 = (MT M)−1MT = MT (MMT)−1.

MT M and MMT are in the class of n × n Toeplitz-like matrices [P01].
Such matrices generalize n×n Toeplitz matrices. They can be represented in a
compact form with their displacement generators made up of O(n) parameters
and, like the matrix T−1 in Theorem 2.2, can be multiplied by vectors fast.
These properties also hold for the inverses of nonsingular Toeplitz-like matrices.

If a Toeplitz-like matrix is strongly nonsingular in Zp, we adapt the MBA
algorithm to compute in Zp a linear number of parameters which define the
displacement generator of its inverse; this takes O(m(n) log n) field operations.
More precisely, as long as the input matrix is Toeplitz-like and strongly nonsin-
gular, we just complement the original MBA algorithm in [M80], [BA80] with
the low cost deterministic algorithm in [P01, Section 4.6.2] (traced back to Pan
1992 [P92, Proposition A.6]), which compresses the dispacement generators in
Zp wherever they involve extraneous parameters. This compression algorithm
also works in the rings Zpw if we direct its pivoting to avoid degeneration in Zpw

rather than in Zp.
We only need to apply the MBA algorithm to compute the 2n entries of a

generator (v, p) for the matrix Q (cf. Theorem 2.2) rather than its n2 entries,
but as by-product the algorithm also computes the O(n logn) parameters defin-
ing recursive triangular factorization of a strongly nonsingular input matrix,
whose determinant is readily available from the factorization. For a detailed
description and analysis of this algorithm and further bibliography, see [M74],
[M80], [BA80], [P01, Chapter 5], and [P04].

11

In the Appendix we propose two alternative initialization algorithms which
work in Zqs for q = pv, s = pu (where p can be small) provided M is a factor-q
nonsingular Toeplitz matrix. If a Toeplitz input matrix M is strongly non-
singular in Zp, we may also initialize lifting by applying the Levinson–Durbin
algorithm (see Levinson 1947 [L47] and Durbin 1959 [D59]). It uses O(n2)
operations in Zp; this is more than in the MBA algorithm but still translates
into a bit cost bound dominated at the lifting stage.

6 Extension to the singular case and applica-
tions to polynomial computations

For a singular input matrix M of a rank r, we seek the inverse of its nonsingular
r × r submatrix Mr . Algorithm 5.1 can be immediately extended to compute
r = rank M , Mr , and the matrix Qr such that QrMr mod (qs) = qIr for
appropriate q and s. Then by applying the generalized lifting and the customary
techniques in [BP94, page 110], we may compute a solution to a consistent linear
system Mx = b and vectors from the null space of M . The overall asymptotic
bounds on the computational cost do not increase.

We may respectively extend the MBA algorithm as well provided the input
matrix M is a Toeplitz matrix of rank r and has generic rank profile. We can
ensure the generic rank profile property with a high probability by shifting to
the Toeplitz-like matrix UML where UT and L are random unit lower triangular
Toeplitz matrices (see Kaltofen and Saunders 1991 [KS91]).

The transition from M to UML involves random matrices U and L but
does not increase the overall asymptotic complexity bounds; these bounds can
be applied also to the verification that the r × r leading principal submatrix
is nonsingular, which implies that rank M ≥ r. Our cost bounds for the rank
computation for a Toeplitz matrix M are, however, Monte Carlo randomized
because they do not cover the verification that rank M = r.

The latter Monte Carlo complexity estimates can be extended to computing
the gcds, lcms, Padé approximations, and rational interpolation functions where
the input is given by univariate polynomials with integer coefficients [BGY80],
[BP94], [P96], [P01].

7 Deterministic recovery of the rational solution

7.1 The rational number reconstruction of every compo-
nent

To recover the unique vector x = qM−1b from the output vector x(h) of Algo-
rithm 3.1, we need to have a sufficiently large h. Let us estimate how large.

Theorem 7.1. Let x = qM−1b denote a unique solution to the linear system

12

Mx = qb. Assume ρ(d) in (2.5),

d = �log(2(α
√

n)2n−1nβq)� = O(n logγ + log q), (7.1)

and α, β and γ in (3.1). Suppose that in

h = 1 + 	logs(2(α
√

n)2n−1
nβ)
 (7.2)

steps Algorithm 3.1 computes the vector

x(h) =
h−1∑
i=0

u(i)pi = x mod (qsh).

Then it is sufficient to perform

B = nρ(d) (7.3)

bit operations to recover the vector x from the vector x(h).

Proof. Suppose that the pairs of coprimes νj = ν(xj) and δj = δ(xj) define the
rational components xj = νj/δj of the vector x = (xj)j = qM−1b. Fix the
smallest integer k > 2(α

√
n − 1)n−1nβq. Note that sh > 2(α

√
n)2n−1nβ for h

in (7.2). Deduce from Fact 2.1 that l = qsh > 2|νj|δj and 2|νj| < k ≤ qsh. Then
according to Section 2.4 every component xj can be uniquely recovered from
qxj mod (qsh). Now Theorem 2.4 supports the claimed bit complexity bound
for this recovery.

7.2 The recovery with lifting the recursive triangular fac-
torization

Suppose that we have initialized the lifting of a Toeplitz-like matrix M with
the MBA algorithm. As a by-product it computes recursive triangular fac-
torization of M mod (qs), which immediately defines (det M) mod (qs). By
combining the MBA algorithm with recursive application of h lifting steps
of Algorithm 3.1, we can compute (det M) mod (qsh) and the integer vector
y = (detM)x = (det M)x mod (qsh) where Mx = qb [P00], [P04]. For the
integer entries yi of y we have |yi| ≤ nq|M |n−1|b|, and so if qsh > 2|M |n, qsh >
2nq|M |n−1|b|, then we may immediately reconstruct them and det M and then
output x = y/ detM .

Since det(MMT) = det(MT M) = (detM)2, det(UML) = det M where U
and L are unit triangular matrices, the above technique covers also the case of
preconditioned matrices M .

8 Randomized recovery of the rational solution

For the values µ(d) in O(dlog 3) or O((d logd) log logd) and ρ(d) bounded in
(2.5), we may decrease the bit complexity bound in (7.3) by the factor of log d

13

by using randomization. This is Las Vegas randomization, that is, we allow
failure with a probability of at most ε for a fixed positive ε, but otherwise
within the same computational cost bound we certify that the output is correct.
We assume that log(1/ε) = O(logn).

The acceleration relies on two observations:

(a) The vector y = δx is filled with integers provided

δ = lcmj δ(xj), 1 ≤ j ≤ n (8.1)

(for δ(y) in Definition 2.8), that is, δ is the least common multiple of
the denominators in all rational coordinates xj of the solution x = (xj)j

to the system Mx = qb. Due to the integrality of the vector y, its
recovery from the vector y mod (qsh) is immediate if qsh > 2δ|x| = 2|y|.
Since δ ≤ sn(M) ≤ | detM | ≤ (α(M)

√
n)n (see (2.1) and Fact 2.1), it is

sufficient to use h of (7.2). Multiplication of the vector x by δ requires
the order of nµ(d) bit operations, thus limiting the theoretical gain versus
the estimate B = nρ(d) in (7.3). The practical gain can be significant,
however, because the constant bounding the ratio ρ(d)/(µ(d)(log d)) from
above can be quite large.

(b) Computation of the value δ can be accelerated with randomization because
this value is likely to equal the least common multiple of the denomina-
tors in a smaller number K of random linear combinations cT

k x of the
coordinates x1, . . . , xn, k = 1, . . . , K. According to the tests by Victor
Shoup and Jean-Guillaume Dumas, one may typically use the denomina-
tors of some selected coordinates themselves, e.g., the first, the second,
etc., instead of their random linear combinations.

The approach can be traced back to Pan 1988 [P88, Section 6]. Its recent studies
include [ABM99], Cooperman et al. 1999 [CFG99], Eberly et al. 2000 [EGV00],
and Mulders and Storjohann 2004 [MS04]. Let us specify and briefly analyze
the generalized Hensel’s lifting with randomized recovery.

Algorithm 8.1. Randomized recovery of the rational solution.

Input: The same as in Algorithm 3.1 and in addition a positive ε < 1 and the
vector x(h) = (x(h)

i)n
i=1 = qM−1b mod (qsh) for h in (7.2).

Output: FAILURE with a probability of at most ε or a positive integer δ and
an integer vector y such that

My = δqb. (8.2)

Initialization: Compute

K = 2�log(1/ε)�, (8.3)
η = 6 + 2n log (nα), (8.4)

h = 1 + 	logs(2n(α
√

n)2n−1
ηβ)
 (8.5)

14

for α and β in (3.1). Then sample K pseudo random vectors

ck = (cjk)n
j=1 ∈ Zn

η , k = 1, . . . , K. (8.6)

Computations:

1. Compute the K integers

wk = cT
k x(h) =

n∑
j=1

cjkx
(h)
j , k = 1, . . . , K.

2. Recover a unique set of the pairs of coprime integers νk and δk such that

(νk/δk) mod (qsh) = wk, 1 ≤ 2δk|νk| ≤ qsh, 2|νk| < qsh, k = 1, . . . , K.
(8.7)

3. Compute the least common multiple of the denominators

δlcd = lcmk δk, 1 ≤ k ≤ K. (8.8)

4. Compute the integer vector y = (yj)n
j=1 such that y mod (qsh) = δlcdx(h)

and 2|yj| < qsh for all j. If My = qδlcdb, output y and δ = δlcd; otherwise
output FAILURE.

Combining equations (8.4)–(8.6) and Fact 2.1 implies (8.7). Now, correctness
of Algorithm 8.1 is implied by the following simple result.

Theorem 8.1. δlcd in (8.8) divides δ in (8.1). Furthermore,

Probability(δlcd �= δ) ≤ ε.

Theorem 8.1 is deduced similarly to Theorem 2.1 in [EGV00] based on (8.3)–
(8.8) and the following lemma.

Lemma 8.1. For a prime p, integers K in (8.3), k such that 1 ≤ k ≤ K, δ in
(8.1), η in (8.4), and δk in (8.7), we have Probability(ordp(δk) < ordp(δ)) ≤
max{ 1

p , 1
η}.

