12-2013

Biome Q10 and Dryness

Chuixiang Yi
CUNY Queens College

Daniel Ricciuto
Oak Ridge National Laboratory

George Hendrey
CUNY Queens College

Recommended Citation

This Article is brought to you for free and open access by the Queens College at CUNY Academic Works. It has been accepted for inclusion in Publications and Research by an authorized administrator of CUNY Academic Works. For more information, please contact AcademicWorks@cuny.edu.
Biome Q_{10} and Dryness

Chuixiang Yi1*, Daniel Ricciuto2, George Hendrey1

1School of Earth and Environmental Sciences, Queens College, City University of New York, New York, USA
2Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, USA

Email: *cyi@qc.cuny.edu

Received May 14, 2013; revised June 17, 2013; accepted July 15, 2013

Copyright © 2013 Chuixiang Yi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Temperature sensitivity of soil respiration (Q_{10}) is a critical parameter in carbon cycle models with important implications for climate-carbon feedbacks in the 21st century. The common assumption of a constant Q_{10}, usually with a value of 2.0, was shown to be invalid by a previous model-data fusion study that reported biome-specific values of this parameter. We extend the previous analysis by demonstrating that these biome-level values of Q_{10} also are a function of dryness ($R^2 = 0.54$). When tundra and cultivated lands are excluded, the correlation is much stronger ($R^2 = 0.92$). Therefore dryness is the primary driver for variability in respiration-temperature sensitivity in forest and grassland ecosystems. This finding has important implications for the response of the terrestrial carbon cycle to climate change, as it implies that the increasing dryness would potentially accelerate the respiration temperature sensitivity feedback.

Keywords: Climate Change; Carbon Cycle; Soil Respiration; Dryness

1. Introduction

Globally, soil respiration releases CO$_2$ annually at a rate that is over an order of magnitude larger than anthropogenic releases [1]. Although soil heterotrophic respiration is currently balanced or slightly exceeded by terrestrial net primary productivity (NPP), relatively small changes in this large flux could have large impacts on the global net carbon balance. The most important climate driver of soil respiration is temperature, and increasing temperature is likely to induce a positive feedback between climate and the carbon cycle. Uncertainty about the strength of this feedback is a primary source of uncertainty for predicted behaviour of terrestrial carbon sinks in the latter half of this century [2,3]. Additionally, this sensitivity of respiration to temperature was shown to vary as functions of temperature, substrate, soil moisture and/or biome [4,5]. Despite this, many global carbon cycle models assume constant temperature sensitivity, or they assume a sensitivity that depends on only a limited subset of these factors.

Here we extend the analysis of Zhou et al. [4], who used an inversion approach to assimilate worldwide soil respiration measurements and measured soil organic carbon into a widely used carbon cycle model. The authors of that study concluded that Q_{10} is a function of biome, and that the assumption of a constant Q_{10} results in an underestimation of the respiration-temperature feedback intensity by 25%. Upon further analysis of this unique dataset, we find that the respiration-temperature sensitivity is also a strong function of dryness at the biome level. This finding has important implications for the behaviour of the carbon cycle in a changing climate: increasing dryness, which is likely in a warming climate [6], may increase the respiration-temperature sensitivity, accelerating decomposition and providing a stronger feedback to the climate system.

2. Methods

This analysis focuses on Q_{10}, the parameter controlling the temperature-dependence of soil respiration in the following way:

$$ R(T) = R_{ref}Q_{10}^{(T_{ref}-T)/10}, $$

(1)

where $R(T)$ and R_{ref} are soil respiration at measured temperature (T) and reference temperature (T_{ref}), respectively, and Q_{10} is a factor by which respiration is multiplied when temperature is increased by 10°C. At $Q_{10} = 1$ respiration would be independent of temperature, while larger Q_{10} values indicates a stronger temperature dependence. In many ecosystem models, Q_{10} is treated as a...
constant, the most common value being 2. However, considerable variation (1.3 to ~10) in \(Q_{10} \) values have been reported by numerous investigations [7-9]. Since van’t Hoff introduced \(Q_{10} \) in 1898 it has been debated weather \(Q_{10} \) is a universal constant and what controls \(Q_{10} \) [1-9]. Since soil emissions of CO2 are expected to have a positive feedback on global warming, modelling of climate change, its consequences and control strategies requires a clearer understanding of the \(Q_{10} \) of soils.

