Modeling and Measuring the Nocturnal Drainage Flow in a High-Elevation, Subalpine Forest with Complex Terrain

Chuixiang Yi
CUNY Queens College

Russell K. Monson
University of Colorado, Boulder

Zhiqiang Zhai
University of Colorado, Boulder

Dean E. Anderson
U.S. Geological Survey

Brian Lamb
Washington State University

See next page for additional authors

How does access to this work benefit you? Let us know!

Follow this and additional works at: https://academicworks.cuny.edu/qc_pubs

Part of the Geophysics and Seismology Commons

Recommended Citation

This Article is brought to you for free and open access by the Queens College at CUNY Academic Works. It has been accepted for inclusion in Publications and Research by an authorized administrator of CUNY Academic Works. For more information, please contact AcademicWorks@cuny.edu.
Modeling and measuring the nocturnal drainage flow in a high-elevation, subalpine forest with complex terrain

Chuixiang Yi, Russell K. Monson, Zhiqiang Zhai, Dean E. Anderson, Brian Lamb, Gene Allwine, Andrew A. Turnipseed, and Sean P. Burns

Received 27 May 2005; revised 17 August 2005; accepted 1 September 2005; published 16 November 2005.

[1] The nocturnal drainage flow of air causes significant uncertainty in ecosystem CO$_2$, H$_2$O, and energy budgets determined with the eddy covariance measurement approach. In this study, we examined the magnitude, nature, and dynamics of the nocturnal drainage flow in a subalpine forest ecosystem with complex terrain. We used an experimental approach involving four towers, each with vertical profiling of wind speed to measure the magnitude of drainage flows and dynamics in their occurrence. We developed an analytical drainage flow model, constrained with measurements of canopy structure and SF$_6$ diffusion, to help us interpret the tower profile results. Model predictions were in good agreement with observed profiles of wind speed, leaf area density, and wind drag coefficient. Using theory, we showed that this one-dimensional model is reduced to the widely used exponential wind profile model under conditions where vertical leaf area density and drag coefficient are uniformly distributed. We used the model for stability analysis, which predicted the presence of a very stable layer near the height of maximum leaf area density. This stable layer acts as a flow impediment, minimizing vertical dispersion between the subcanopy air space and the atmosphere above the canopy. The prediction is consistent with the results of SF$_6$ diffusion observations that showed minimal vertical dispersion of nighttime, subcanopy drainage flows. The stable within-canopy air layer coincided with the height of maximum wake-to-shear production ratio. We concluded that nighttime drainage flows are restricted to a relatively shallow layer of air beneath the canopy, with little vertical mixing across a relatively long horizontal fetch. Insight into the horizontal and vertical structure of the drainage flow is crucial for understanding the magnitude and dynamics of the mean advective CO$_2$ flux that becomes significant during stable nighttime conditions and are typically missed during measurement of the turbulent CO$_2$ flux. The model and interpretation provided in this study should lead to research strategies for the measurement of these advective fluxes and their inclusion in the overall mass balance for CO$_2$ at this site with complex terrain.

1. Introduction

[2] Eddy covariance tower systems have become the tool of choice for measurement of trace gas and energy exchange between vegetation and the atmosphere [Baldocchi et al., 2000, 2001]. However, when this technique is applied to ecosystems with complex terrain, and for which calm nights are frequent, significant uncertainties can occur. The sensors on the tower above the canopy cannot properly account for the horizontal flows that carry scalars and energy beneath the canopy, the so-called advective flux component [Goulden et al., 1996; Baldocchi et al., 2000; Yi et al., 2000; Aubinet et al., 2003; Staebler and Fitzjarrald, 2004; Feigenwinter et al., 2004; Turnipseed et al., 2003, 2004; Marcolla et al., 2005; Aubinet et al., 2005]. One of the primary causes of advective fluxes is gravitationally induced drainage flows that are especially prevalent in mountain ecosystems. Addition of these mean fluxes to the turbulent flux budget is required to achieve accurate estimates of the total surface-atmosphere exchange of CO$_2$ and H$_2$O. In regions of complex topography, which are also among the most important for determining regional and
global carbon and water budgets [Barry, 1993; Schimel et al., 2002], the characterization of drainage flows and their associated advective fluxes is especially important.

[1] One line of evidence for the occurrence of drainage flows is the within canopy, S-shaped, wind profile that has been widely observed [Fons, 1940; Allen, 1968; Bergen, 1971; Oliver, 1971; Landsberg and James, 1971; Shaw, 1977; Lalic and Mihailovic, 2002; Turnipseed et al., 2003]. The S-shaped profile refers to a second wind maximum that is often observed within the trunk space of forests and a minimum wind speed in the region of greatest foliage density [Shaw, 1977]. The second wind maximum is likely due to the combined effect of local drainage flows that can achieve relatively high speeds in the lower region of the canopy (D.E. Anderson et al., Mean advective flux of CO₂ in a high elevation subalpine forest during nocturnal conditions, submitted to Agricultural and Forest Meteorology, 2005, hereinafter referred to as Anderson et al., submitted manuscript, 2005), and resistance to the mean wind flow that can reduce wind speeds in the region of the canopy with high leaf area density [Massman, 1997; Massman and Weil, 1999; Mohan and Tiwari, 2004; Poggi et al., 2004]. The factors that most determine the potential for drainage flows are terrain slope and nocturnal radiative cooling of the slope surface [Fleagle, 1950; Manins and Sawford, 1979; Doran and Horst, 1981; Mahrt, 1982]. Although past modeling efforts have replicated local drainage flows across sloped terrain [Mahrt, 1982], to our knowledge, no analytical mathematical model has yet predicted the second wind maxima within the context of the entire vertical wind profile. It would be of great benefit to have such a model as its use would move us closer to being able to close scalar and energy budgets for both modeled and measured flux footprints. It would also provide us with even better tools for modeling the processes of scalar and energy fluxes, and thus producing greater accuracy in our predictions of the effects of environmental change on ecosystem biogeochemical cycles.