Proof. Let l = ordp(δ) = maxj ordp(δ(xj)) for 1 ≤ j ≤ n. W.l.o.g., let l =
ordp(δ(x1)) and let c denote the first coordinate of the vector c = ck. Then we
have

cT x =
cu

apl
− v

phb
=

cub − avpl−h

abpl

where x = M−1b, l ≥ h, and a, b, u, and v are four integers coprime with
p. Clearly, ordp(δk) for δk in (8.7) never exceeds l; it equals l if and only if
cub − avpl−h is coprime with p. Since ub is coprime with p and since c is
random, the probability bound follows.

15

Let us estimate the bit complexity of performing Algorithm 8.1 in terms of
d = O(n logγ + log q) in (7.1), µ(d) in (2.4), ρ(d) in (2.5), and K in (8.3). We
need the following auxiliary result.

Lemma 8.2. Let j and k be positive integer parameters, j → ∞. Then
O(µ(j)k) bit operations are sufficient to multiply two positive integers u and
v such that u < 2j and v < 2j+k.

Proof. Represent v as
∑k−1

i=0 vi2ij, 0 ≤ vi < 2j for all i. Compute the products
wi = uvi for i = 0, 1, . . . , k − 1. This takes O(µ(j)k) bit operations. Now
compute the sum uv =

∑k−1
i=0 wi2ij. This takes O(jk) bit operations.

Algorithm 8.1 involves O(Knµ(d)) bit operations at Stage 1; O(Kρ(d)) at
Stage 2; O(Kµ(d) logd) at Stage 3, and O(nµ(d)), O(nµ(log β)d/ logβ), and
O(m(n)µ(log γ)d/ logγ) for computing the vectors δlcdx(h), qδlcdb, and My at
Stage 4, respectively. (The two latter bounds are deduced based on Lemma
8.2.) Summarizing, we obtain the following estimate.

Theorem 8.2. Algorithm 8.1 generates nK random elements in Zη for η in
(8.4) and K = 2�log(1/ε)� in (8.3). It either fails (this occurs with a probability
of at most ε) or computes the solution y, δ to the linear system (8.2). The
algorithm involves

B1 = O(Knµ(d) + Kρ(d) + m(n)µ(log γ)d/ log γ)

bit operations for d = O(n logγ +log q) in (7.1), ρ(d) in (2.5), γ in (3.1), m(n)
in (2.3), and µ(d) in (2.4); it involves o(B1) bit operations for generating nK
pseudo random elements in Zη.

9 Computational complexity estimates

Let us summarize the bit complexity estimates for our algorithms. We first
state the detailed refined estimates in a theorem and then show them in a more
observable coarser form in a table.

Theorem 9.1. Let for a prime p and its powers q and s, a matrix M ∈ Zn×n

be q-factor nonsingular modulo qs. Let Q ∈ Zn×n
s satisfy (2.2). Let b ∈ Zn.

Then we may compute the rational solution x to the linear system Mx = b by
applying the algorithms in Sections 3 – 8 at the bit–operation cost within the
following bounds:

a) O(n3µ(log(qs))) at the initialization stage for a general matrix M ;

b) O((m(n) log n)µ(log(qs))) at the initialization stage for a Toeplitz matrix
M ;

c) (vQµ(log(qs)) + (vM + O(n))µ(log(γqs)))h at the lifting stage;

16

d) nρ(d) = O(nµ(d) logd), d = O(n logγ + log q) for deterministic recovery
of the n coordinates xi of the rational solution x where all xi are recovered
independently of each other;

e) O((hm(n) log n)µ(log(γqs))) + nµ(d) for the deterministic recovery of the
n coordinates xi based on lifting the recursive triangular factorization of
the (preconditioned) input matrix;

f) O(log(1
ε)(nµ(d)+ρ(d)+m(n)µ(log γ)

log γ d) for the (Las Vegas) recovery which
involves n�log 1

ε ��log(6 + 2n log (nα))� random bits and may fail with a
probability of at most ε > 0 but otherwise is certified to be correct.

Here m(n), µ(d), and ρ(d) are defined in (2.3)–(2.5), γ and α in (3.1), d =
O(n log γ + log q) in (7.1), h = O(n log(γn)) in (7.2) and (8.5)
Futhermore, randomized Toeplitz preconditioning M → UML in Section 6 en-
ables the extension of the above asymptotic bit operation complexity bounds to
the solution of a singular consistent system Mx = b and to the computation
of a nonzero vector v from the null space N(M) = {v : Mv = 0} for a singu-
lar matrix M . The bounds also cover the certification of the correctness of the
solution.

Remark 9.1. (Cf. Bini and Pan 1994 [BP94].) The randomized complexity
estimates of Theorem 9.1 also apply to computing the rank r of the matrix M
and an r× r nonsingular submatrix of the matrix UML in Section 6 but in this
case they are Monte Carlo estimates, that is, they do not cover the correctness
certification of the solution, thus allowing undetected errors with a probability of
at most ε. For a Toeplitz input matrix M , the asymptotic Las Vegas estimates
for the bit complexity of computing a vector from the null space can be extended
to Monte Carlo estimates for computing a shortest displacement generator of a
matrix whose columns form a basis for the null space of M .

Table 9.1 summarizes the bit complexity estimates in Theorem 9.1. To make
the estimates more observable, we use the notation “Õ” (which means “O” up
to the factors in (log logn)O(1)) and the following simplifying assumptions,

logs γ = O(1), log(qs) = O(log n), log(1/ε) = O(logn). (9.1)

Here ε is the error probability in the randomized rational reconstruction of
the output.

Our bound of Õ(n2 log2 n) bit operations on the overall randomized com-
plexity of the initialization, lifting and rational solution reconstruction is nearly
optimal (assuming a Toeplitz input matrix M and equations (9.1)), because
n2 logn bits are required to represent the n rational output values x1, . . . , xn,
and therefore at least as many bit operations are required to compute these
values.

Let us also estimate the number of word operations in our algorithm as-
suming that every arithmetic operation in Zt requires Õ(� t

λ
�) word operations

and that log(γqs) = O(γ)v. The latter assumptions imply a constant bound

17

Table 9.1: The bit complexity of lifting (for general and Toeplitz input matrices
M) and rational reconstruction (deterministic and randomized), under (9.1),
(2.3)–(2.5), and (3.1).

Initialization complexity B−1

(for a general matrix M) O(n3µ(log n)) = Õ(n3 logn)
Initialization complexity B−1

(for a Toeplitz matrix M) O((m(n) log n)µ(log n)) = Õ(n log3 n)
Lifting complexity B0

(for a general matrix M) O(n3µ(log n)) = Õ(n3 logn)
Lifting complexity B0

(for a Toeplitz matrix M) O(nm(n)µ(log n)) = Õ(n2 log2 n)
Reconstruction complexity B1

(deterministic) O(nρ(n log n)) = Õ(n2log3n)
Reconstruction complexity B1

(randomized) O(nµ(n log n) + ρ(n)(log n)) = Õ(n2 log2 n)
Reconstruction complexity B1

(with lifting the factorization) O(nm(n)(log n)µ(log n)) = Õ(n2 log3 n)

on the word complexity of an operation in Zt where log t = O(log(αqs)). Then
the bounds (a) − (f) in Theorem 9.1 turn into the following word complexity
estimates:

a) Õ(n3)

b) Õ(m(n) log n)

c) Õ((vQ + vM)h)

d) Õ(nρ(d
λ
))

e) Õ(hm(n) log n + nµ(d
λ
))

f) Õ(log(1
ε (nµ(d

λ) + ρ(d
λ) + m(n)))

In part (f), we avoid using Lemma 8.2 and operate with longer numbers, whose
length is closer to λ.
The above estimate show the decrease by roughly the factor of λ versus the bit
complexity estimates in Theorem 9.1. Furthermore, the bounds in parts c) and
e) decrease as s increases, and we maximize s when we ensure the saturated
initialization.

18

10 Degeneration in the rings Zm

10.1 The probability of degeneration in Zpv for a random
prime p

For a fixed nonsingular matrix M , the condition (5.2) for nondegeneration de-
pends on the prime p. Let us assume a random prime p, fix its power v, and
estimate the probability that pv divides detM , recalling that sn(M) is a divisor
of detM .

We begin with some definitions and basic lemmas. Hereafter ln = loge stands
for the natural logarithms (with the base e = 2.718281 . . .) and π(y) denotes
the number of primes not exceeding y.

Lemma 10.1. (See also (10.4).) If y > 114, then 1 < π(y)
y lny < 1.25.

Proof. See Rosser and Schoenfeld 1962 [RS62].

Lemma 10.2. Let y ≥ 114, then π(y) − π(y
20) > (1/β̃) y

ln y for

β̃ =
1

1 − α̃
= 1.2049303 . . . , α̃ =

ln 114
16 ln5.7

= 0.17007650 (10.1)

Proof. By Lemma 10.1, we have π(y) − π(y
20

) > y
ln y

− 1.25y
20 ln(y/20)

. Observe that
ln(y/20)

ln y is monotone increasing as y grows. So 1.25
20 ln(y/20) ≤ α̃

ln y for α̃ in (10.1)
and y ≥ 114. Combine the above estimates.

Lemma 10.3. (Cf. Corollary 7.8.2 in [P01].) Let y, v, h, and k be positive
integers such that

y ≥ 114, 0 < h1/k ≤ y/20. (10.2)

Let p be a random prime selected in the range (y/20, y] under the uniform prob-
ability distribution. Then Probability(h mod pv = 0) < β̃k ln y

vy for β̃ in (10.1).

Proof. Suppose that in the above range there are exactly l distinct primes whose
v-th powers divide h. Then the product of these powers also divides h, and
therefore we have h ≥ (y

20)vl because each of the l primes lying in the range
[y/20, y] is at least as large as y

20 . On the other hand, h ≤ (y
20)k by assumption.

Therefore, vl ≤ k, that is, l ≤ k/v. Compare the latter upper bound on l with
the lower bound in Lemma 10.2 on the overall number of primes in the range
(y
20 , y].