We examined climate control of \(Q_{10} \) at the level of biomes globally. Spatially resolved \(Q_{10} \) values were estimated at a resolution of 1’ by 1’ using a model-data fusion technique to assimilate worldwide soil respiration measurements and measured soil organic carbon [4]. The model used in that analysis was the Carnegie-Ames-Stanford Approach (CASA) model [10,11], which includes a CENTURY-based soil carbon module that simulates soil organic carbon processes using two carbon storages, and measured soil organic carbon [4]. The vegetations is coded according to the IGBP classification. The sources and calculation of biome-level \(Q_{10} \) values to biome-level climate and dryness data (Table 1).

3. Results and Discussion

We found that biome-level \(Q_{10} \) is significantly correlated to dryness (\(R^2 = 0.54 \), Figure 1) or to precipitation (\(R^2 = 0.45 \), Figure omitted) and is independent of net radiation and temperature. We expect that the correlation of \(Q_{10} \) with dryness is stronger than with precipitation because the soil moisture content is determined not only by precipitation (input), but also by energy available for evaporation (output). In our analysis, both tundra and cultivated soils appear to be outliers. When these systems are excluded, the correlation of biome-level \(Q_{10} \) with dryness is much higher (\(R^2 = 0.92 \)).

It is not surprising that the \(Q_{10} \) value for agricultural soil is an outlier (Figure 1) because cultivation (including tillage, fertilization, irrigation and drainage) accelerates soil respiration in ways that are not adequately captured by CASA [7]. The high \(Q_{10} \) value for tundra may be a consequence of the non-linearity of respiration with respect to temperature, particularly as \(T \) approaches 0°C. In systems with permafrost, which are poorly represented by CASA, the high \(Q_{10} \) value is also likely related to depth of the active layer. As the soil column warms, the depth of unfrozen soil increases and exposes more soil organic matter to decomposition [13]. In actuality this increases the base respiration rate, but the strong correlation of this effect with temperature causes it to be interpreted by the model-data fusion technique as a higher \(Q_{10} \) value. Thus both cultivated soil and tundra \(Q_{10} \) values are as high as grasslands even though the dryness of these systems is similar to deciduous forests.

Our results demonstrate that the temperature sensitivity of soil respiration-aggregated at the biome level, is controlled by dryness, and that soils in different biomes respond differently to dryness. As can be seen in Figure 1, the temperature sensitivity of forest soil respiration to dryness is much less than that of grasslands, which may also related to substrate quality (woody and non-woody components). This implies that conversion of forest to pasture and agriculture would increase temperature sensitivity of soil respiration, accelerating CO2 emissions.

Table 1. Characteristic of biome (ten-year average, 1986-1995) and \(Q_{10} \) values estimated by an inversion approach developed by Zhou et al. [4]. The vegetation is coded according to the IGBP classification. The sources and calculation method of biome-climate data in the table can be found in Zhou et al. [17].

