
City University of New York (CUNY) City University of New York (CUNY)

CUNY Academic Works CUNY Academic Works

Publications and Research Kingsborough Community College

2022

On the ethics of working with library technology: the case of the On the ethics of working with library technology: the case of the

Open Journal Matcher Open Journal Matcher

Mark E. Eaton
CUNY Kingsborough Community College

How does access to this work benefit you? Let us know!

More information about this work at: https://academicworks.cuny.edu/kb_pubs/261

Discover additional works at: https://academicworks.cuny.edu

This work is made publicly available by the City University of New York (CUNY).
Contact: AcademicWorks@cuny.edu

https://academicworks.cuny.edu/
https://academicworks.cuny.edu/kb_pubs
https://academicworks.cuny.edu/kb
http://ols.cuny.edu/academicworks/?ref=https://academicworks.cuny.edu/kb_pubs/261
https://academicworks.cuny.edu/kb_pubs/261
https://academicworks.cuny.edu/?
mailto:AcademicWorks@cuny.edu

1

On the ethics of working with library technology: the case of the Open

Journal Matcher

Mark E. Eatona*

aLibrary, Kingsborough Community College, City University of New York, New York,

USA.

*mark.eaton@kbcc.cuny.edu; ORCiD: 0000-0001-8579-5073

This work was funded by PSC-CUNY under Grant 64672-00 52; and by a Google

Cloud Platform Research Credit Grant.

2

On the ethics of working with library technology: the case of the Open

Journal matcher

Through the methodological lens of a case study, this practical communication

aims to capture and analyze one aspect of the multi-faceted ethical concerns that

arise with building with technology in libraries. I define and deploy the concept

of “pervious” technology (the opposite of impervious technology) as a way to

think through how librarians work with technologies in their workplaces. I de-

scribe how pervious technologies are readily manipulable tools that librarians can

reach into (metaphorically, hence “pervious”), giving them a greater say in how

they engage with their library work. Specifically, I examine the ethical implica-

tions of pervious and impervious technologies in library workplaces by analyzing

a specific, librarian-built application: the Open Journal Matcher.

Keywords: journal recommender; ethics; library organizations; technology; web

applications; librarians; diversity

3

Introduction

In March 2019, I began building the Open Journal Matcher (OJM, https://ojm.ocert.at),

a recommender tool for academics looking to find a suitable journal for the publication

of their scholarly work. The OJM allows a user to paste in their draft abstract, and the

application will compare it to abstracts from more than 5,600 English-language journals

indexed by the Directory of Open Access Journals (DOAJ, https://doaj.org/). The OJM

then returns the top five best-matching open access journals. This can be very useful to

an author trying to find an appropriate journal for their work.

Upon its public release in June 2020, the OJM received a favorable reception on

social media from the open scholarship community. Since then, it has been linked to

from library websites all over the world. This has reaffirmed for me the need for such a

tool, and has encouraged me to continue developing it. In some respects, the OJM is not

unique; there are other journal matching projects, such as those described by Schuemie

and Kors (2008), Kang et al. (2015), Mohtaj and Tavakkoli (2018), and Errami et al.

(2007), as well as some commercial projects. But, to my knowledge, the OJM is the

only one that is fully interdisciplinary and fully open source. The code for the matcher

application, the code for the matching algorithm, and the content of the journals, is all

openly licensed. Additionally, the OJM covers the full range of disciplines reflected in

the DOAJ.

The OJM provides a practical frame for the analysis that follows. My argument

is that we can better support our libraries when we build technologies that are pervious

(the opposite of impervious). I define pervious technologies as those that anyone can

4

manipulate, adapt, and use to their liking. They are technologies that we can reach into

(metaphorically, hence pervious) and tinker with.

When I was building the OJM, I wanted to make a technology that librarians can

reach into. I wanted everyone to be able to determine their level of engagement with the

technology stack. The OJM allows this. As a result, this project can be experienced in

very different ways from one user to another. To put it succinctly, it is a pervious tool.

Some example uses (in order of increasing involvement) are:

(1) A user can interact with the web version of the OJM (at https://ojm.ocert.at), and

use it to find appropriate matching journals.

(2) A user can submit modifications or patches to the project’s GitHub repository.