Theorem 10.1. (Cf. Corollary 7.8.3 in [P01].) Suppose that ξ is a positive
number, v is a positive integer, M ∈ Zn×n is nonsingular, and a prime p is
randomly sampled from the range (y/20, y] under the uniform probability distri-
bution in this range where y = nξ ln |M |

vε ≥ 114 and ξ = 16 ln 114
16 ln 5.7−ln 114 = 16α̃β̃ =

3.278885 . . . for α̃ and β̃ in (10.1). Then we have

P = Probability((det M) mod pv = 0) < ε. (10.3)

19

Proof. Write h = | detM |, k = n ln |M |
ln(y/20), so that h ≤ |M |n and k ln y

20 ≥ lnh,
which implies (10.2). Apply Lemma 10.3 and deduce that

P <
β̃k lny

uy
=

β̃n ln |M |
v ln(y/20)

lny

y
=

vεβ̃n ln |M |
vn ln |M |

ln y

ξ ln(y/20)
=

εβ̃ ln y

δ ln(y/20)
.

Note that
ln y

ln(y/20)
≤ ln 114

ln5.7
for y ≥ 114. Therefore

P < ε
β̃ ln 114
ξ ln 5.7

=
16α̃β̃

ξ
ε = ε.

To extend the above results to smaller y, one may exploit the known exten-
sions of Lemma 10.1, e.g.,

1 +
1

2 lny
< π(y)

ln y

y
< 1 +

3
2 lny

(10.4)

for y ≥ 59 [GG03, Theorem 18.7]. Refined estimates for π(y) can be found in
Karatsuba 1990 [K90].

Let us extend Theorem 10.1 to any integer q instead of q = pv. We rely on
the following observation.

Lemma 10.4. Let p and q be coprime and let u, v, and h be three positive
integers. Then puqv divides h if and only if both pu and qv divide h.

Corollary 10.1. Let p1, . . ., ph be h distinct primes sampled randomly and
independently in the ranges (yi/20, yi], i = 1, . . . , h, respectively, under the uni-
form probability distribution. Here yi = ξn

2uiε
ln |M | ≥ 114 for ξ in Theorem 10.1

and i = 1, . . . , h; the matrix M ∈ Zn×n is nonsingular; v1, . . . , vh are positive
integers, and

2h− 2 ≤ yi

β̃ lnyi

(10.5)

for β̃ in Lemma 10.2 and for all i. Then we have

P = Probability(pv1
1 · · · pvh

h divides det M) ≤ εh.

Proof. Corollary 10.1 follows from Lemma 10.4 and Theorem 10.1 for y = yi

and v = 2vi. The primes p1, . . . , pi−1 are excluded from the range (yi/20, yi]
for every i; this decreases the overall number of primes in this range but less
than by twice for i ≤ h because of (10.5) and Lemma 10.2. The effect of this
decrease on the probability estimates is overweighed by the increase of v from
vi to 2vi.

Remark 10.1. A random integer matrix M is strongly nonsingular in Rn×n
q

for q = pv or q = pv1
1 · · ·pvk

k with a probability which is within the factor of n
from the respective bounds in Theorem 10.1 and Corollary 10.1.

20

10.2 The probability of degeneration for a fixed p

Suppose that for a fixed basic prime p, a random integer matrix M , and two
appropriate integers q = pv and s = pu, we wish to estimate the probability that
our computations can be performed with a precision within the word length λ.

Studying computations with general matrices we are guided by the follow-
ing analytic estimate by Brent and McKay 1987 for the proportion of singular
matrices in Zn×n

pu . (They also supply similar estimates in Zn×n
q for any integer

q > 1.)

Theorem 10.2. [BMK87, Corollary 2.2]. Write Pk(r) = (1−r)(1−r2) · · · (1−
rk), r = 1/p. Then the nonsingular matrices make up the fraction Pn+u−1(r)

Pu−1(r) of
all matrices in Zn×n

pu .

Brent and McKay show specific estimates for their ratios as n → ∞ and
q = 1, . . . , 16. Our Table 10.4 in Section 10.4 shows some statistics of nonsin-
gularity of random integer matrices in Zq, for n = 5, 10, 50, 100, q = 2g, and
g = 0, 1, . . . , 20.

They are in reasonable agreement with the analytic estimates in [BMK87].
For Toeplitz versus general matrices M , the known analytic estimates and

the results of our experiments in Tables 10.1–10.3 in Section 10.4 show a little
higher proportion of nonsingular matrices in Zn×n

q . In Daykin 1960 [D60] and
Kaltofen and Lobo 1996 [KL96] the case of a prime q is studied.

Theorem 10.3. For any pair of a prime p and a positive integer n, the fraction
of 1/p of all Toeplitz matrices in Zn×n

p are singular.

We wish to point out a corollary of independent interest.

Corollary 10.2. For any pair of a prime p and a positive integer n, consider
the space of the pairs of polynomials u(x) and v(x) over Zp such that deg v(x) =
n, deg u(x) < n. Then the pairs of coprime polynomials make up a fraction of
1 − 1/p in this space.

Proof. The corollary follows by combining the latter theorem with Proposition
9.1 on page 159 in the book [BP94]. This proposition defines a bijection map
of all pairs (h, H) of h ∈ Zp and nonsingular Hankel matrices H in Zn×n

p to
all pairs of coprime polynomials u(x) and v(x) over Zp where v(x) is monic,
deg v(x) = n, and deg u(x) < n. Combine the bijection J : H ↔ T = HT with
Theorem 10.3 to count the number of pairs (h, H) where H is nonsingular in
Zn×n

p and extend this count to the number of pairs of coprime polynomials u(x)
and v(x) over Zp to obtain the corollary.

Theorem 10.4. [KL96, Theorem 5]. For any pair of a prime p and a natural
n, the strongly nonsingular matrices (that is, nonsingular with all their leading
principal submatrices) make up a fraction of (1 − 1

p)(1 − p−1
p2)n−1 in the space

of all Toeplitz matrices in Zn×n
p .

21

We know of no extensions of the above analytic estimates to the rings Zq for
any integer q > 1. Our next results may partly fill this void.

Theorem 10.5. The fraction of at least 1− n/q Toeplitz matrices in Zn×n
q are

nonsingular.

Proof. There are q2n pairs of univariate polynomials u, v over Zq where deg u <
n, deg v = n, v is monic. These polynomials are not coprime if and only if
their resultant vanishes in Zq. In virtue of the celebrated lemma in Demillo
and Lipton 1978 [DL78] (also in Zippel 1979 [Z79] and Schwartz 1980 [S80]),
this occurs for the fraction of at most n/q pairs because the resultant is a
polynomial of degree of at most n in the coefficients of u and v. This means
at least (q − n)q2n−1 pairs of coprime polynomials u and v over Zq. Due to
the bijection in Proposition 9.1 on page 159 in [BP94], already cited in the
proof of Corollary 10.2, we have as many pairs (h, H) in (Zq, Z

n×n
q) where H

is a nonsingular Hankel matrix. Therefore, there are at least (q − n)q2n−2

nonsingular matrices among a total of q2n−1 Hankel matrices in Zn×n
q . The

bijection J : H ↔ T = HJ extends this count to Toeplitz matrices.

Corollary 10.3. The fraction of at least 1− (n+1)n
2q

Toeplitz matrices in Zn×n
q

are strongly nonsingular.

Proof. There are at most iq2n−2 Toeplitz matrices in Zn×n
q with singular i × i

leading principal submatrix for i = 1, . . . , n, due to Theorem 10.5. This makes
up at most

∑n
i=1 iq2n−2 = q2n−2n(n + 1)/2 submatrices which are not strongly

nonsingular in the set of all q2n−1 Toeplitz matrices in Zn×n
q .

According to the latter results as well as the results of our experimental tests
for nonsingularity of random integer Toeplitz and general matrices in Zn×n

qw for
q = 2, w ≤ 20, and n ≤ 100 presented in Section 10.4, the transition to the
rings Zpw for larger pw keeps the chances for the degeneration quite remote on
the average.

10.3 Additive perturbations counter degeneracies

Suppose we have the rare case where, for a fixed triple of λ, M and p, one cannot
perform the generalized lifting by computing within the word size precision
because (detM) mod pv = 0 for all v ≤ λ. Suppose we prefer not to change p.
Should we necessarily give up lifting? Not right away, because we may usually
reduce the solution of the linear system Mx = b to solving a linear system with
the coefficient matrix of the form

Mi = M − UiVi. (10.6)

Here Ui in Zn×i
a and Vi in Zi×n

b are random general (or random Toeplitz) ma-
trices for two integers

b ≥ 2n2 log(n|M |), a ≥ 21n2b, (10.7)

22

and a relatively small i = O(1).
Namely, we fix two positive integers i+ and j+ and recursively apply our

lifting initialization algorithms to the matrices Mi,j = M − Ui,jVi,j for random
matrices Ui,j and Vi,j for i = 1, j = 1, . . . , j+; i = 2, j = 1, . . . , j+; . . . , and
so on, until we either yield the desired initialization for Mi = Mi,j and some
i ≤ i+, j ≤ j+ by computing with the word precision λ or reach i = i+ + 1. In
the latter case, the algorithm outputs FAILURE. In the former case we compute
the vector M−1b for a fixed integer vector b based on (10.6) and the Sherman–
Morrison–Woodbury formula [GL96, page 50],

M−1 = (Mi + UiVi)−1 = M−1
i − M−1

i Ui(Ii + ViM
−1
i Ui)−1ViM

−1
i . (10.8)

The formula holds provided that the matrices Mi, M , and

Wi = Ii + ViM
−1
i Ui

are nonsingular for the pair of n × i matrices Ui and V T
i . We refer to these

computations as Algorithm 10.1.
We first apply the generalized lifting to the vector qM−1

i b and to every
column of the n× i matrix qM−1

i Ui to obtain these vector and columns in Zqsh .
Then we compute the vector

qM−1b mod (qsh) = ((I − qM−1
i Ui(qI + qViM

−1
i Ui)−1Vi)qM−1

i b) mod (qsh),

and reconstruct the rational vector M−1b.
For random matrices M in Zn×n, the algorithm is likely to succeed already

for reasonably small integers i+ and j+ due to the two following theorems in
[EGV00], which relate this likelihood to the choice of the bounds i+ and j+.

Theorem 10.6. [EGV00, Theorem 3.8]. For two positive integers i and n,
i < n, a nonsingular matrix M in Zn×n, and sufficiently large integers a and
b satisfying (10.7), let Ui = Ui,j and V T

i = V T
i,j denote the pairs of random

matrices in Zn×i
a for j = 1, 2, . . . , 15, and in Zn×i

b for j = 16, and let the
matrices Mi = Mi,j be defined by (10.6). Then with a probability of at least 1/2,
we have sn−i(M) = gcd(sn(M), gcd16

j=1(sn(Mi,j))). To increase the probability
bound above 1 − ε for a fixed positive ε, it is sufficient to include j+ matrices
Mi,j , j = 1, . . . , j+, for every i and for a sufficiently large j+ in O(log(1/ε)).