<table>
<thead>
<tr>
<th>Code</th>
<th>Biome</th>
<th>(P) (mm-a(^{-1}))</th>
<th>(T) (°C)</th>
<th>(R_a) (MJ-M(^{-2})-a(^{-1}))</th>
<th>Dryness</th>
<th>(Q_{10})</th>
<th>Area (10(^{5}) km(^{2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Broadleaf evergreen forest</td>
<td>2171</td>
<td>25.1</td>
<td>4662</td>
<td>0.86</td>
<td>1.50</td>
<td>13.3</td>
</tr>
<tr>
<td>2</td>
<td>Broadleaf deciduous forest and woodland</td>
<td>913</td>
<td>15.2</td>
<td>3650</td>
<td>1.60</td>
<td>1.75</td>
<td>3.3</td>
</tr>
<tr>
<td>3</td>
<td>Mixed coniferous and broadleaf deciduous forest and woodland</td>
<td>883</td>
<td>8.6</td>
<td>2694</td>
<td>1.22</td>
<td>1.61</td>
<td>6.5</td>
</tr>
<tr>
<td>4</td>
<td>Coniferous forest and woodland</td>
<td>517</td>
<td>−2.5</td>
<td>1944</td>
<td>1.50</td>
<td>1.71</td>
<td>12.9</td>
</tr>
<tr>
<td>5</td>
<td>High latitude deciduous forest and woodland</td>
<td>438</td>
<td>−5.6</td>
<td>1889</td>
<td>1.73</td>
<td>1.63</td>
<td>5.8</td>
</tr>
<tr>
<td>6</td>
<td>C3 wooded grassland</td>
<td>1097</td>
<td>14.0</td>
<td>3446</td>
<td>1.26</td>
<td>1.67</td>
<td>4.5</td>
</tr>
<tr>
<td>7</td>
<td>C4 wooded grassland</td>
<td>1304</td>
<td>23.0</td>
<td>4413</td>
<td>1.35</td>
<td>1.59</td>
<td>17.1</td>
</tr>
<tr>
<td>8</td>
<td>C3 grassland</td>
<td>433</td>
<td>7.0</td>
<td>2953</td>
<td>2.73</td>
<td>1.97</td>
<td>11.3</td>
</tr>
<tr>
<td>9</td>
<td>C4 grassland</td>
<td>566</td>
<td>23.4</td>
<td>4066</td>
<td>2.87</td>
<td>2.02</td>
<td>8.9</td>
</tr>
<tr>
<td>10</td>
<td>Tundra</td>
<td>316</td>
<td>−10.8</td>
<td>1287</td>
<td>1.63</td>
<td>2.03</td>
<td>7.0</td>
</tr>
<tr>
<td>11</td>
<td>Cultivation</td>
<td>799</td>
<td>13.6</td>
<td>3262</td>
<td>1.63</td>
<td>1.99</td>
<td>13.3</td>
</tr>
</tbody>
</table>
and global warming [14,15]. Furthermore, we reiterate the findings of Zhou et al. [4] that models of soil responses to climate change, at least at the biome level, should not assume $Q_{10} = 2$, but need to accommodate the sensitivity of soil respiration in different soil types to dryness. Thus, the feedback to terrestrial ecosystems from respiration temperature sensitivity may accelerate more than previously predicted if climate change causes an increase in dryness.

Uncertainties may result from the methods of Zhou et al. [4], in which the International Geosphere-Biosphere Programme (IGBP) soil organic carbon (SOC) dataset was used to optimize the Q_{10} parameter in the CASA model. A significant part of the total SOC is relatively recalcitrant and resistant to decomposition, while soil respiration is mostly produced from the newly shed plant litter, and surface SOC. This may lead to an underestimation of the optimized Q_{10} because the decomposition of the recalcitrant SOC is slower than assumed by the model [16]. However, at the global scale, this underestimation of the optimized Q_{10} is mitigated because Zhou et al. [4] constrained the optimization process such that the global mean optimized Q_{10} is equal to the global mean value of Q_{10} (1.72) of soil respiration measurements in major ecosystems of the world as reported by Raich et al. [1]. While local biases in Q_{10} may result if the modeled SOC quality is not correct, comparisons against site-level soil respiration data in Zhou et al. [4] show consistent improvement when optimized values are used compared to a globally constant value. Theoretically, the biome Q_{10} reflects apparent temperature sensitivity that is controlled by environmental constraints [16]. Our results demonstrate that dryness is the most important control on Q_{10} among environmental constraints at biome level.

4. Acknowledgements

This work was financially supported by the National Science Foundation (NSF-DEB-0949637). Authors are grateful for useful discussion with Tao Zhou and for valuable comments from an anonymous reviewer.

REFERENCES