(3) A programmer who wants to tinker a bit can clone the repository, set-up a local

installation, and run a version of the tool themselves.

(4) To go even further, a curious librarian could dig into the underlying matching

algorithm to see how the matcher is making its recommendations.

All of these are achievable, realizable ways that a librarian could engage with

the OJM. This points to a central feature of pervious technologies: that it is up to the

user how much they want to be involved. My argument is that allowing librarians to de-

cide upon their own level of participation is empowering. Pervious tools and pervious

methodologies allow librarians to determine their own level of technological engage-

ment.

5

To better grasp the distinction I am making, it may help to compare some

widely-known examples of pervious and impervious code. Openly-licensed code down-

loaded from GitHub, for example, can usually be modified as much as one likes. In this

sense, it is pervious technology. On the other hand, Twitter, at the time of writing, is im-

pervious to users. The vast majority of users have no opportunities to change Twitter’s

behavior. At best, it has a limited public API that developers can use, as long as they do

so in accordance with Twitter’s terms of service. But, for the most part, it is completely

beyond the user’s reach.

 Perviousness should not be thought of too narrowly. The concept of pervious-

ness describes not only technologies, but also methodologies. It describes the ways in

which technologies are enacted. Because of this, it can be compared to other workflow

methodologies, as I do below. The concept of perviousness is a prompt to think about

how librarians’ work encourages them to reach into their tools (or not). The choices

they make when building with technology will have a major impact on how technolo-

gies are deployed, both by themselves and by others.

Literature review

This paper will suggest that pervious tools are a constructive way to develop the tech-

nical skills of library workers. Open and pervious tools helpfully allow librarians to par-

ticipate in their technology as much as they want. Being actively involved with technol-

ogies leads to an exciting opening of possibilities. For example, Papert (1993), di Sessa

(2001), Kafai and Burke (2014), and Vee (2017) all point to the expansiveness that

6

learning technologies can bring. Each of these authors describes a technological awak-

ening that is common among people learning to program. Librarians who are able to en-

gage with their technologies as much as they choose may likewise experience an expan-

sion of their professional and technical horizons. The possibilities of working with code

begin to appear when somebody rolls up their sleeves and digs in. In a practical sense,

librarians’ involvement with the pervious technologies in libraries is only limited by

available time, interest, and other responsibilities, among other things. Yet contempo-

rary technologies are also, for practical purposes, nearly endlessly complex, so engage-

ment with pervious tools can also be as broad and as deep as can be imagined.

 Pervious workflows have strong resonances with some other contemporary

workflow theories. For example, Agile methods, which grew out of the software indus-

try, provide an adjacent (and extensive) literature on how to improve productivity and

teamwork. One of the focal points of Agile is on building collaboratively, rather than in

silos (Moreira, 2013; Medinilla, 2012). It is an approach that dovetails nicely with the

proposal to build accessible and pervious technologies. The principal difference be-

tween perviousness and Agile is in their respective objectives. While Agile is focused

on increasing productivity, meeting business objectives (Cobb, 2011), and maximizing

profit (Medinilla, 2012), pervious methodologies aim instead at diversity and inclusion

(as will be shown below). Nonetheless, there are useful insights that can be gleaned

from Agile approaches, for example: the benefits of being relentlessly responsive to

user’s needs; and the positive consequences of focusing on iteration. Such lessons can

illuminate library workflows that can help improve librarians’ work.

7

 There is also an analogy between perviousness and user-centred design. User-

centred design is often oriented toward meeting the needs and desires of the end user

(Kraft, 2012). On the other hand, pervious approaches are aimed at meeting the interme-

diate needs of the librarians, programmers and other tinkerers who are building tools for

their communities. In a sense, librarians building pervious tools are doing user-centred

design for an audience that is internal to their professional community. In this light, per-

vious technologies can be seen as a powerful intermediate step in the building of tools

for user communities.

 The last workflow methodology I will touch upon here is open source. The elab-

oration of an open source workflow is arguably one of the more important methodologi-

cal developments in how software has been built. The open source movement has

shown that voluntary, decentralized labor can effectively produce valuable and im-

portant code.