Theorem 10.7. [EGV00, Theorem 6.2]. For a fixed pair of integers λ > 0
and η, let the entries of an n×n matrix M be independently sampled under the
uniform probability distribution in a set of integers η, η +1, . . . , η +λ− 1. Then
Probability(sn−j(M) > 1) ≤ λ−n + 9(2

3
)j−1 + n3

λj−1 .

Due to Theorems 10.6 and 10.7 (and also according to the well known statis-
tics), we have with a high probability that

gcd
(
sn(M), gcdj+

j=1(sn(Mi,j))
)

= 1

23

for a random n × n integer matrix M , the matrices Mi,j defined above, some
i ≤ i+, and reasonably small integers i+ and j+. In fact we just need a weaker
property that the above gcd is likely to be coprime with a fixed prime p, and
this property has been statistically observed in our experiments with random
Toeplitz matrices for p = 2 (see the next subsection).

10.4 Experimental computations: how frequently is a ran-
dom integer Toeplitz matrix non-singular modulo a
fixed power of two?

In out tests we have randomly generated an n×n Toeplitz matrix M = (ti−j)i,j.
Its entries t1−n, . . . , tn−1 have been chosen independently of each other under
the uniform random distribution on Zq for q = 2w and for a positive integer w.
The first column in each of Tables 10.1–10.3 shows how frequently in our tests
a random n × n integer Toeplitz matrix M was nonsingular in Zq.

Whenever the test showed singularity, we repeated the test recursively (up to
at most four times), each time adding the outer product of two random vectors
to the input matrix. The (1+i)-th column of each table, for i = 0, 1, 2, 3, 4,
shows for how many out of 100,000 samples the results were positive for the
matrices M − UjV

T
j , for some j ≤ i where Uj , V

T
j ∈ Zn×l

q , M ∈ Zn×n
q , q = 2w.

These data should motivate using Algorithm 10.1 for smaller i+ and j+. They
should be compared with similar statistics for general, tridiagonal, and five-
diagonal matrices. Table 10.4 shows such statistics, although without small
rank perturbations. According to our tests in the case where q = 2w, the
degeneration is more likely for five-diagonal than general matrices, and is even
more likely for tridiagonal matrices, but even for the latter matrices it is quite
rare for larger w. We have also observed for tridiagonal matrices that the
degeneration is substantially less likely where we shift from q = 2w to q = 5w.

24

Table 10.1: Number of times the matrix M + Ai for a random 20× 20 Toeplitz
matrix M and a random 50 × 50 matrix A of rank at most i is nonsingular in
the ring Zq for q = 2w out of 100,000 samples

w\i 0 1 2 3 4
1 50173 59450 66672 72514 77452
2 68814 80808 87785 92256 95133
3 82971 92311 96197 98164 99136
4 90559 96899 98862 99567 99852
5 95079 98809 99671 99907 99973
6 97333 99557 99907 99981 99997
7 98643 99859 99973 99998 100000
8 99302 99948 99993 99999 100000
9 99639 99983 100000 100000 100000

10 99816 99997 100000 100000 100000
11 99903 99999 100000 100000 100000
12 99955 100000 100000 100000 100000

Table 10.2: Number of times the matrix M + Ai for a random 50× 50 Toeplitz
matrix M and a random 50 × 50 matrix A of rank at most i is nonsingular in
the ring Zq for q = 2w out of 100,000 samples

w\i 0 1 2 3 4
1 50054 59383 66661 72665 77581
2 68781 80792 87812 92341 95151
3 82842 92263 96282 98203 99139
4 90507 96868 98877 99589 99844
5 95132 98846 99695 99915 99976
6 97440 99597 99912 99981 99994
7 98667 99857 99972 99994 99998
8 99315 99953 99989 99997 99999
9 99653 99985 100000 100000 100000

10 99829 99997 100000 100000 100000
11 99917 99999 100000 100000 100000
12 99967 100000 100000 100000 100000

25

Table 10.3: Number of times the matrix M +Ai for a random 100×100 Toeplitz
matrix M and a random 100 × 100 matrix A of rank at most i is nonsingular
in Zq for q = 2w out of 100,000 samples

0 1 2 3 4
1 50170 59672 66652 72460 77368
2 68969 80960 87833 92188 95130
3 82799 92261 96240 98128 99122
4 90498 96935 98884 99570 99845
5 94975 98837 99662 99893 99971
6 97255 99547 99898 99970 99991
7 98591 99827 99966 99994 99998
8 99249 99931 99989 99998 99998
9 99616 99976 99997 100000 100000

10 99804 99994 100000 100000 100000
11 99898 99998 100000 100000 100000
12 99948 100000 100000 100000 100000

Table 10.4: Number of times a random n × n general matrix M is nonsingular
in the ring Zq out of 100, 000 samples for q = 2w

w n = 5 n = 10 n = 50 n = 100
w = 0 29,986 28,781 28,940 28,781
w = 1 58,637 57,679 57,884 57,782
w = 2 77,650 76,817 77,047 77,104
w = 3 88,399 87,916 88,000 88,080
w = 4 94,102 93,888 93,943 93,921
w = 5 97,046 96,911 96,963 96,937
w = 6 98,519 98,414 98,483 98,452
w = 7 99,245 99,180 99,212 99,235
w = 8 99,634 99,598 99,590 99,620
w = 9 99,820 99,791 99,783 99,806
w = 10 99,911 99,894 99,892 99,899
w = 11 99,956 99,957 99,950 99,953
w = 12 99,977 99,977 99,978 99,980
w = 13 99,985 99,992 99,991 99,992
w = 14 99,992 99,996 99,993 99,995
w = 15 99,993 99,997 99,996 99,998
w = 16 99,995 99,999 99,999 99,998
w = 17 99,998 99,999 99,999 99,998
w = 18 99,999 100,000 99,999 99,999
w = 19 99,999 100,000 100,000 100,000
w = 20 99,999 100,000 100,000 100,000

26

Table 10.5: Number of times a random n×n tridiagonal matrix M is nonsingular
in the ring Zq out of 1, 000, 000 samples for q = 2w

w n = 5 n = 10 n = 50 n = 100
w = 1 117356 17514 0 0
w = 2 320625 75599 0 0
w = 3 531878 182052 1 0
w = 4 703335 324629 4 0
w = 5 823672 478421 17 0
w = 6 899773 620734 64 0
w = 7 945210 738216 188 0
w = 8 970459 828122 494 0
w = 9 984437 891854 1324 0
w = 10 991892 934290 3043 0
w = 11 995862 961334 6210 0
w = 12 997903 978026 11855 0
w = 13 998940 987761 20951 0
w = 14 999455 993236 34980 1
w = 15 999719 996395 54784 1
w = 16 999859 998089 82128 7
w = 17 999920 999012 117742 13
w = 18 999962 999515 161178 22
w = 19 999980 999743 213241 37
w = 20 999988 999866 271703 72
w = 21 999996 999947 336451 138
w = 22 999999 999973 404624 289
w = 23 999999 999986 474595 520
w = 24 1000000 999992 543974 941
w = 25 999996 610648 1601
w = 26 999996 673129 2629
w = 27 999999 730268 4193
w = 28 1000000 780932 6542
w = 29 825245 9787
w = 30 862955 14404
w = 31 893896 20884
w = 32 919407 29409

27

Table 10.6: Number of times a random n×n tridiagonal matrix M is nonsingular
in the ring Zq out of 1, 000, 000 samples for q = 5w

w n = 5 n = 10 n = 50 n = 100
w = 1 629193 453573 33036 1319
w = 2 902825 795859 142767 9536
w = 3 978126 939323 326520 36124
w = 4 995314 984670 537288 94676
w = 5 999063 996494 720272 192946
w = 6 999808 999263 849531 324563
w = 7 999964 999840 927780 473054
w = 8 999992 999968 968268 618013
w = 9 999997 999991 987267 741988
w = 10 1000000 999999 995305 837468
w = 11 1000000 1000000 998419 904365
w = 12 1000000 1000000 999479 947171
w = 13 1000000 1000000 999829 972681

Table 10.7: Number of times a random n×n tridiagonal matrix M is nonsingular
in the ring Zq out of 1, 000, 000 samples for q = 10w

w n = 5 n = 10 n = 50 n = 100
w = 1 673132 462691 33063 1286
w = 2 934076 811362 142940 9469
w = 3 989846 950586 326682 36115
w = 4 998658 989599 537027 95083
w = 5 999834 998176 720163 193223
w = 6 999981 999689 850071 325041
w = 7 999997 999950 927627 473759
w = 8 1000000 999991 968218 618106
w = 9 1000000 999998 987183 742050

28

Table 10.8: Number of times a random n×n five-diagonal matrix M is nonsin-
gular in the ring Zq out of 1, 000, 000 samples for q = 2w

w n = 5 n = 10 n = 50 n = 100
w = 1 291205 138605 407 0
w = 2 554299 353025 3189 1
w = 3 744030 560876 12666 28
w = 4 860894 725098 35279 131
w = 5 926953 837646 77277 534
w = 6 962364 908618 141802 1617
w = 7 980846 950327 227489 4233
w = 8 990280 973763 327674 9452
w = 9 995111 986273 433370 19223
w = 10 997602 992932 537207 35864
w = 11 998787 996416 631600 61342
w = 12 999400 998230 713344 97265
w = 13 999694 999130 781426 144238
w = 14 999861 999545 836186 201805
w = 15 999936 999768 878746 268132
w = 16 999969 999880 911666 340560
w = 17 999984 999938 936426 415820
w = 18 999993 999968 955325 490841
w = 19 999996 999986 969282 562743
w = 20 999998 999994 979171 628840
w = 21 999999 999999 986186 687759
w = 22 1000000 1000000 991041 738768
w = 23 994296 782062
w = 24 996454 818466
w = 25 997802 849199
w = 26 998675 874827
w = 27 999193 896088
w = 28 999547 914020
w = 29 999746 929000
w = 30 999855 942334
w = 31 999914 953521
w = 32 999957 962893

29

Analysis of the results of the experiments

For fixed q and n, we assume that M is singular over Zq with a probability p.
Next we estimate p. Let x be a random variable such that

x =

{
1, det M = 0 mod q;
0, det M �= 0 mod q.