[4] Our past observations of wind flow patterns at the Niwot Ridge Ameriflux site have revealed the presence of the secondary wind maximum, especially during nights with high atmospheric stability [Turnipseed et al., 2003]. We initially attributed the near-surface maximum as being due to nighttime drainage flows. In a subsequent study, we used an array of four towers, each with vertical profiling of CO₂ and, at least, two-dimensional wind speed to estimate the magnitude and dynamics of horizontal mean advective CO₂ fluxes (Anderson et al., submitted manuscript, 2005). In the current study, we continued analysis of the drainage flow patterns using the four-tower experimental design. In order to interpret our observations, we developed a one-dimensional analytical model that is able to predict the S-shaped wind profile. We constrained the model with observations of forest canopy structure, including detailed observations on the vertical distribution of leaf area density, and we validated some of the model predictions using an SF₆ release experiment. Finally, we tested the analytical model against a numerical model developed with computational fluid dynamics (CFD) techniques; the latter model represents a more detailed, mechanistic model. Overall, our aim was to provide more insight into the dynamics and causes of drainage flows in this ecosystem, and prepare a means of ultimately assessing the effect of bias in the mean horizontal and vertical flux components on the overall mass balance for CO₂ at the study site.

2. Measurements

2.1. Study Site

[5] The studies were conducted at the Niwot Ridge Ameriflux site located in a subalpine forest ecosystem in the Rocky Mountains of Colorado (40°15′58″N; 105°2′47″W, 3050 m elevation), approximately 25 km west of Boulder and 8 km east of the Continental Divide. The terrain of the site has a slope of approximately 5°–7° within 400 m in the east-west direction. Detailed maps showing the site topography have been presented in past papers [Turnipseed et al., 2003, 2004]. Predominant winds are from the west [Brael and Brazel, 1983], flowing downslope. Summertime meteorology produces valley-mountain airflows, with thermal-induced, near-surface upslope winds from the east occurring on many afternoons. Nighttime flow is nearly always from the west, and is often katabatic (downslope drainage). The surrounding subalpine forest is ~100 years old, having recovered from clear-cut logging. Very little understory canopy is present due to the thin, often dry soils at the site. Other details for the site can be found in Monson et al. [2002] and Turnipseed et al. [2002].

2.2. Tower Profile and Eddy Covariance Measurements

[6] A multiple-tower observing system was employed which is capable of measuring eddy fluxes and vertical profiles of the mixing ratios of CO₂, H₂O, wind speed and wind direction. This system consists of four towers: ET (east tower); WT (west tower); NT (north tower) and ST (south tower) (Anderson et al., submitted manuscript, 2005). The ET and WT towers are located 150 m apart and are oriented on a west-east (240°–60°) transect. The NT and ST towers are 150 m apart along the 330°–150° transect. Thus the four towers form the vertices of a diamond, with the west-east points of the diamond aligned along the westerly wind vector known to dominate nighttime flows. Eddy covariance fluxes of CO₂, water vapor and sensible heat were measured on the two west-to-east aligned towers. The ET tower measurement height was 21.5 m and the WT tower measurement height was 33 m. Vertical profiles of scalar mixing ratios, wind speed and wind direction were measured at five levels on the ET and WT towers (1, 3, 6, 10, and 21.5 m on ET tower; 1, 3, 6, 10, and 33 m on WT tower), and at two levels on the two shorter towers (1, 6 m on NT and ST towers). Wind speed and direction were measured with at least two-dimensional, and at several heights three-dimensional, sonic anemometers. The instrumentation, calibration scheme and flux calculation methodology have been described in detail by Anderson et al. (submitted manuscript, 2005) and Turnipseed et al. [2002, 2003, 2004].

2.3. Leaf Area Density Measurements

[7] Canopy structure was studied in sixteen 10 × 10 m plots, eight directly east and eight directly west of the ET flux tower. The first plot was established at 50 m east or
50 m west of the tower, with subsequent plots established at
20 m intervals. Each tree greater than 1 m in height was
measured in all plots (total of 839 trees) for diameter at
breast height, height to crown and maximum diameter of
crown (typically at the base of the crown) in the N-S and
E-W perpendicular coordinates, and total tree height. A
separate survey was done of 90 representative trees
(30 lodgepole pines, 30 subalpine firs, and 30 Engelmann
spruces) in the plots, evaluating diameter at breast height
against number of branches in the upper, middle and lower
third of the trees, using binoculars to count branches. We
found this approach to be accurate to within 10% when
checked against a subset of ten trees accessible by canopy
access towers at the site; the open nature of the forest, and
thin nature of the tree crowns also facilitates accurate
viewing with binoculars. Linear regression models pre-
dicted 37–54%, 6–24%, and 1–30% of the variance in
branch number by diameter at breast height in the top,
middle and bottom sections of the trees, respectively.
Representative branches from the upper, middle and lower
third of the crown in 30 trees equally distributed among
each of the three dominant tree species were cut at their
intersection with the bole and measured for total needle dry
biomass. Needle mass was converted to needle area using a
regression constructed from separate analyses of sun and
shade needles in 10 trees from each of the three species.
Needle areas were determined with the water immersion
method described by Chen et al. [1997]. From knowledge
of needle area per branch, branch number per unit bole
diameter, average branch length in the top, middle and
bottom thirds of the canopy, and total canopy height and
diameter (average diameter of the east-to-west and north-to-
south crown diameter measurements), we estimated the
average leaf area index (LAI) in 10 cm, concentric circles
for each vertical third of the canopy for each of the 839 trees.
We assumed that the vertical distribution of LAI in each
third of the canopy decreased linearly from the bottom to
the top in 1 m thick layers. From these calculations, we
were able to estimate the leaf area density (leaf area per unit
volume) for each 1 m thick vertical layer of the crown of
each tree. The leaf area density was summed for all trees in
a plot for each vertical layer between the ground and 16 m
(the maximum height of the canopy) and divided by the
total area of the plot to provide a vertical profile of leaf area
density for the entire plot.

