The Effects of Buffer and Temperature Feedback on the Oceanic Uptake of CO2

Chuixiang Yi
CUNY Queens College

Peng Gong
University of California, Berkeley

Ming Xu
University of California, Berkeley

Ye Qi
University of California, Berkeley

How does access to this work benefit you? Let us know!
Follow this and additional works at: https://academicworks.cuny.edu/qc_pubs
Part of the Atmospheric Sciences Commons

Recommended Citation
The effects of buffer and temperature feedback on the oceanic uptake of CO2

Chuixiang Yi,1 Peng Gong, Ming Xu and Ye Qi
Department of ESPM, University of California, Berkeley, USA

Abstract. The feedback between climate and carbon cycle systems is critical to the prediction of future CO2 concentration in the atmosphere and the capacity of the oceans to take up CO2 from the atmosphere. We calculated the magnitudes of the potential feedback between the increase of atmospheric CO2 concentration, the carbonate chemistry of the oceans (via a buffer factor), and the global temperature. We find that the magnitude of the buffer feedback depends strongly on the level of the dissolved inorganic carbon (DIC) in the oceans and increases rapidly with the increase of the atmospheric CO2 concentration. The buffer feedback would result in an increase of 98 ppm in the atmospheric CO2 concentration and a decrease of 236 GtC absorbed by the oceans from the atmosphere between year 2000 and 2100 under the Intergovernmental Panel on Climate Change (IPCC) scenario IS92e. By coupling our buffer feedback model with a global energy balance model, we find that global mean temperature increased 0.65°C from 1860 to 1990, which agreed well with the recorded value of 0.61°C. However, the ocean carbonate chemistry is quite insensitive to global temperature.

Introduction

The oceans are believed to be the largest long-term sink for atmospheric CO2. A variety of models have been developed to estimate the amount of the oceanic uptake of CO2 [e.g. Oeschger et al., 1975; Bacastow, 1996]. The capacity of the oceans to take up CO2 from the atmosphere is mainly controlled by a buffer mechanism described by a buffer factor, which is defined as

$$\xi = \frac{\partial \ln P_{CO2}}{\partial \ln DIC}$$

where $P_{CO2}$ is the CO2 partial pressure in the oceanic mixed layer. Previous studies have shown that the value of the buffer factor empirically varies with $DIC$ and temperature $T$, suggesting a nonlinearity in the oceanic carbonate chemistry [e.g. Sarmiento et al., 1992; Joos et al., 1996]. However, few attempts have been made to quantify the feedback effects on oceanic CO2 uptake and separate the buffer and temperature feedback from the total nonlinear feedback.

The buffer mechanism is actually the chemical equilibrium condition of the oceanic carbonate system as atmospheric CO2 is added to the oceans. This condition can be attributed to the equilibrium relationship of $P_{CO2}$, $DIC$ and $T$ at a given level of borate and alkalinity. Few studies have been reported to model the relationship between the buffer factor and $DIC$ and $T$ due to the complexity of the ocean chemistry. Sarmiento et al. [1992] and Joos et al. [1996] obtained analytical relationships among $P_{CO2}$, $DIC$ and $T$, but the relationships were obtained using a narrow range of $P_{CO2}$ and $T$. Sarmiento et al. [1992] used $0 < \Delta P_{CO2} < 200$ ppm in their model while Joos et al. [1996] only allowed $T$ to vary between 17.7°C and 18.3°C. In the present study we develop an analytical relationship between the buffer factor and $DIC$ and $T$ based on the GEOSECS data and incorporate it into the box-diffusion model [Oeschger et al., 1975] to examine the effects of buffer feedback on global carbon dynamics between the atmosphere and the oceans. Even though further development of the box diffusion model was made such as the outcrop diffusion model and the HILDA model, the box diffusion model is still a basic model for evaluating oceanic CO2 by IPCC [1992]. The HILDA model produces similar results as the box diffusion model and the outcrop diffusion model may overestimate the oceanic CO2 uptake. The global average surface temperature, $T$, can be predicted by an energy balance model (EBM) [Sellers, 1969]. Greenhouse effects are also considered in the EBM [Yi et al., 1994]. Therefore, the changes in atmospheric CO2 concentration will affect the earth surface temperature which in turn will influence the ocean carbonate chemistry through the buffer effect.