Let x1, . . . , xm be the observed values of x. By the Central Limit Theorem,

lim
m→∞

(x1 + . . . + xm) − mp√
mp(1 − p)

= N(0, 1)

where N(0, 1) is the standard normal probability distribution. Therefore, a
confidence interval of probability 1 − α for p is(

x̄ − Zα/2

√
x̄(1 − x̄)/m, x̄ + Zα/2

√
x̄(1 − x̄)/m

)
where x̄ = 1

m
(x1 + . . . + xm), Zα is defined by Probability(N(0, 1) > Zα) = α.

Example 10.1. For g = 8, n = 50, we are “99.9%” sure that

• Probability(Toeplitz matrix M is non-singular) = 0.993± 0.001;

• Probability(Toeplitz matrix M is strongly non-singular) = 0.731± 0.005;

• Probability(general matrix M is non-singular) = 0.992± 0.001;

• Probability(general matrix M is strongly non-singular) = 0.688± 0.005.

11 Demonstration of algorithms with examples

Let us demonstrate the work of Algorithms 3.1 and 10.1 with simple examples.

Example 11.1. M = (2 1
3 2), b =

(
3
4

)
. So x =

(
2
−1

)
. By applying Algorithm

3.1 for q = 1, s = 2, r(0) = b, we successively compute Q = (0 1
1 0), u(0) =

(
0
1

)
,

r(1) =
(
1
1

)
, u(1) =

(
1
1

)
, r(2) =

(−1
−2

)
, u(2) =

(
0
1

)
, . . . to define x(3) = 2x mod 8 =(

0
1

)
+ 2

(
1
1

)
+ 4

(
0
1

)
.

Example 11.2. M = (4 1
6 2), b =

(
3
4

)
, so x =

(
1
−1

)
.

a) By applying Algorithm 3.1 for q = s = 2, r(0) = b, we successively compute
Q = (0 1

2 0), u(0) =
(
0
2

)
, r(1) =

(
1
1

)
, u(1) =

(
1
2

)
, r(2) =

(−1
−2

)
, u(2) =

(
2
2

)
,

So, we have x(3) = 2x mod 8 =
(
0
2

)
+2

(
1
2

)
+4

(
2
2

)
, (Mx(h)−2b) mod 2h+1 =

0 for h = 1, 2, 3.

30

b) Alternatively, we observe that s2(M) = 2, s1(M) = 1 and apply Algo-
rithm 10.1 to M1 = M − U1V1, U1 = V T

1 =
(
1
1

)
, and b =

(
3
4

)
, so

that M1 = (3 0
5 1), M−1

1 = (13 0−53 1). Due to the Sherman–Morrison–
Woodbury formula (10.8), this reduces the computation of x to the triple
application of Algorithm 3.1 for q = 1, s = 2 with the right-hand-side
vectors b =

(
3
4

)
, b(1) =

(
1
1

)
, and b(2) = (1/3) (1 1

1 1)M−1
1

(
3
4

)
, respectively.

We obtain M−1
1

(
3
4

)
=

(
1
−1

)
, M−1

1

(
1
1

)
=

(1/3
−2/3

)
. Therefore, b(2) = 0,

M−1
1 b(2) = 0, M−1b = M−1

1 b =
(

1
−1

)
.

Example 11.3. M = (32 2
48 4), b =

(
24
32

)
. So, x =

(
1
−4

)
, s2(M) = 32, s1(M) = 2.

We may

a) apply Algorithm 3.1 to M and b for q = 3, s = 2, or

b) apply Algorithm 10.1 to M1 = M − U1V1, U1 =
(
1
1

)
, V T

1 =
(
2
2

)
, M1 =

(30 0
46 2). For solving the equations M−1

1 b(i), i = 1, 2, 3 (cf. Example 11.2
b), apply Algorithm 3.1 for q = s = 2.

12 Further extensions and a discussion

12.1 Extension of the class of structured matrices

Our lifting and rational reconstruction algorithms can be applied effectively to
any integer or rational input matrix provided it is defined and nonsingular in
Zq and its precomputed inverse and itself can be multiplied by vectors fast.
Toeplitz/Hankel-like, Vandermonde-like, Pick and Cauchy-like, and sparse and
structured (particularly banded) matrices seem to be obvious examples. The
same initialization and rational reconstruction algorithms as well as the proba-
bility estimates in Section 10.1 for degeneration in the case of using a random
prime can be applied to all these matrices as well. See [P01, Chapter 5] and
[PSA95] on the extension of the MBA algorithm to these matrices.

To apply Algorithm 3.1 to banded matrices M we just need to precompute
(a generator for) the matrix Q satisfying (2.2) or just to define a black box
for its fast multiplication by a vector. Besides the MBA algorithm, both block
cyclic reduction (see Heller 1976 [H76]) and Gaussian elimination enables us to
compute M−1v fast even with no preconditioning if M is a banded and strongly
nonsingular. Here, Gaussian elimination is slightly faster than the other algo-
rithms; pre-computing the LU factors of M yields a further small acceleration.
If M is nonsingular in Zp but not strongly non-singular, we may alternatively
apply the well-known inversion formulae in Asplund 1959 [A59], Ikebe 1979
[I79], Barrett 1979 [B79], and Barrett and Feinsilver 1981 [BF81], which enable
preprocessing for fast multiplication by a vector of the inverse matrix Q satis-
fying (2.2). For matrices M having a bandwidth in O(1), multiplication of the
matrix Q by a vector in linear arithmetic time using linear memory space can be
performed based on the compressed representation of this matrix. For a large
and important class of sparse linear systems (arising from discretization of the

31

PDE’s), appropriate triangular factorization into sparse factors is defined with
the techniques of generalized nested dissection in Gilbert and Hafsteinsson 1990
[GH90] and Gilbert and Schreiber 1992 [GS92]. This factorization provides the
preconditioning for the subsequent rapid multiplication of the matrix M−1 by
a vector.

Our lifting algorithm can also be applied to linear systems of equations with
the semi-separable plus diagonal matrices, which generalize banded matrices.
The preconditioning can rely on the inversion formulae in Eidelman and Gohberg
1997 [EG97].

Our probability estimates for the degeneration of general and Toeplitz ma-
trices in the case of a fixed prime are not easily extended to the sparse, banded,
and other structured matrices. This is an open research area. Here are our
initial comments.

Recall that det V =
∏

i>j(xi −xj) for a Vandermonde matrix V = (xj
i)

n−1
i,j=0

and det C =
∏

i<j(si − sj)(ti − tj)/
∏

i,j(si − tj) for a Cauchy matrix C =
(1

si−tj
)n−1
i,j=0. Therefore Vandermonde (resp. Cauchy) matrices are nonsingular

(resp. defined and nonsingular) if and only if x0, . . . , xn−1 (resp. s0, . . . , sn−1,
t0, . . . , tn−1) are distinct, and if so, they are also strongly nonsingular. For ran-
dom choice of the parameters xk, sk, tk, the degeneration is quite likely for these
matrices in Zpw for smaller p, e.g., p = 2, and w = o(n). We may try to avoid the
problem by applying the displacement transformations to the Toeplitz/Hankel-
like matrices [P90], [P01], [CP04]. These transformations produce matrices with
real or complex entries, and so we should truncate these entries and scale the
matrices to arrive at an integral input. The same recipe can be applied to
Vandermonde-like, Pick, and other Cauchy-like matrices.

The results of our experimental tests of the singularity of random tridiagonal
and five-diagonal integer matrices reported in our Tables 10.5 – 10.8 show that
singularity modulo pw is a little more likely than for the Toeplitz and general
matrices, particularly in the case of p = 2 and tridiagonal input matrices.

12.2 Computing the determinant and Smith’s factors of
structured and general matrices

We have already cited the application of fast algorithms for solving a block
Hankel linear system to the computation of the determinant of a general matrix.
The MBA algorithm outputs the determinant of an input matrix M as by-
product and also certifies its correctness at a low cost. Since the resultant of
two univariate polynomials is a Toeplitz-like matrix, we yield the resultant as a
special case. The application of the MBA algorithm implies the increase of the
overall Las Vegas complexity bounds by the factor of logn versus our solution
of a linear system with lifting. To avoid this increase and also to compute the
Smith factors of M , let us recall the randomized Monte Carlo approach proposed
in [EGV00] for general input matrices and adapt it to the Toeplitz/Hankel-like
case.

In [EGV00], computing Smith’s factors and the determinant of a general

32

integer matrix M is reduced to solving a small number of linear systems Mxk =
bk for random vectors bk. The reduction is immediately extended to a Toeplitz/
Hankel-like matrix M . Here are the resulting bit cost estimates.

Theorem 12.1. Allow output errors with a probability of at most ν > 0, and
also allow an additional factor of log(1/ν) in all asymptotic estimates in Theo-
rem 9.1 for the numbers of random bits and bit operations. Then the resulting
(increased) estimates apply to the computation of Smith’s leading factor sn(M)
of an n×n integer Toeplitz/Hankel-like matrix M ; the estimates do not include
the correctness verification cost. Up to increasing the bit operation complexity
bounds by the factor of k and sampling O(kn log n) additional random bits, the
same bounds cover the computation of the next k distinct leading Smith’s fac-
tors of M ; with the l-fold increase, the bit operation cost bounds of Theorem
9.1 cover the computation of all Smith’s factors of M and detM (without cor-
rection verification) where l is the overall number of distinct Smith’s factors,
l ≤ √

log det |M | ≤ √
n log |M | for every matrix M ∈ Zn×n.

The theorem is supported by the algorithm in [EGV00] complemented by
the smaller complexity bounds for solving Toeplitz (rather than general) linear
systems, given by Theorem 9.1. We recall a basic lemma in [EGV00].

Lemma 12.1. Let b be a random vector in Zn. Then δ in (5.2) divides sn =
sn(M), and furthermore, for any prime p, we have

Probability(ordp(δ) < ordp(sn)) ≤ max{1/η, 1/p}.