2.4. SF6 Experiments

[S] Sulfur hexafluoride (SF6) tracer experiments were
conducted in July 2001 and 2002. In 2001, SF6 was released
continuously at a steady rate from a point source located at
0.2 m above the forest floor approximately 50 m upslope
from the WT tower. In 2002, SF6 was released from a 200 m
line source deployed across the slope at 0.2 m height and
50 m upslope from the WT tower. Total release rates were
controlled with a mass flow controller, and measurements
from the individual capillary restrictors (every 3 m along the
line) were made from approximately 1/3 of the points during
each test day. A fast response, continuous SF6 analyzer was
operated with the existing CO2 ambient profiler system to
measure SF6 concentrations at 14 locations on the towers
(ET, WT, ST, NT) in 2001 and 2002. The profiler sequential-
ly samples for 30 s at each position and the measured
concentrations are combined into 30 minute averages. The
analyzer was calibrated using certified commercial standards
(5% accuracy) during each test day. In this paper we only
report the results from a single SF6 release during August
2002; this was a period when all of the release and
detection instruments appeared to functioning at optimal
levels, atmospheric stability was high, and the observed
drainage flows were strong.

3. Theory

[S] For simplicity, the atmosphere is assumed to be
stable, incompressible and inviscid. Drainage flow is
assumed to develop over a constant slope with angle \(\alpha \). The
coordinate system used is Cartesian, with \(x \) in the direction
of the mean downslope wind, and \(z \) normal to the slope. The
canopy structure is assumed to be horizontally uniform but
varies in the vertical coordinate. No vertical motion and
horizontal static pressure gradient are considered, and
Coriolis acceleration is neglected. For the steady state
condition, drainage flow is governed by [Wilson and Shaw,
1977; Mahrt, 1982]:

\[
- \frac{\partial u' u'}{\partial z} - g \frac{\Delta \theta}{\theta_0} \sin \alpha = c_D(z) \ell(z) u'^2(z),
\]

where \(-u' u'\) is the average shear stress, \(g \) is the
acceleration due to gravity, \(\theta_0 \) is the ambient potential
temperature (in this case taken at 21.5 m height and the
influence of moisture on buoyancy is neglected), \(\Delta \theta =
\theta - \theta_0 \) is the deficit of potential temperature in the
drainage flow (where \(\theta \) is the potential temperature of
the drainage flow), \(\ell(z) \) is the plant area density facing
the mean wind (defined as the frontal area of individual
elements per unit volume of canopy), \(c_D(z) = C_D(z) p(z) \)
is the effective drag coefficient of plant elements subject
to a shelter factor \(p(z) \) within the canopy [Massman,
1997; Massman and Weil, 1999], \(C_D(z) \) is the foliage drag
coefficient, and \(u'(z) \) is the average mean wind velocity.
The drag coefficient within the canopy is defined according to
Mahrt et al. [2000] as

\[
c_D(z) = \frac{u'^2(z)}{u'^2(z)}
\]

where \(u'(z) \) is the friction velocity within the canopy and is
related to the shear stress as

\[
-u' u' = u'^2(z).
\]

After substitution, equation (1) becomes

\[
\frac{\partial (c_D(z) u'^2(z))}{\partial z} - c_D(z) u'^2(z) \ell(z) = g \frac{\Delta \theta}{\theta_0} \sin \alpha.
\]

The cumulative leaf area per unit ground area below
height \(z \) is defined as

\[
L(z) = \int_0^z \ell(z') dz'.
\]
Multiplying both sides of (4) by \(e^{-L_L(z)} \) and integrating from height \(z \) within the canopy to the top of the canopy \(h \), we obtain

\[
u^+(z) = \pm \left(e^{-(L_L(z))} \frac{c_D^h}{c_D(z)} u_h^2 - g \frac{\Delta \theta \sin \alpha}{\theta_0 c_D(z)} \int z^h e^{-((L(z)) - L_L(z))} dz \right)^{\frac{1}{2}},
\]

(6)

where \(L(h) = \text{LAI} \) (the leaf area index), \(c_D^h \) and \(u_h \) are the respective drag coefficient and mean wind speed at the top of the canopy. Equation (6), is to our knowledge, the first analytical solution to the drainage flow problem inside a forest. Equation (6) retains the "driving" force of gravity and 'resistive' force of canopy shear that govern the drainage flow and were originally expressed in equation (1). The solution in equation (6) covers the situations of downslope \([\nu^+(z)]\) and upslope \([\nu^-(z)]\) wind speed. At our study site, the steady state upslope flow \([\nu^-(z)]\) is clearly restricted to daytime periods, and therefore will not be discussed further in this paper. Hereafter, \(u(z) \) will refer solely to downslope wind speed \([\nu^+(z)]\), and in our consideration will be restricted to nighttime periods.