 There is a long history of open source in library scholarship. Some noteworthy

examples include Muir (2005), who documents the early days of the arrival of open

source software in libraries; Balnaves (2008), writing a few years later, who synthesizes

knowledge gleaned from comparing open source library tools; while more recently,

Njoku (2017) advocates for the broader, global spread of open source library technolo-

gies. The technical work described in this paper draws upon and adds to this literature.

 Using open source licenses is an obvious step that can be taken to build library

technologies that are more pervious. But it is not sufficient. Technologies can also be

built in a way that is amenable to modification and re-purposing. To a certain extent,

this involves building reusable code, a practice which is already well established in

8

open source and in the literature on coding practice (Hillard, 2020; Hunt & Thomas,

1999). Tools can also be made pervious by providing users with opportunities to use the

tools as they see fit, by creating affordances for tinkering and building in kind.

 It would be a mistake to limit this concept of pervious technologies to those that

are openly licensed. I intend “pervious” to refer more broadly to tools that can be tink-

ered with. Some closed source tools can (and sometimes do) have ample room for tink-

ering, and can therefore be considered pervious. The reality is that software today is

much too complex for “pervious” and “open” to be synonymous.

 Google Cloud Platform, which is used extensively by the OJM, is an excellent

example of a technology that is highly pervious without being openly licensed. Its af-

fordances are such that it can be tinkered with as much as most anyone would want, yet

it is not openly licensed. For the purpose of this case study, it is significant that Google

Cloud Platform clearly demonstrates that there is no exact match of perviousness to

openness. Nonetheless, generally speaking, it is probably accurate to say that pervious

tools are often openly licensed.

 To bring together the various literatures touched upon here, it can be seen that

the concept of perviousness is in good company. Given that there are obvious parallels

to other workflow concepts, perhaps perviousness does not carve out radically new the-

oretical ground. Nonetheless, irrespective of its novelty, I argue that the concept of per-

viousness is very useful because, as will be seen in the following analysis, it provides a

particular emphasis that makes it possible to think though ethical issues in the library

workplace.

9

Technical Review

[PLACE FIGURE 1 HERE]

Figure 1. Screenshot of the Open Journal Matcher

It will be helpful to take a brief, deep dive into the technical details of the OJM, to get a

sense as to how the project implements pervious technologies and methodologies. The

OJM is built with the intention of assembling what I call a pervious technical stack. The

tools listed below were chosen because they allow librarians and programmers the op-

portunity to reach in and tinker with the technologies. This approach is critical to the

ethical argument that follows.

 At the core of the project is a Flask application (https://flask.palletspro-

jects.com/en/2.0.x/) that serves up the web application and coordinates its data pro-

cessing work. Flask is a widely used tool, openly licensed under the BSD 3-Clause li-

cense (https://opensource.org/licenses/BSD-3-Clause). My use of Flask is somewhat

similar to the Django-based approach suggested by Mohtaj and Tavakkoli (2018), inso-

far as they also rely on similarly popular Python web frameworks.

In this application, Flask serves up web pages, but it also calls a Google Cloud

Function that I created to do the necessary intensive data processing. This data pro-

cessing is done asynchronously with Python. Asynchronous techniques in Python are

more fully described by Solomon (2020) and Hattingh (2020). My Google Cloud Func-

tion is called ~5,600 times asynchronously, once for each journal.

Each invocation of the Google Cloud Function loads pre-trained word vectors

from a natural language processing library called spaCy (https://spacy.io/). The Cloud

Function uses spaCy to compare the user’s draft abstract with the abstracts of a specific

10

open access journal. It produces a similarity score, which the Cloud Function returns to

Flask. The Flask application assembles these results and sorts them by their similarity

scores. It determines the top five matches, retrieves these titles from the DOAJ API, and

then displays these results to the user. This workflow can be seen in Figure 2.

[PLACE FIGURE 2 HERE]

Figure 2. A schematic view of the Open Journal Matcher

The critical computational work is done with spaCy. In this application, spaCy uses

word vectors to do its similarity comparisons. Word vectors are representations of

words in a multi-dimensional space, where each dimension represents one characteristic

of the word. For a more in-depth discussion of word vectors, see Parrish (2017) and

Kearns and Roth (2020). The spaCy library comes with pre-trained vectorized models.