Proof. The lemma follows from Theorem 2 in [ABM99], but here is a simple
direct proof. We have xi =

∑
j(−1)i+jdi,jbj/ detM , sn = |(detM)/d|, d =

gcd(di,j)i,j for di,j in Definition 2.1, and b = (bj)n
j=1. Write hi,j = ordp(di,j),

h = ordp(d) = mini,j di,j. We have h = ordp(du,v) for some u, v; w.l.o.g., let
u = v = 0. Furthermore, write d̄i,j = di,j/d for all i and j. Then it follows
that snx

(k)
0 = d̄0,0b

(k)
0 + r, where r =

∑n−1
j=1 (−1)j d̄0,jb

(k)
j ∈ Z. It remains to

recall that ordp(d̄0,0) = 0 and b
(k)
0 is randomly sampled from Zη, independently

of d̄0,0.

Finally, our accelerated solution of block Toeplitz/Hankel linear system can
be incorporated into the recent algorithm in [KV01], [KV04] for computing
the value and sign of the determinant and Smith’s factors of a general matrix.
Moreover, this stage is the bottleneck for practical application of the algorithm,
and the lifting removes this obstable. We may slightly accelerate the solution
in [P04a] by applying our algorithm directly to the block Hankel input, rather
than shifting to Hankel–like matrices.

12.3 Further topics

The list of the remaining open problems includes the extension of our theorems
on and statistics of degeneration in Zpw for a fixed p, in particular the extension

33

of the results in Section 10.2 from Toeplitz to Toeplitz-like, banded, and other
structured and/or sparse matrices and theoretical support for our data in Section
10.4.

In the case where the integral input values are obtained via truncation of
real and complex values followed by scaling, it is interesting to find out how
variations of the truncation policy and small input perturbations affect the
nonsingularity in Zq.

It is also important to refine our codes for our algorithms in the rings Zqs

for s = 2u and q = 2v and to experiment with the parameters involved, e.g., a
and m in our initialization Algorithms A.1 and A.2 in the Appendix. Another
important direction is the extension of these codes to computing polynomial gcd,
lcm, etc. and their experimental comparison with the alternative computations
in Zp for larger random primes p.

Should we expect to see a further asymptotic decrease of our bit complex-
ity estimates? The factor of m(n) in them comes from our basic operation of
Toeplitz matrix-by-vector multiplication or equivalently polynomial multiplica-
tion. It is unlikely that any efficient algebraic computation scheme for our tasks
could dispense with this operation. (Try to imagine such a scheme, e.g., for
polynomial gcd.) This informal argument suggests that improvement of our bit
complexity bounds by the factor of m(n)/n is unlikely. Our basic operation can
be viewed as multiplication of polynomials with bounded integer coefficients,
and therefore the binary segmentation technique of Fischer and Paterson 1974
[FP74] (cf. [BP94, Section 3.9]) could yield theoretical acceleration by the fac-
tor of (log logn) log log log n. The resulting complexity bound in O(nµ(n log n)),
however, is not practically attractive unless n is huge. Indeed the overhead con-
stant Css is large, whereas with Cclass and Ck in (2.4) the overall bit complexity
bounds become as large as nα for α > 2.5.

34

Appendix

A Alternative initializations of the generalized

Toeplitz–Hensel’s lifting modulo the power

of a prime

Let us specify and analyze two alternative algorithms for the initialization of the
generalized lifting for factor-q nonsingular Toeplitz linear systems. We first show
these algorithms for solving modulo qs a linear system Mx = qf . The integers
q and s, both the powers of a fixed prime p, are computed in the process of
performing the algorithms. We estimate the bit complexity of these algorithms
and extend them to inverting the matrix Q in (2.2). Finally, we compare these
algorithms with the MBA initialization in Section 5.2.

Given a prime p, its power m = pb, a matrix M , and a vector f = (fi)i,
both of our algorithms first compute the rational vector M−1

0 f for the matrix
M0 = aM + mI and a fixed integer a coprime with m (a = 1 in our second
algorithm). At the final stage of the algorithms, we extend this to computing
the vector qM−1f mod (qs) for appropriate q and s, both the powers of p.

A.1 Step 1: solving a linear system with
modular continuation

Algorithm A.1. Initialization of Toeplitz–Hensel’s lifting with modular con-
tinuation.

Input: A nonsingular matrix M ∈ Zn×n, a vector f ∈ Zn, a prime p, and two
integers m = pb for a positive integer b and λ > 0, the length of a computer
word. (If this length is not bounded, write λ = ∞.)

Output: FAILURE if (det M) mod (qs) = 0 or two positive integers, q and s,
both being the powers of p such that qs < 2λ, and the vector y = (qM−1f) mod
(qs).

Initialization: Choose an integer a > 1 coprime with p and such that

γ+ = β(f) + 2 (m + aα(M))n < 2λ. (A.1)

(We assume that the values of m and a are sufficiently small to have this bound.)

Computations:

1. Compute the integer r = m−1 mod a and the matrix M0 = mI +aM ; note
that Q = M−1

0 mod a = rI.

35

2. Let α = α(M0), β = β(f) and choose h in (7.2) or (8.5) to support deter-
ministic or randomized recovery of the vector M−1

0 f according to Sections
7 or 8, respectively. Specifically, in the deterministic case we write

h = 1 + 	loga(2((a|M |+ m)
√

n)2n−1nβ(f)
. (A.2)

Apply Algorithm 3.1 (for q = 1, M replaced by M0, b by f , and s by a)
to compute the vector M−1

0 f mod ah; recover the rational vector M−1
0 f .

3. Compute d = maxj ordm(δ((M−1
0 f)j)). If 2d ≤ b, output the integers

q = pd and s = pb−2d = m/q2; compute and output the vector

y = (aqM−1
0 f) mod (qs) = (qM−1f) mod (qs).

Otherwise output FAILURE.

Correctness of the algorithm follows because, as soon as we yield the equation
q2s = m at Stage 3, we have M0/q = (m/q)I + (a/q)M = qsI + (a/q)M =
(a/q)M mod (qs), which implies the desired equations

My = aqMM−1
0 f = qf mod (qs).

The bit operation complexity of performing the algorithm is clearly domi-
nated at its Stage 2. The estimates in Theorem 9.1 can be applied for

q = 1, s = a, γ = 2αn + β, β = β(f), α = α(M0), (A.3)

so that α ≤ α+ = m + aα(M), γ ≤ γ+ for γ+ in (A.1).

Theorem A.1. The bit operation complexity of Algorithm A.1 applied to a
Toeplitz matrix M is bounded according to Theorem 9.1 where q, s, α, β, and γ
are defined in (A.3).

The following properties should guide us in choosing the integers a and b.

(a) The larger a, the fewer lifting steps at Stage 2 of Algorithm A.1.

(b) The larger b, the more bit operations in Algorithm A.1.

(c) The larger a and/or b, the longer the precision of the computations at
Stage 2, but the bound (A.1) is sufficient to keep the precision below
λ + 1.

(d) (A.1) holds for a positive integer b if

b ≤ b+ = �logp ∆�, ∆ =
2λ − 1− β(f)

2n
− aα(M) > 1. (A.4)

36

(e) If the integer b+ is fixed and we wish to minimize the word complexity,
we should apply Algorithm A.1 for b = b+. If b+ ≥ 2d for d in Stage 2,
the algorithm produces the desired output integers q and s and vector y.
Otherwise, the algorithm fails, but we may repeat the computations for
distinct a and/or p.

We can also see the two following adverse results of increasing the integer
d :

(f) If 2d exceeds b+, then Algorithm A.1 fails.

(g) The number h of lifting steps defined in (7.2) and (8.5) for α = α(M0), β =
β(f) (cf. (A.2)) is roughly proportional to loga α(M0) and loga(aα(M) +
m). Therefore h is roughly proportional to d/ loga if m = pb = p2d

dominates aα(M).

Let us estimate d.

Theorem A.2. d = maxj ordp((δ(M−1
0)j) = ordp(sn(M0)) = ordp(sn(M)) ≤

ordp(detM), and so b ≥ 2d at Stage 2 of Algorithm A.1 if b ≥ 2 ordp(det M).
The latter bound holds if b ≥ 2 logp |det M |.
Proof. The theorem is easily deduced from the definitions of M0, δ(x/y), and
sn(M) and from the bounds (2.1) since a and p are coprime.

Now, in addition to (2.1), recall that for a larger random prime p and/or
a random integer matrix M , ordp(sn(M)) tends to be within a small factor
from ordp(det M) (see Theorems 10.1 and 10.7) and therefore within a small
factor from n logp(

√
nα(M)). Then, in virtue of Theorem A.2, the integers b

and d should be of at most the order of n logp(
√

nα(M)). This means that
for a moderate bound λ and a larger integer n, Algorithm A.1 should fail,
whereas for a larger λ, that is, for computations with the extended precision,
the number h of lifting steps at Stage 2 of this algorithm should grow by roughly
the factor of n/ loga versus the estimates in (7.2) and (8.5). Due to this growth
caused by the term mI = pbI in M0, the arithmetic, word, and bit complexity
estimates for the initialization with Algorithm A.1 should exceed by roughly the
factor of n the respective estimates in Theorem 9.1 for the complexity of the
subsequent solution of a Toeplitz linear system. We avoid decreasing h by means
of increasing the value log a because of the high price for increasing α(M0) and
∆ in (A.4).

The above comments apply to the worst case input p and M . For a larger
random prime p and/or a random Toeplitz matrix M , however, the chances
for the failure of Algorithm A.1 dramatically decrease because the integers
ordp(detM) and d tend to be in O(logp n) according to the estimates in Sec-
tions 10.1 and 10.2. In this case we have logpb = O(log n), logα(M0) =
O(log(aα(M) + n)), and adding the complexity estimates for the initialization
with Algorithm A.1 would not affect our overall asymptotic estimates for solving
Toeplitz linear systems.

37

A.2 Step 1: solving a linear system with variable diagonal

With Algorithm A.1 we cannot keep the computation of the vector x = M−1f in
binary form because a and s are coprime and thus cannot both equal the powers
of two. Our next algorithm does not have this deficiency and still uses about as
many lifting steps and bit operations as Algorithm A.1. The lifting stage of our
second algorithm can be performed numerically with bounded precision. We
specify only deterministic recovery at Stage 2, but one may immediately extend
the recipes of Section 8 for randomized or heuristic acceleration. At Stage 2
of this algorithm we apply numerical rational roundoff, that is, we recover a
unique rational number x/y from three integers ν, δ, and k provided 1 ≤ y ≤ k,
|x| < k, |x| and y are coprime unless x = 0; |x/y − ν/δ| < 1/(2k2), and |ν | < δ.
We can apply the bound (2.5) for d = δ to the bit-operation complexity of this
recovery as well [WP03].