Prediction of the Reynolds stress, \(-\overline{u'w'}\), profile within a canopy is important with regard to understanding the complex interactions between wind flow and canopy structure [Shaw, 1977]. Several complicated higher-order closure models have been developed [e.g. Wilson and Shaw, 1977; Katul and Albertson, 1998; Massman and Weil, 1999]. A simple Reynolds stress model can be derived using our parameterization scheme. The drag force density, \(c_D(z)\overline{u^2}(z) \), on the right hand side of equation (1) can be replaced through equations (2) and (3) by the Reynolds stress. Thus equation (1) becomes

\[-\frac{\partial \overline{u'w'}}{\partial z} + \ell(z)\overline{u'w'} = g \frac{\Delta \theta}{\theta_0} \sin \alpha.\]

(7)

When we repeat a similar procedure in the derivation of equation (6), we obtain:

\[-\overline{u'w'}(z) = -\overline{u'w'}(h)e^{-(L_L(z))} - g \frac{\Delta \theta}{\theta_0} \sin \alpha \int z^h e^{-(L(z)) - L_L(z)} dz,\]

(8)

where \(\overline{u'w'}(h) \) is the Reynolds stress at the top of canopy. If the terrain is flat, the dimensionless Reynolds stress profile becomes:

\[-\frac{\overline{u'w'}(z)}{u^2(h)} = e^{-(L_L(z))},\]

(9)

where \(u^2(h) = -\overline{u'w'}(h) \). The relative Reynolds stress profile is determined uniquely by the function \(e^{-(L_L(z))} \). We refer to this function as a 'canopy buffer function' because it reflects the manner in which canopy structure influences wind flow dynamics within the canopy.

4. Results

4.1. Application of the Model to a Forest Canopy With Simple Structure

As an example of the model, we chose the simple case in which the vegetation has a uniform vertical distribution of leaf area \((\ell(z) = \ell = \text{cons.})\) and drag coefficient \((c_D(z) = c_D = \text{cons.})\). With these assumptions, equation (6) is reduced to

\[u(z) = \left(\frac{c_D^h}{c_D} e^{-\text{LAI}(1-z)} - \frac{g h \Delta \theta \sin \alpha}{\theta_0 \text{LAI} c_D} (1 - e^{-\text{LAI}(1-z)}) \right)^{\frac{1}{2}},\]

(10)

where we used

\[\frac{L(z)}{L(h)} = \frac{\int z^h \ell(z) dz}{\int h^0 \ell(z) dz} = \frac{z}{h} \quad \text{and} \quad \ell(z) = \frac{\text{LAI}}{h}.\]

We can partition equation (10) into slope-independent and slope-dependent components. The slope-independent component can be written as:

\[u_f(z) = \sqrt{-\frac{c_D^h}{c_D} g h e^{-\frac{L_L(z)}{h}}}.\]

(11)

This is the widely used exponential model for wind profile within a canopy [Inoue, 1963; Cionco, 1965; Cowan, 1968; Cionco, 1972; Raupach and Thom, 1981; Albini, 1981; Wilson et al., 1982; Massman, 1987; Macdonald, 2000; Mohan and Tiwari, 2004]. The dependence of the slope-independent component on LAI is illustrated in Figure 1. The prediction from the model clearly reflects the overall influence of the canopy foliar density that resists mean wind flow, and reduces wind speed to extremely low values at high foliar densities. Using the same assumptions, the slope-dependent component can be written as

\[u_s(z) = \sqrt{-\frac{g h \Delta \theta \sin \alpha}{\theta_0 \text{LAI} c_D} (1 - e^{-\text{LAI}(1-z)})}.\]

(12)
Equation (12) has a gravity-dependent driver that enhances wind speed in the lower part of canopy, as shown in Figure 2. Foliar density impedes the gravitational flow, however, causing wind speed to decrease with increasing of LAI, in the same manner as that for the slope-independent component.

Under this uniform canopy structure condition, the Reynolds stress profile (equation (8)) becomes:

$$-\frac{\overline{u'w'}}{\overline{u^2}} = -\frac{\overline{u'w'}}{\overline{u^2}} + \frac{g \Delta \theta \sin \alpha}{\theta_0 \text{LAI}} \left(e^{-\text{LAI}(1 - \frac{z}{h})} - e^{-\text{LAI}(1 - \frac{z_0}{h})} \right).$$

The LAI dependence of the Reynolds stress is similar to that of the mean wind speed as shown in Figures 1 and 2.

4.2. Application of the Model to the Niwot Ridge Canopy

We applied equation (6) to the Niwot Ridge forest canopy to derive the vertical profile in canopy drag and to partition the influences of the slope-independent and slope-dependent components on the downslope drainage flow velocity. In this derivation, we used the observed mean wind speed profile from two of the four towers (Figure 3). In using equation (6), the value for u_0 was taken from the analysis shown in Figure 3 as 2.93 m s$^{-1}$; values for $u(z)$ were taken as the measured mean wind values at the respective heights reported in Figure 3. The upper part of the profile $u(z)$ (i.e., above 10 m) was calculated by the semilogarithmic wind profile:

$$u(z) = u_* \frac{k}{\ell} \ln \left(\frac{z - d}{z_0} \right).$$

using von Karman’s constant (k) as 0.4 and u_* as 0.6 (m s$^{-1}$). The displacement height (d) and roughness length (z_0) under near-neutral atmospheric stability were taken as 7.8 m and 1.16 m, respectively, which represent measured values for the site [Turnipseed et al., 2003]. Although the semilogarithmic law is probably invalid under many conditions in the roughness sublayer [e.g., Raupach and Thom, 1981], it is the only tool we have available at the present time for smoothing the wind profile; it has limitations in this analysis, which will be discussed shortly.

The drag coefficient profile was derived by equation (6) with, $\Delta \theta = -2$ K, $\theta_0 = 283$ K, and slope $\alpha = 5^\circ$ (Figure 4). Mahrt et al. [2001] have shown that the surface

Figure 2. Dependence of slope-dependent component of canopy wind profile on LAI predicted by equation (12) with two respective slopes: (a) $\alpha = 5^\circ$ and (b) $\alpha = 15^\circ$. The values of the rest of the parameters in equation (12) are specified as $c_D = 0.11$, $\Delta \theta = -2$ K, and $\theta_0 = 283$ K.