Similarity between two texts can be calculated by comparing the similarity of their word

vectors. The OJM draws upon this functionality.

Discussion

While the technical details may be interesting, I would like to go further and consider

the ethical implications of this pervious infrastructure. For example, critical attention

should be applied to spaCy’s pre-trained models. It is necessary to be aware that bias

can be trained into these models, both easily and unintentionally. This is not meant to be

an accusation, but a reminder to keep critical faculties engaged. What interests me here

are not the details of spaCy, but rather how, from a pragmatic perspective, salient ethi-

cal questions can be asked when using pervious technologies.

11

In what follows, I hope to lay the groundwork for further detailed inquiry into

algorithmic tools. My argument is that librarians should be actively thinking about how

the tools they use may facilitate bias, and how they can address that problem. Kearns

and Roth (2020), and Broussard (2019) provide helpful examples of how such an analy-

sis might proceed. What is important here is that this type of analysis is only possible

when the tool is pervious or openly licensed. It is possible to meaningfully address is-

sues of bias only when the tools are pervious enough to peek inside.

This is because using non-open, impervious systems can make some very diffi-

cult bias problems even more intractable. For example, Broussard (2019) and Cowan

(2019) cite pernicious problems of bias in proprietary criminal sentencing algorithms

and recidivism predictors. The sentencing software they examine was shown to system-

atically favor harsher sentencing for people of color. While that is fundamentally unac-

ceptable, the ethical problems created by these tools is compounded by the fact that the

software is closed and inaccessible. Unfortunately, this type of problem is not unique to

the judiciary: Noble (2018) describes similar opaque problems of bias in search engines,

where black women are routinely sexualized and objectified in search results; while

Reidsma (2019) shows significant algorithmic problems in library discovery algorithms,

where unintended and troubling results are surfaced in response to user queries. These

documented cases of algorithmic bias strongly suggest that, for ethical reasons, librari-

ans need to have the ability to reach into algorithmic processes.

One reason that I chose to use spaCy is that it is released under the MIT license

(https://opensource.org/licenses/MIT). This license is widely regarded as being very

open. This licensing was important to make this a highly pervious project. SpaCy’s

12

openness and perviousness are what give access to the algorithmic logic that undergirds

spaCy and the OJM. While it would be highly speculative at this point to try to guess

what a deep dive into spaCy’s algorithmic logic might find, it is clear that the possibility

of undertaking on such an algorithmic analysis is important to us here. Pervious tools

make it entirely up to the programmer as to how deeply they might want to dive in.

Implications

This practical communication intends to serve as a starting point for considering the eth-

ics of pervious and impervious technologies. I maintain that when we build pervious

tools, it helps librarians become more technologically engaged. I also argue that pervi-

ous technologies encourage us to build more equitable libraries. To be clear, it is not my

intention to suggest that the OJM is an ethically exemplary project. Rather, it is an ordi-

nary project. In this context, however, this ordinariness is also one of its virtues. It pro-

vides us with a useful sounding board to work through common, yet ethically fraught

problems.

In my opinion, the best outcomes for libraries are realized when librarians use

and build technologies that are pervious and manipulable. These results are achieved

when librarians can reach into their technologies. By this, I mean that it is useful to be

able to determine one’s own level of engagement with the technical stack. It is possible

to reach in as far as one wants, make the changes that are desired, and perhaps ignore

(for now) other parts. From this perspective, technology is not a black box. It is not

something that is just for initiates. Deployed constructively, it can be something that an-

yone can work with to their own satisfaction.

13

While it is interesting and useful to consider the technical affordances of our li-

brary technologies, as I have done above, it is also important to situate these discussions

in the context of library workplaces (including our virtual workplaces). Moreover, as I

said above, perviousness is a social concept, as well as a technical one, so it is worth ex-

amining how perviousness affects our librarianship. I will now briefly turn to organiza-

tional questions.

To put it succinctly, in many libraries, there is often a problematic tight coupling

of technical knowledge and ethical influence over library projects. Specialist library

technologists usually work on, and determine how, technologies are used in their li-

brary. This is a very common, yet impervious approach. I would argue that when tech-

nical and ethical decisions are taken by a small number of technologists in a library, the

outcomes are frequently problematic. This is largely a consequence of impervious work-

flows. Monopolization of technical decisions by a few technically-minded librarians or

programmers can easily lead to less-than-optimal outcomes. Thankfully, it is an ap-

proach that can, and should be, be contested.