Algorithm A.2. Initialization of Toeplitz–Hensel’s lifting by using the variable
diagonal technique (cf. [P00]).

Input: as in Algorithm A.1 and c > 1 such that m ≥ c|M |.

Output: as in Algorithm A.1.

Initialization: Write z0 = 0, r0 = f .

Computations (cf. Definition 2.3):

1. Compute the matrices M0 = M + mI and Q = m−1I.

2. Recursively compute the vectors zi+1 − zi = Qri = m−1ri, ri+1 = f −
M0zi+1 = ri − M0Qri = −m−1Mri for i = 0, 1, . . . , h − 1 and

h = 	(2n − 1) logc(|M |+ m) + logc(2|f |2/(c − 1))
 (A.5)

(cf. (A.2)).

3. Recover the vector z = M−1
0 f from zh deterministically, by using the nu-

merical rational roundoff algorithms.

4. Proceed as in Stage 3 of Algorithm A.1 for a = 1 and y = z.

Stage 2 can be implemented numerically as the customary residual correction
algorithm for iterative improvement of the computed approximations to z where
the initial approximation is given by the scaled identity matrix Q = m−1I
(see [S80a], [GL96, Section 3.5.3], [H96]). We employ this algorithm in lieu of
Hensel’s auxiliary lifting.

38

We have
M0Q − I = QM0 − I = m−1M,

z− zh = M−1
0 (f − M0zh)

= M−1
0 rh,

rh = −m−1Mrh−1 = (−m−1M)hr0

= (−m−1M)hf .

Furthermore,

|M−1
0 | = m−1|(I + M/m)−1| ≤ m−1

∞∑
i=0

(|M |/m)i,

and so

|M−1
0 | ≤ 1

(c − 1)m

since m ≥ c|M |.
Therefore

|z− zh| ≤ (m−1|M |)h|f ||M−1
0 | ≤ (m−1|M |)h|f |/((c− 1)m) ≤ c−h|f |/((c− 1)m)

(A.6)
for m ≥ 2|M |.

To ensure correct recovery of the vector z from zh with using the cited
numerical rational roundoff algorithms, which extend the algorithms in Section
2.4, it is sufficient to approximate z by zh within the error norm less than
1/(2|M0|2n−1|f |). This bound is achieved in Algorithm A.2 due to (A.5)–(A.6)
and the inequality |M0| ≤ |M | + m.

The analysis in the previous subsection (for a = 1) (including Theorems A.1
and A.2) is immediately extended. b+ in (A.6) increases since a = 1, and the
parameter c (rather than a) plays the role of the lifting and logarithmic base
(cf. (A.6)).

A.3 Step 2: extension from system solving to matrix in-
version and Newton’s acceleration

To initialize lifting, we seek the matrix Q = (qM−1) mod (qs). For general
matrix M , this requires the solution of n linear systems of equations with the
coefficient matrix M . In the Toeplitz case, we only solve the two linear systems
Mx = q0t mod (q0s0) and My = q1e1 mod (q1s1) where q0, q1, s0 and s1 denote
the respective values of the integer parameters q and s for these two systems
and where the two vectors e1 = (1, 0, . . . , 0)T and t define the generator of the
matrix M−1 (see Theorem 2.2).

We choose the same basic prime p for both systems and reconcile the choice
of q0 = q1 and s0 = s1 by computing

q = q0 = q1 = pσ, σ = max
j

ordp(δ(M−1
0 (t, e1))j))

39

and s = s0 = s1 = m
q at Stage 3, which is common in Algorithm A.1 (or A.2)

for both linear systems with qt and qe1 on the right-hand sides.
If the precision at the lifting steps in Stage 2 in Algorithms A.1 or A.2 is

substantially less than λ, we may accelerate lifting by applying Newton’s steps
(4.2) or (4.4), respectively.

A.4 Extension to computations with singular matrices

As by-product, both Algorithm A.1 and A.2 determine whether the matrix M
is singular in Z. Therefore combined with the binary search, they can replace
the MBA algorithm for computing the rank r and r × r nonsingular submatrix
of a preconditioned matrix, UML, having generic rank profile (cf. [KS91] and
the end of our Section 6).

A.5 Comparison with the application of the MBA ap-
proach

Recall that Theorem A.1 covers the bit complexity of performing both Algo-
rithms A.1 and A.2 and implies that the estimated overall cost of Toeplitz solv-
ing increases versus Theorem 9.1 by a factor ranging from a moderate constant
for the random average input matrix M to roughly n in the worst case.

Versus the MBA algorithm, Algorithms A.1 and A.2 have the advantage of
avoiding divisions, so that they can be performed in the rings for any input
matrix M which can be multiplied by a vector fast and do not fail in Zqs unless
M
q

is singular.
The initialization with the algorithm of the MBA type has lower asymptotic

bit complexity than the subsequent stages of Toeplitz solving, but Algorithms
A.1 and A.2 require a little simpler codes than the MBA algorithm and in
particular involve no auxiliary matrices of smaller sizes.

References

[A59] E. Asplund, Inverses of Matrices (ai,j) Which Satisfy ai,j = 0 for
j > i + p, Mathematica Scandinavica, 7, 57–60, 1959.

[ABM99] J. Abbott, M. Bronstein, T. Mulders. Fast Deterministic Compu-
tation of the Determinants of Dense Matrices, Proc. of Interna-
tional Symposium on Symbolic and Algebraic Computation (IS-
SAC’99), 197–204, ACM Press, New York, 1999.

[B68] E. H. Bareiss, Sylvester Identity and Multistep Integer–Preserving
Caussian Elimination, Math. of Computations, 22, 565–578, 1968.

[B79] W. W. Barrett, A Theorem on Inverses of Tridiagonal Matrices,
Linear Algebra and Its Applications, 27, 211–217, 1979.

40

[B85] J. R. Bunch, Stability of Methods for Solving Toeplitz Systems of
Equations, SIAM J. of Scientific and Statistical Computing, 6(2),
349–364, 1985.

[B03] D. J. Bernstein, Fast Multiplication and Its Applications,
preprint, 2003. Availabe from http://cr.yp.to/papers.html

[BA80] R. R. Bitmead, B. D. O. Anderson, Asymptotically Fast Solu-
tion of Toeplitz and Related Systems of Linear Equations, Linear
Algebra and Its Applications, 34, 103–116, 1980.

[BF81] W. W. Barrett, P. I. Feinsilver, Inverses of Banded Matrices, Lin-
ear Algebra and Its Applications, 41, 111–130, 1981.

[BGY80] R. P. Brent, F. G. Gustavson, D. Y. Y. Yun, Fast Solution of
Toeplitz Systems of Equations and Computation of Padé Approx-
imations, J. Algorithms, 1, 259–295, 1980.

[BMK87] R. P. Brent, B. D. McKay, Determinants and Ranks of Random
Matrices over Zm, Discrete Math., 66, 35–49, 1987.

[BP94] D. Bini, V. Y. Pan, Polynomial and Matrix Computations, Vol-
ume. 1: Fundamental Algorithms, Birkhäuser, Boston, 1994.

[CFG99] G. Cooperman, S. Feisel, J. von zur Gathen, G. Havas, GCD of
Many Integers, Computing and Combinatorics, Lecture Notes in
Computer Science, 1627, 310–317, Springer, Berlin, 1999.

[CK91] D. G. Cantor, E. Kaltofen, On Fast Multiplication of Polynomials
over Arbitrary Rings, Acta Informatica, 28(7), 697–701, 1991.

[CP04] Z. Chen, V. Pan, An Efficient Solution for Cauchy-like Systems of
Linear Equations, Computers and Mathematics with Applications,
48, 529–537, 2004.

[CW90] D. Coppersmith, S. Winograd, Matrix Multiplicaton via Arith-
metic Progressions. J. of Symbolic Computation, 9(3), 251–280,
1990.

[D59] J. Durbin, The Fitting of Time-Series Models, Review of Interna-
tional Statistical Institute, 28, 229–249, 1959.

[D60] D. E. Daykin, Distribution of Bordered Persymmetric Matrices in
a Finite Field. J. Reine und Angewandte Math., 203, 47–54, 1960.

[D82] J. D. Dixon, Exact Solution of Linear Equations Using p-adic
Expansions, Numerische Math., 40, 137–141, 1982.

[DGP04] J.-G. Dumas, P. Giorgi, C. Pernet, FFPack: Finite Field Lin-
ear Algebra Package, Proc. International Symp. on Algebraic and
Symbolic Computation (ISSAC’04), 119–126, ACM Press, New
York, 2004.

41

[DL78] R. A. Demillo, R. J. Lipton, A Probabilistic Remark on Algebraic
Program Testing, Information Processing Letters, 7(4), 193–195,
1978.

[DSV01] J.-G. Dumas, B. D. Saunders, G. Villard, On Efficient Sparse
Integer Matrix Smith Form Computations, J. of Symbolic Com-
putation, 32, 71–99, 2001.

[EG97] Y. Eidelman, I. Gohberg, Inversion Formulas and Linear Com-
plexity Algorithm for Diagonal Plus Semiseparable Matrices,
Computers and Mathematics with Applications, 33(4), 69–79,
1997.

[EG01] Y. Eidelman, I. Gohberg, Fast Inversion Algorithms for a Class
of Block Structured Matrices, Contemporary Mathematics, 281,
17–38, 2001.

[EG02] Y. Eidelman, I. Gohberg, A Modification of the Dewilde–Van der
Veen Method for Inversion Finite Structured Matrices, Linear Al-
gebra and Its Applications, 343–344, 419–450, 2002.

[EG03] Y. Eidelman, I. Gohberg, Fast Inversion Algorithms for a Class
of Structured Operator Matrices, Linear Algebra and Its Applica-
tions, 371, 153-190, 2003.

[EGV00] W. Eberly, M. Giesbrecht, G. Villard, On Computing the Deter-
minant and Smith Form of an Integer Matrix, Proc. 41st Annual
Symposium on Foundations of Computer Science (FOCS’2000),
675–685, IEEE Computer Society Press, Los Alamitos, Califor-
nia, 2000.