Figure 3. Averaged wind profile (circles) over nights (N = 2556) in 2002. Points at level 1, 3, 6, 10, and 33 m were measured on the west tower (WT), the point at level 21.5 m was measured on the east tower (ET). Data were only included that were available for all six levels within a single averaging period. Error bars for all points were smaller than the symbols. The line with horizontal dashes is a smoothed curve. The upper part of the line was calculated by the semilogarithmic wind profile as described by Turnipseed et al. [2003].

Figure 4. The leaf area density profile (solid line) observed and drag coefficient profile (line with horizontal dashes) derived by equation (6). The circles and triangle were the average drag coefficients calculated by equation (2) from the half-hour eddy covariance data at 1.5, 2.56, 5.7, and 21.5 m. The data used in the averages at 1.5, 2.56 and 21.5 m occurred in the same averaging periods during the nights of 2002 (N = 1798), while the data used at 5.7 m were in the nights of 2003 (N = 2603). The surface drag coefficient observed at 21.5 m (triangle) is close to the modeled values at the top of canopy. The horizontal error bars indicate ±1 standard error of the mean leaf area density.
drag coefficient is independent of stability as wind speed exceeds 2 m s\(^{-1}\) for forests. The value \(c_D = 0.03\) (for \(u_k = 2.93\) m s\(^{-1}\)) is close to the range of values observed by Mahrt et al. [2001] in representative forests. Drag coefficients (circles and triangle in Figure 4) were obtained in a two-step calculation: half-hour values were first calculated by equation (2) and then averaged for each level over the entire nighttime period. The order of calculation will influence the estimated values due to the nonlinearity in equation (2). The records with small stress \((u_k < 0.01\) m s\(^{-1}\) and weak wind speeds \(<0.10\) m s\(^{-1}\)) were screened out due to potential errors [Mahrt et al., 2000]. The data used in the averages at 1.5, 2.56 and 21.5 m occurred in the same hours in the nights of 2002 (N = 1798). However, the data used for the level at 5.7 m were in the nights of 2003 (N = 2603). Although sampling times for level 5.7 m were not the same as those for the other heights, the mean values appear to fall within the expected portion of the graph, indicating consistent parameter constraint and data population distribution during these two different years. These observed drag coefficient values are within the range 0.12–0.19 of that was observed for a coniferous forest at Lavarone in Italy by Cescatti and Marcolla [2004].

[15] The predicted drag coefficient profile is in relatively good agreement with the observed vertical profile in leaf area density (Figure 4). The model, however, predicts a greater proportional decrease in the drag coefficient of the beneath-canopy air space, compared to the decrease in leaf area density. In this canopy, the nature of the leaf area density changes as a function of height in the canopy air space. Above 5 m, canopy elements are mostly represented by needles and branches, whereas below 5 m needle density decreases to relatively low values and the density of canopy elements is mostly reflected in dead, persistent branches (data not shown). It is possible that the stiffness of the dead branches, and their tendency to not flex or move under the force of the airflow, causes them to impose a higher drag on the flow than predicted with traditional foliar drag coefficients.

[16] The components of downslope wind speed \(u = \sqrt{u_f^2 + u_g^2}\), where

\[
u_f(z) = u_k \sqrt{\frac{c_D}{e^{z(LAI - L(z))}}},
\]

\[
u_g = \sqrt{-\frac{\Delta0 \sin(\alpha)}{\theta e_{D}(z)} \frac{h}{z} e^{z(L(z) - L(z))} dz},
\]

are shown in Figure 5a. Gravitational forces (reflected in the slope-dependent component) are more important than the mean wind (reflected in the slope-independent component) in driving the drainage flow between the ground surface and a height approximately 4 m above the ground. The slope-independent component contributes more to the shape of the wind profile above 4 m; this is primarily due to the effect of plant elements impeding the transport of momentum downward to the ground. Overall, both components must be considered to understand the causes of the S-shaped wind profile within the canopy. It should be noted that this partitioning is dependent on terrain slope (Figures 5b and 5c). For the case of relatively flat terrain, canopy structure and influences on the mean wind are the major causes for the S-shaped wind profile (Figure 5b). In the case of a terrain slope equal to 15°, the wind profile is determined mainly by the slope-dependent forcings below 8 m (Figure 5c).

[17] The predicted Reynolds stress profile is shown in Figure 6 with data from observations included for comparison. The entire profile is largely controlled by the canopy buffer function. Most of the flow momentum is extracted in a relatively thin layer of the upper canopy. The Reynolds stress in the lower canopy is almost uniform and caused mainly by gravitational flow.

[18] In order to compare our simple model with past higher-order closure models [Wilson and Shaw, 1977; Albini, 1981] we used equation (9) and the leaf area density data reported by Shaw [1977] to calculate the dimensionless
Reynolds stress profile (Figure 7). Predictions of the stress profile using our simple model were similar to those from the Wilson and Shaw (WS) model and in better agreement than other past models.

4.3. Prediction of a Very Stable Air Layer Within the Canopy

[19] The vertical profile of wind speed predicted by equation (6) provides evidence of a layer with relatively low flow between 3 and 6 m above the ground (Figure 3). This layer lies immediately below the layer of maximum leaf area density. We confirmed the existence of the stable layer using measurements of the vertical profile in wind speed and air temperature (Figure 8). Using the Richardson number (\(Ri\) [Thom, 1971] defined as

\[Ri = \frac{g}{\kappa} \frac{\partial T}{\partial z} \rightarrow \infty \]

with \(\partial u/\partial z = 0\) (Figure 8a) and \(\partial T/\partial z \neq 0\) (Figure 8b), we observed maximum stability at 6 m when the above-canopy atmosphere was stable \((0.05 \leq (z - d/L) < 0.05)\) and 3 m when the above-canopy atmosphere was neutral \((-0.05 < (z - d/L) < 0.05)\). Although the wind speed (Figure 8a) and temperature (Figure 8b) were measured in different summers, the occurrence of stable 30 min observation periods (~90%) and near-neutral 30 min observation periods (~10%) were similar for both years.