Giving technologists too much say over library technologies sets up an unpalata-

ble ethical hierarchy in the library. Providing the technologist with a privileged position

to make decisions about library tools does very little to distribute technical agency,

knowledge about the tools, or ethical influence over the library’s work. Moreover, as we

are all fallible humans, librarians need to be prepared for the fact that a technologist will

sometimes fail at fully recognizing or addressing all of the ethical issues raised by a pro-

ject. Ethical lacunae can sometimes go unaddressed as a result of the monopolization of

14

technical knowledge. When this happens, discrepancies in influence within the organi-

zation, usually along predictable racial and gendered lines, are likely to be reinforced.

How do we deal with the biases that our workflows produce? Technical solu-

tions have been suggested. Cowan (2019) points to software tools that can help visual-

ize and identify bias, while Kearns and Roth (2020) also suggest technical fixes. How-

ever, I suggest that a more readily realizable solution is having more eyes on the prob-

lem – and specifically, a diversity of perspectives. Having pervious technologies helps

with this.

Pervious technologies are more visible, in Tkacz’s (2007) sense, than their

closed counterparts. To continue with the visibility metaphor, Raymond (1999) fa-

mously said that “with enough eyes, all bugs are shallow”. While this aphorism is well

known among programmers, it is not without its own agenda: this quote should be read

within Raymond’s libertarian push to make free software more commercially oriented

(Kelty, 2008; Coleman, 2013). But perhaps his aphorism should be radically reworked,

to say instead: “with pervious technologies, and enough diverse perspectives, all ethical

problems are apparent”. Not quite as catchy, but hopefully a more constructive way to

look at library technology.

Crucially, I suggest that pervious systems, when combined with diverse perspec-

tives, yield ethically improved systems. Pervious methodologies provide an alternative

to the technologist’s problematic monopolization of technical authority. Rather than de-

pending upon technologists for technical and ethical decisions, pervious technologies

encourage everyone to be as involved as much as they want. Having more librarians

participate in technical work is not at all redundant, rather, it increases the expertise of

15

the entire library. Taking away the privileged role of the technologist makes all librari-

ans into simultaneous teachers and learners of technical skills. It encourages mutual

support and learning together.

While pervious technology is certainly not a panacea for the politics of technol-

ogy in the library workplace, it does have benefits. It obviously does not overcome the

systemic inequities in technical and ethical privilege that have, in my opinion, long been

the baseline for library organizations. But pervious tools can improve the distribution of

technical knowledge in the library, by fostering participation and supportive co-learning

for librarians.

Importantly, librarians should discourage monopolization of ethical responsibil-

ity and technical knowledge within their organizations, and instead distribute technical

participation as widely as possible. This will allow for more participation in technical

decision making. San Diego argues that librarians need to take concrete actions to make

our communities more diverse and open: “show, don’t just tell” (qtd. in Shivers-

McNair, 2021, p. 97). Building pervious tools is a step along that road. When librarians

build inclusively, together, they “show”.

Conclusion

The OJM has served an expedient purpose in this case study. It has provided a practical

frame to allow reflection on some of the ethical issues facing people building and de-

ploying technologies in libraries. The motivation behind this practical communication

has been to think through some of the problems with building with technology in the li-

brary workplace. I hope that the concept that I have proposed - perviousness - proves

16

useful when thinking about library tools. Ultimately, I suggest that moving toward more

previous technologies and methodologies can help librarians help each other do more

ethically-minded technical library work.

17

References

Balnaves, E. (2008). Open source library management systems: A multidimensional

evaluation. Australian Academic and Research Libraries, 39(1), 1–13.

Broussard, M. (2019). Artificial unintelligence: How computers misunderstand the

world (First paperback edition). MIT Press.

Cobb, C. G. (2011). Making sense of agile project management: Balancing control

 and agility. Wiley.

Coleman, E. G. (2012). Coding freedom: The ethics and aesthetics of hacking. Prince-

ton University Press.