[EPY98] I. Z. Emiris, V. Y. Pan, Y. Yu, Modular Arithmetic for Linear
Algebra Computations in the Real Field, J. of Symbolic Compu-
tation, 26, 71–87, 1998.

[FP74] M. J. Fischer, M. S. Paterson, String Matching and Other Prob-
lems, SIAM-AMS Proceedings, 7, 113–125, 1974.

[GG03] J. von zur Gathen, J. Gerhard, Modern Computer Algebra, Cam-
bridge University Press, Cambridge, UK, 2003 (second edition).

[GH90] J. R. Gilbert, H. Hafsteinsson, Parallel Symbolic factorization of
Sparse Linear Systems, Parallel Computing, 14, 151–162, 1990.

[GS92] J. R. Gilbert, R. Schreiber, Highly Parallel Sparse Cholesky Fac-
torization, SIAM J. Scientific Computing, 13, 1151–1172, 1992.

[GL96] G. H. Golub, C. F. Van Loan, Matrix Computations, Johns Hop-
kins University Press, Baltimore, Maryland, 1996 (third addition).

42

[H76] D. E. Heller, Some Aspects of the Cyclic Reduction Algorithm for
Block Tridiagonal Linear Systems, SIAM J. on Numerical Anal-
ysis, 13, 484–496, 1976.

[H79] G. Heinig, Beitrage zur spektraltheorie von Operatorbuschen und
zur algebraischen Theorie von Toeplitzmatrizen, Dissertation B,
TH Karl-Marx-Stadt, 1979.

[H96] N. J. Higham, Accuracy and Stability of Numerical Algorithms,
SIAM Publications, Philadelphia, PA, 1996.

[HR84] G. Heinig, K. Rost, Algebraic Methods for Toeplitz-like Matrices
and Operators, Operator Theory, 13, Birkhäuser, 1984.

[I79] Y. Ikebe, On Inverses of Hessenberg Matrices, Linear Algebra and
Its Applications, 24, 93–97, 1979.

[K90] A. A. Karatsuba, The Distribution of Prime Numbers, Russian
Math. Surveys, 45, 99–171, 1990.

[K98] D. E. Knuth, The Art of Computer Programming. Vol. 2: Seminu-
merical Algorithms, Addison-Wesley, Reading, Massachusetts,
1998.

[K04] I. Kaporin, The Aggregation and Cancellation Techniques as a
Practical Tool For Faster Matrix Multiplication, Theoretical Com-
puter Science, 315, 469–510, 2004.

[KL96] E. Kaltofen, A. Lobo, On Rank Properties of Toeplitz Matri-
ces over Finite Fields, Proceedings of International Symposium on
Symbolic and Algebraic Computation (ISSAC’96), 241–249, ACM
Press, New York, 1996.

[KS91] E. Kaltofen, B. D. Saunders, On Wiedemann’s Method for Solving
Sparse Linear Systems, Proceedings of AAECC–5, Lecture Notes
in Computer Science, 536, 29–38, Springer, Berlin, 1991.

[KS99] T. Kailath, A. H. Sayed (editors), Fast Reliable Algorithms for
Matrices with Structure, SIAM Publications, Philadelphia, PA,
1999.

[KV01] E. Kaltofen, G. Villard. On the Complexity of Computing Deter-
minants. Proc. Fifth Asian Symposium on Computer Mathematics
(ASCM 2001), (Shirayanagi, Kiyoshi and Yokoyama, Kazuhiro,
editors), Lecture Notes Series on Computing, 9, 13–27, World
Scientific, Singapore, 2001.

[KV04] E. Kaltofen, G. Villard. Computing the Sign or the Value of the
Determinant of an Integer Matrix, a Complexity Survey. J. Com-
putational Applied Math., 162 (1), 133–146, 2004.

43

[L47] N. Levinson, The Wiener RMS (Root-Mean-Square) Error Crite-
rion in the Filter Design and Prediction, Journal of Mathematical
Physics, 25, 261–278, 1947.

[M74] M. Morf, Fast Algorithms for Multivariable Systems, Ph.D. The-
sis, Department of Electrical Engineering, Stanford University,
Stanford, CA, 1974.

[M80] M. Morf, Doubling Algorithms for Toeplitz and Related Equa-
tions, Proceedings of IEEE International Conference on ASSP,
954–959, IEEE Press, Piscataway, New Jersey, 1980.

[M04] M. Monahan, Maximal Quotient Rational Reconstruction: an Al-
most Optimal Algorithm for Rational Reconstruction, Proc. In-
ternational Symp. on Algebraic and Symbolic Computation (IS-
SAC’04), 243–249, ACM Press, New York, 2004.

[MC79] R. T. Moenck, J. H. Carter, Approximate Algorithms to De-
rive Exact Solutions to Systems of Linear Equations, Proceedings
of EUROSAM, Lecture Notes in Computer Science, 72, 63–73,
Springer, Berlin, 1979.

[MS04] T. Mulders, A. Storjohann, Certified Dense Linear System Solv-
ing, J. of Symbolic Computation, 37(4), 485-510, 2004.

[N72] M. Newman., Integral Matrices, Academic Press, New York, 1972.

[P87] V. Y. Pan, Complexity of Parallel Matrix Computations, Theo-
retical Computer Science, 54, 65–85, 1987.

[P88] V. Y. Pan, Computing the Determinant and the Characteristic
Polynomials of a Matrix via Solving Linear Systems of Equations,
Information Processing Letters, 28, 71–75, 1988.

[P90] V. Y. Pan, On Computations with Dense Structured Matrices,
Mathematics of Computation, 55(191), 179–190, 1990.

[P92] V. Y. Pan, Parametrization of Newton’s Iteration for Computa-
tions with Structured Matrices and Applications, Computers and
Mathematics (with Applications), 24(3), 61–75, 1992.

[P92a] V. Y. Pan, Can We Utilize the Cancellation of the Most Significant
Digits?, Tech. Report TR–92–061, The International Computer
Science Institute, Berkeley, California, 1992.

[P96] V. Y. Pan, Parallel Computation of Polynomial GCD and Some
Related Parallel Computations over Abstract Fields, Theoretical
Computer Science, 162(2), 173–223, 1996.

44

[P00] V. Y. Pan, Parallel Complexity of Computations with General
and Toeplitz-like Matrices Filled with Integers and Extensions,
SIAM J. Comput., 30(4), 1080–1125, 2000.

[P01] V. Y. Pan, Structured Matrices and Polynomials: Unified Super-
fast Algorithms, Birkhäuser/Springer, Boston/New York, 2001.

[P02] V. Y. Pan, Can We Optimize Toeplitz/Hankel Computations?
Proc. of the Fifth International Workshop on Computer Algebra
in Scientific Computing (CASC’02), Yalta, Crimea, Sept. 2002
(E. W. Mayr, V. G. Ganzha, E. V. Vorozhtzov, Editors), 253–
264, Technische Universität München, Germany, 2002.

[P02a] V. Y. Pan, Nearly Optimal Toeplitz/Hankel Computations, Tech-
nical Reports TR 2002 001 and 2002 017, Ph.D. Program in Com-
puter Science, The Graduate Center of the City University of New
York, New York, 2002.

[P04] V. Y. Pan, Superfast Algorithms for Singular Integer Toeplitz/
Hankel-like Matrices, Technical Reports 2002 002, 2003 004 and
2004 015, Ph.D. Program in Computer Science, The Gradu-
ate Center of the City University of New York, New York,
2002/2003/2004.

[P04a] V. Y. Pan, On Theoretical and Practical Acceleration of Ran-
domized Computation of the Determinant of an Integer Matrix,
preprint, 2004.

[PSA95] V. Y. Pan, I. Sobze, A. Atinkpahoun, On Parallel Computations
with Banded Matrices, Information and Computation, 120 (2),
237–250, 1995.

[PW02] V. Y. Pan, X. Wang, Acceleration of Euclidean Algorithm and
Extensions, Proceedings of the International Symposium on Sym-
bolic and Algebraic Computation (ISSAC’02), (Teo Mora editor),
207–213, ACM Press, New York, 2002.

[PW04] V. Y. Pan, X. Wang, On Rational Number Reconstruction and
Approximation, SIAM J. on Computing, 33(2), 502–503, 2004.

[RS62] J. B. Rosser, L. Schoenfeld, Approximate Formulas of Some Func-
tions of Prime Numbers, Illinois J. of Math., 6, 64–94, 1962.

[S80] R. D. Skeel, Iterative Refinement Implies Numerical Stability for
Gaussian Elimination, Math. of Computation, 35, 817–832, 1980.

[S80a] J. T. Schwartz, Fast Probabilistic Algorithms for Verification of
Polynomial Identities, Journal of ACM, 27(4), 701–717, 1980.

45

[S86] A. Schrijver, Theory of Linear and Integer Programming, Wiley,
New York, 1986.

[S03] A. Storjohann, High Order Lifting and Integrality Certificaiton,
J. of Symbolic Computation, 36(3–4), 613–648, 2003.

[T94] E. E. Tyrtyshnikov, How Bad Are Hankel Matrices? Numerische
Mathematik, 67(2), 261–269, 1994.

[V04] R. Vandebril, Semiseparable Matrices and the Symmetric Eigen-
value Problem, PhD Thesis, Katholieke Universiteit Leuven, De-
partement Computerwetenschappen, Leuven, Belgium, May 2004.

[W86] D. Wiedemann., Solving Sparse Linear Equations over Finite
Fields, IEEE Trans. Inf. Theory, IT-32, 54–62, 1986.

[WP03] X. Wang, V. Y. Pan, Acceleration of Euclidean Algorithm and
Rational Number Reconstruction, SIAM J. on Computing, 32(2),
548-556, 2003.

[Z79] R. E. Zippel, Probabilistic Algorithms for Sparse Polynomials,
Proceedings of EUROSAM’79, Lecture Notes in Computer Sci-
ence, 72, 216–226, Springer, Berlin, 1979.

[Z93] R. Zippel, Effective Polynomial Computation, Kluwer, Boston,
1993.

46

	City University of New York (CUNY)
	CUNY Academic Works
	2005

	TR-2005008: Toeplitz and Hankel Meet Hensel and Newton Modulo a Power of Two
	Victor Y. Pan
	Brian Murphy
	Rhys E. Rosholt
	Xinmao Wang
	Recommended Citation

	Thj.DVI