[20] We interpret the layer of maximum leaf area density, just above the within-canopy stable layer, to act as a “lid” that minimizes vertical exchange between the lower and upper canopy layers, essentially uncoupling the nighttime near-surface layer from the layers near the top of the canopy. We conducted SF6 tracer release experiments to confirm this hypothesis. During a 3.5 hour observation period on the night of 8 August 2002 (Figure 9), when atmospheric stability was relatively high, drainage flows were strong (Figure 10), and the SF6 release line and tower-mounted sensors were well calibrated and working at

Figure 6. Dimensionless Reynolds stress profile predicted by equation (8): triangles, total Reynolds stress; diamonds, slope-independent component; squares, slope-dependent component; circles, observations. The observed data points were obtained from the same data sets as in Figure 4.

Figure 7. Comparison of dimensionless Reynolds stress profile predicted by present simple model and the higher-order closure models (WS model refers to Wilson and Shaw [1977]; Albini model refers to Albini [1981]) on the basis of the data reported by Shaw [1977]. The canopy height was 2.9 m, and LAI was 3.0 [Shaw et al., 1974].

Figure 8. The profiles of average (a) wind speed and (b) temperature during nighttime periods. The data used in Figure 8a represent the average wind speed profile over whole summer nights in 2002; the solid line includes all available data in the summer nights of 2002 (\(N = 1213\) for each level), the line with horizontal dashes is for above-canopy stable hours (\(N = 1087\), \(0.05 \leq (z - d/L) < 0.05\)), and the line with circles is for near-neutral hours (\(N = 126\), \(-0.05 < (z - d/L) < 0.05\)). The temperature data used in Figure 8b were measured at levels 0.49, 0.96, 1.46, 2, 4, 6, 8, 10 m by thermocouples in the summer of 2003; the solid line is for all available data in the summer nights (\(N = 1425\)), the line with horizontal dashes is for stable hours (\(N = 1273\), \(0.05 \leq (z - d/L) < 0.05\)), and the line with circles is for near-neutral hours (\(N = 152\), \(-0.05 < (z - d/L) < 0.05\)). A very stable layer exists with \(\partial u/\partial z \approx 0\) (Figure 8a) and \(\partial T/\partial z \neq 0\) (Figure 8b) near the 6 m level (dark gray area) for stable hours and near the 3 m level (light gray area) for near-neutral hours. The horizontal error bars indicate ±1 standard deviation of the mean.
optimal performance, we made observations of vertical dispersion at all four observation towers (Figure 9). There was clear sharp stratification among even the lowest observation layers on the WT tower only 50 m downslope from the release line, indicating the presence of a thin downslope flow with little upward mixing. By the time the tracer-laden air reached the lower towers, there was evidence of some vertical mixing to the 6 m layer, but essentially none in the layers above 8 m, even at the lowermost tower, 200 m downslope from the release line. At the south tower (ST) and north tower (NT) we only made observations at the lowest vertical levels; however even at these levels, there was sharp stratification between the lowest and highest levels.

4.4. Wake-to-Shear Production Rate as a Possible Cause of the Within-Canopy Stable Layer

We hypothesized that the stable, within-canopy layer is due to a localized region of high wake-to-shear production ratio. We explored this hypothesis using the analytical model. Ignoring the slope-dependent term in equation (1) we can write

\[\frac{\partial \bar{u} \bar{w}}{\partial z} = -c_D(z)\bar{u}^2(z) = f_D. \]

(17)

Physically, the drag force (form drag) \(f_D \) is a direct consequence of noncommutation of differentiation and area averaging over a horizontal plane that intersects numerous plants, producing the pressure force [Wilson and Shaw, 1977; Raupach et al., 1986]. The wake turbulent production rate is the work done by the flow against the form drag and can be written as

\[P_w = -u f_D = -u \frac{\partial \bar{u} \bar{w}}{\partial z}. \]

(18)

The shear production rate is usually expressed as

\[P_s = -u \frac{\partial \bar{u} \bar{w}}{\partial z}. \]

(19)

The ratio of the wake and shear production rates is therefore

\[\frac{P_w}{P_s} = -u \frac{\partial \bar{u} \bar{w}}{\partial z} = -u \frac{\partial \bar{u} \bar{w}}{\partial z}. \]

(20)

Substituting equations (2) and (3) into equation (20), the ratio is reduced to

\[\frac{P_w}{P_s} = \left(\frac{\bar{u} \partial c_D / \partial z}{c_D \bar{u} / \partial z} + 2 \right). \]

(21)

Thus the ratio can be estimated on the basis of the wind profile presented in Figure 3 and the drag coefficient profile presented in Figure 4. Qualitatively, the vertical gradient of the drag coefficient is almost opposite to that of wind speed. If the wake-to-shear production ratio is physically limited to be positive, then it should be theoretically less than or equal to 2.