Cowan, E. (2019, October 4). Ethics & bias detection in the real world. PyGotham,

New York. https://pyvideo.org/pygotham-2019/ethics-bias-detection-in-the-real-

world.html

DiSessa, A. (2001). Changing minds: Computers, learning, and literacy. MIT Press.

Errami, M., Wren, J. D., Hicks, J. M., & Garner, H. R. (2007). ETBLAST: A web

server to identify expert reviewers, appropriate journals and similar publications.

Nucleic Acids Research, 35, W12-15.

Hattingh, C. (2020). Using Asyncio in Python: Understanding Python’s asynchronous

programming features. O’Reilly.

Hillard, D. (2020). Practices of the Python Pro. Manning.

Hunt, A., & Thomas, D. (1999). The pragmatic programmer: From journeyman to mas-

ter. Addison-Wesley Professional.

Kafai, Y. B., & Burke, Q. (2014). Connected code: Why children need to learn pro-

gramming. MIT Press.

Kang, N., Doornenbal, M. A., & Schijvenaars, R. J. A. (2015). Elsevier Journal Finder:

Recommending journals for your paper. Proceedings of the 9th ACM Confer-

ence on Recommender Systems, 261–264.

Kearns, M., & Roth, A. (2020). The ethical algorithm: The science of socially aware al-

gorithm design. Oxford University Press.

Kelty, C. M. (2008). Two bits: The cultural significance of free software. Duke UP.

Kraft, C. (2012). User experience innovation: User centered design that works. Apress.

https://pyvideo.org/pygotham-2019/ethics-bias-detection-in-the-real-world.html
https://pyvideo.org/pygotham-2019/ethics-bias-detection-in-the-real-world.html

18

Medinilla, A. (2012). Agile management: Leadership in an Agile environment.

 Springer.

Mohtaj, S., & Tavakkoli, F. (2018). Maglet: A Persian journal recommender system.

Proceedings of the 9th International Symposium on Telecommunications, 348–

352.

Moreira, M. E. (2013). Being Agile: Your roadmap to successful adoption of Agile.

 Apress.

Muir, S. P. (2005). An introduction to the open source software issue. Library Hi Tech,

23(4), 465–468.

Njoku, I. S. (2017). Use of open source technology for effective academic libraries ser-

vices in Nigeria. Library Philosophy and Practice, 1686.

Noble, S. U. (2018). Algorithms of oppression: How search engines reinforce racism.

New York University Press.

Papert, S. (1993). Mindstorms: Children, computers and powerful ideas (2nd ed.). Basic

Books.

Parrish, A. (2017). Understanding word vectors: A tutorial for “Reading and Writing

Electronic Text.” GitHub Gist.

https://gist.github.com/aparrish/2f562e3737544cf29aaf1af30362f469

Raymond, E. S. (2001). The cathedral and the bazaar: Musing on Linux and open

source by an accidental revolutionary (Revised edition). O’Reilly.

Reidsma, M. (2019). Masked by trust: Bias in library discovery. Litwin Books.

Schuemie, M. J., & Kors, J. A. (2008). Jane: Suggesting journals, finding experts. Bio-

informatics, 24(5), 727–728. https://doi.org/10.1093/bioinformatics/btn006

Shivers-McNair, A. (2021). Beyond the makerspace: Making and relational rhetorics.

University of Michigan Press. https://doi.org/10.3998/mpub.11724511

Solomon, B. (2020). Async IO in Python: A complete walkthrough. Real Python.

https://realpython.com/async-io-python/

Tkacz, N. (2007). Power, visibility, Wikipedia. Southern Review, 40(2), 5–19.

Vee, A. (2017). Coding literacy: How computer programming is changing writing. MIT

Press.

https://gist.github.com/aparrish/2f562e3737544cf29aaf1af30362f469
https://gist.github.com/aparrish/2f562e3737544cf29aaf1af30362f469
https://doi.org/10.1093/bioinformatics/btn006
https://doi.org/10.3998/mpub.11724511
https://realpython.com/async-io-python/
https://realpython.com/async-io-python/

	On the ethics of working with library technology: the case of the Open Journal Matcher
	Introduction
	Literature review
	Technical Review
	Discussion
	Implications
	Conclusion
	References