[22] The ratio for the upper part of the canopy calculated by equation (21) based on the wind and drag coefficient profiles is shown in Figure 11. Calculated values were indeed less than 2, except in the lowest part of the canopy, where equation (21) may not be valid because \(\partial \bar{u} / \partial z \approx 0 \). The maximum wake-to-shear production rate appears near the canopy height of maximum leaf density level rather than near the top of canopy as has been shown in wind tunnel experiments [Raupach et al., 1986]. The relative wake production rate decreases linearly to zero from near the maximum leaf area density level to the top of canopy; following the decrease in leaf area density that occurs in the upper canopy layers of these conically shaped trees. We interpret this pattern as reflecting the fact that wake turbulence is caused by the small-scale pressure gradient associated with canopy elements and hence depends on leaf area density.
4.5. Simulations With Computational Fluid Dynamics

In order to examine the effect of leaf area density on wake production, we applied equations (11) to (21) to the case of a uniform vertical distribution of LAI, which causes equation (21) to become

\[
P_w/P_s = \left(\frac{2h\partial c_D/\partial z}{c_D LAI} + 2 \right).
\]

The prediction by equation (22) with the mean values derived from the drag coefficient profile in Figure 4 \((\partial c_D/\partial z)/h = -0.067 \) and \(c_D = 0.11 \) is shown in Figure 12. Wake-to-shear production rate increases linearly with increasing LAI for LAI < 2 m\(^2\)m\(^{-2}\), is progressively more limited in its increase for LAI ≥ 2 m\(^2\)m\(^{-2}\), and approaches an asymptote near 2 as LAI → ∞.

4.5. Simulations With Computational Fluid Dynamics

To verify the experimental and analytical results, we further simulated airflow within and above the canopy using computational fluid dynamics (CFD) techniques. CFD can predict the spatial and temporal distributions of air pressure, velocity, temperature, humidity, and scalar concentration, as well as turbulence if any, by numerically solving the conservation equations for fluid flows. The present CFD simulation solves the two-dimensional steady state incompressible Reynolds-averaged Navier-Stokes equations of fluid flow, which can be expressed in a Cartesian coordinate system [Patankar, 1980; Anderson et al., 1984] as

\[
\frac{\partial U_i}{\partial x_i} = 0,
\]

\[
U_j \frac{\partial U_i}{\partial x_j} = -\frac{\partial P}{\partial x_i} + \frac{\partial}{\partial x_j} \left(\nu + \nu_t \right) \frac{\partial U_i}{\partial x_j} - g \eta (T - T_\infty) - F_D,
\]

\[
U_j \frac{\partial T}{\partial x_j} = \frac{\partial}{\partial x_k} \left(\Gamma + \Gamma_1 \right) \frac{\partial T}{\partial x_k} + q_{source}
\]

where \(U_i \) and \(U_j \) are the Reynolds-averaged velocity components in \(x_i \) and \(x_j \) directions, \(P \) is the Reynolds-averaged pressure, \(T \) is the Reynolds-averaged air temperature, \(\nu \) is the air molecular kinematic viscosity, \(\nu_t \) is the turbulent “eddy” viscosity, \(\Gamma = \nu/\Pr \) is the temperature viscous diffusion coefficient, and \(\Gamma_1 = \nu_t/\Pr \) is the turbulent viscous diffusion coefficient, where \(\Pr \) is the Prandtl number, and \(q_{source} \) is the energy source in the fluid. The term \(-g \eta (T - T_\infty)\) represents the buoyancy force on fluid flow, where \(g \) is the gravity acceleration in \(i \) direction, \(\eta \) is the thermal expansion coefficient of air, and \(T_\infty \) is the reference temperature. \(F_D \) in equation (24) stands for the drag force (pressure drop) exerted by plant elements,

\[
F_D = \frac{1}{2} K_r u^2,
\]

where \(K_r \) is the resistance coefficient, which can be related to the porosity by an empirical relationship given by Hoener [1965]

\[
K_r = \frac{1}{2} \left[\frac{3}{2\beta} - 1 \right]^2
\]

where \(\beta \) is the porosity that can be determined from the leaf area density and drag coefficient profiles by assuming that the drag force term in equation (26) is equal to that in equation (1).

The turbulent “eddy” viscosity \(\nu_t \) can be determined through various turbulence models. In this study we used a renormalized group k-ε turbulence model [Yakhot et al., 1992], which generally has better accuracy and numerical stability than the “standard” k-ε model [Lauder and Spalding, 1974]. Equations (23)–(25) with the turbulence model are not mathematically closed until boundary conditions are specified for the flow field. The boundary conditions involved in this study include (1) inflow, upwind wind profile specified with the semilogarithmic law and \(T = 7^\circ \)C; (2) outflow, leeward and sky with fixed static pressure of 1 atm; (3) ground, nonslip condition with negative heat flux of −20 W m\(^{-2}\); (4) internal objects (plants) with resistance and heat, the resistance is specified according to equation (26) and the long-wave radiation from the plants is specified to linearly decrease from 63 W m\(^{-2}\) at the top...
layer of the canopy to zero at the middle of canopy (i.e., the stable situation specified by Siqueira and Katul [2002]).

The flow-governing equations (23)–(25) with boundary conditions are highly nonlinear and self-coupled, which renders them impossible for analytical solution for most real cases. Hence, using CFD, we solve the equations by dividing the spatial continuum into a finite number of discrete cells and discretizing the equations using the finite volume method (FVM), thus converting them to a set of numerically solvable algebraic equations. An iterative procedure is then used to obtain the solution for each discrete field and equations. More detailed descriptions of CFD are given by Patankar [1980] and Anderson et al. [1984].

In the present study we used a validated CFD program [Concentration Heat and Momentum Ltd., 1999] to simulate the forest canopy flow. The simulation divides the flow field into 200 × 200 = 40,000 cells in x-z section, which represents one computational node per 4 m in the x coordinate, per 0.15 m in the z coordinate within the canopy volume (0–16 m height), and per 0.56 m in the z coordinate above the canopy (17–28 m height). The computing time for such a simulation is about 4 hours on a PIII-900 MHz desktop PC. Figure 13 illustrates the computational domain and the calculated velocity vectors and contours within and above the canopy. The secondary wind speed maximum due to drainage flow near ground and minimum wind speed near the canopy level with maximum leaf area density are clear in the CFD-simulated results (Figure 13b). Caution should be taken in interpreting the simulated velocity field in the upper part of the domain (30–50 m) as the possible influence of larger-scale air motions like mountain waves [Durran, 1990; Turnipseed et al., 2004] were not considered in this simulation. Overall, the simulated wind profile within and above the canopy is in excellent agreement with the observations and analytical solution described in previous sections, especially below 10 m (Figure 14). Small differences between the results from the CFD model and observations above the 10 m height probably result from use of the semilogarithmic law to smooth the observational wind profile. This would be
consistent with past studies that have shown the local flux-gradient relationship [Raupach and Thom, 1981] to be inadequate in the roughness sublayer.

Figure 15 shows the two-dimensional canopy flow simulated by the CFD model with the assumption of a uniform vertical distribution of LAI. The exponential canopy wind profile as shown in Figure 1, rather than the S-shaped wind profile, resulted from the uniform distribution condition; this is the same result produced from the analytical solution (see above). The results from the uniform distribution condition also showed the disappearance of the very stable within-canopy air layer. Thus, using this independent modeling approach, we see the clear effect of canopy structure, and its tendency to cause surface drag, on the vertical distribution of the horizontal wind speed and the production of the “super” stable layer within the canopy.

5. Conclusions

The analytical, one-dimensional flow model derived in this study represents a breakthrough in the modeling of the S-shaped canopy wind profile. The model retains the fundamental features of past drainage flow models based on differential equations, including (1) the fact that S shape is determined by the flow resistance properties of canopy structure, i.e., the drag area of plant elements and associated drag coefficient, and (2) that the primary forcing variables determining flow wind speed near the ground surface are potential temperature deficit and slope angle. Using the analytical model, however, we showed that as height above the ground increases, the shape of the wind profile is progressively more determined by the canopy drag profile, than by the gravitational driving force profile. The one-dimensional model is reduced to the widely used exponential wind profile model under conditions where vertical leaf area density and drag coefficient are uniformly distributed.

Our one-dimensional model successfully predicted the familiar S-shaped canopy wind profile and the Reynolds stress profile in the same manner as considerably more complicated higher-order closure models and, as in the other models, avoided reliance on eddy viscosity (K theory), which often fails in forest canopies. Our model recognizes the drag force as an essential component in describing interactions between plants and air flow, and we express the Reynolds stress by coupling it to the drag force density without introducing phenomenological relations. This is an improvement over past higher-order closure models which introduce phenomenological ‘tuning’ to achieve final closure in the higher-order quantities.

Through two independent modeling approaches, the analytical model and a discretized CFD model, we showed that the heterogeneous vertical distribution of leaf area index produces a stable within-canopy layer of air. The stable layer acts like a lid that minimizes the vertical exchange of mass and momentum below and above the layer. The stable layer appears to be the result of maximum wake production in the region of maximum leaf area density that is characterized by small-scale turbulence and high dissipation rates [Raupach and Shaw, 1982]. The presence and influence of the stable layer is supported by SF6 diffusion observations. The existence of a stable within-canopy layer leads us to conclude that horizontal mean advective fluxes are restricted to a relatively shallow layer of air beneath the canopy, with little vertical mixing across a relatively long horizontal fetch. Vertical mean advective fluxes are minimal in the subcanopy air space, but originate near the top of the canopy and are significant above the canopy. The vertical structure of these advective fluxes appears to be highly determined by the vertical structure in leaf area density, and its effects on the profile of the horizontal wind speed. With particular reference to the vertical advective flux, our discovery of a very stable layer of air within the canopy has important ramifications.

Figure 15. The simulated two-dimensional canopy flow by the renormalized group k-ε turbulence model under uniform vegetation condition ($c_D = 0.042$ and $\ell = 0.22 \text{ m}^2 \text{ m}^{-3}$). All other specifications for this simulation are the same as in Figure 13. The symbols are the same as in Figure 13b.
for understanding certain causal relationships. In the past, we reported the existence of a positive bias to the vertical mean wind speed (\bar{w}) in the vicinity of the ET tower at the site [Turnipseed et al., 2003]. Our original hypothesis was that the accumulation of drainage flows at the site could be forcing the flow upward. With knowledge about the within-canopy super stable layer, it would appear that such flows originate in the canopy layers above the region of maximum foliar density, not close to the ground as originally hypothesized. This issue is clearly in need of further investigation.

Acknowledgments. This work was financially supported by a grant from the South Central Section of the National Institute for Global Environmental Change (NGIEC) through the U.S. Department of Energy (BER Program) (cooperative agreement DE-FG03-90ER61010) and through funds from the U.S. Department of Energy Terrestrial Carbon Processes Program (TCP) (grant DE-FG02-03ER63637). Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the DOE. We are grateful for valuable discussions with William J. Massman. The facilities of the University of Colorado Mountain Research Station (MRS) and the support of Bill Bowman (Director of the MRS) and Steve Seibold are gratefully acknowledged. We are grateful for permission by the U.S. Environmental Change (NIGEC) through the U.S. Department of Energy for understanding certain causal relationships. In the past, we reported the existence of a positive bias to the vertical mean wind speed (\bar{w}) in the vicinity of the ET tower at the site [Turnipseed et al., 2003]. Our original hypothesis was that the accumulation of drainage flows at the site could be forcing the flow upward. With knowledge about the within-canopy super stable layer, it would appear that such flows originate in the canopy layers above the region of maximum foliar density, not close to the ground as originally hypothesized. This issue is clearly in need of further investigation.

References

Aubinet, M., et al. (2005), Comparing CO$_2$ storage and advection conditions at night at different CARBEOEUROFLUX sites, Boundary Layer Meteorol., 116, 63–94.
Fons, W. L. (1940), Influence of forest cover on wind velocity, J. For., 38, 481–486.