The objectives of this paper are to quantify the contributions of the nonlinear feedback to the oceanic uptake of CO2 and the atmospheric CO2 concentration and to separate the effects of buffer and temperature feedback from the total influences.

Nonlinear buffering

We used the program CO2SYS developed by Lewis and Wallace [1998] to calculate the equilibrium values of $P_{CO2}$, $DIC$ and $T$ by assuming a salinity of 35 per mille and a constant alkalinity of 2.35 meq kg. A nonlinear relation of $P_{CO2}$ with $DIC$ and $T$ is obtained through the least squares method as the following ($R^2=0.99$)

$$P_{CO2} = \exp(\theta_0 + \theta_1 T + \theta_2 T^2 + \theta_3 DIC + \theta_4 DIC^2 + \theta_5 DIC^3 + \theta_6 T DIC),$$

where $0°C \leq T \leq 30°C$ and 1.8 mol m$^{-3} \leq DIC \leq 2.3$ mol m$^{-3}$, and $\theta_0 = -40.5797$, $\theta_1 = 0.074487°C$, $\theta_2 = -0.000283(°C)^2$, $\theta_3 = 63.69519$ mol m$^{-3}$, $\theta_4 = -32.04292$ mol$^2$ m$^{-6}$, $\theta_5 = 5.761687$ mol$^3$ m$^{-9}$, $\theta_6 = -0.010416$°C mol m$^{-3}$.

In the 3D space constructed by $P_{CO2}$, $DIC$ and $T$, (2) is an equilibrium surface by which the oceanic chemical buffering is determined. A constant buffer factor can be used only in a narrow range of $DIC$ (Figure 1a). Meanwhile,
Figure 1. The equilibrium relation of CO2 partial pressure $P_{CO2}$ versus (a) dissolved inorganic carbon DIC and (b) temperature $T$, and buffer factor versus (c) DIC and (d) $T$. The numbers in (a) represent $T$ and in (b) and (d) DIC.

d$P_{CO2}$/$dT$ is not a constant, as has been used in many carbon cycle models. By combining (1) and (2), the buffer factor can be derived as follows.

$$\xi = \theta_3 DIC + 2\theta_4 DIC^2 + 3\theta_5 DIC^3 + \theta_6 T DIC. \quad (3)$$

Feedback model

With the equilibrium relation of $P_{CO2}$, DIC and $T$ given in (2), we established a dynamic model to explain the relation among them with the injection of anthropogenic CO2 into the atmosphere. We chose global mean temperature $T$ as a climate variable, and it is governed by the energy balance equation

$$C \frac{dT}{dt} = \frac{I_0}{4} (1 - \alpha) - \varepsilon_a (1 - \varepsilon_T) (a_1 + a_2 T), \quad (4)$$

where the planetary albedo $\alpha$ is a function of temperature $T$ [Sellers, 1969] and the atmospheric effective emissivity

$$\varepsilon_a = \varepsilon_0 + \varepsilon_T T + \varepsilon_s \ln \rho_c \quad (5)$$

is related to temperature $T$ and the atmospheric CO2 concentration $\varepsilon_c$ (ppm). The term $\varepsilon_a \ln \rho_c$ in (5) is a greenhouse forcing, and $\varepsilon_c = 0.0235$ derived by Staley and Jurria [1972] from the theory of radiative transfer based on the observed data. The values of the other parameters in (4)–(5) can be found in Table 1.

The box diffusion model used considers the atmosphere, the mixed ocean surface layer and the terrestrial ecosystem each as a well mixed box coupled with a diffusive deep ocean. The governing equations can be written as follows

$$\frac{d\nu_a}{dt} = II + k_{am}(\xi_m - \nu_a) - B
\nu_a, \quad (6)$$

$$\frac{d\nu_m}{dt} = k_{ma}(\nu_a - \xi_m) - D\nu_m, \quad (7)$$

where $\nu_a$ and $\nu_m$ denote the increases of the atmospheric CO2 concentration and total DIC in surface water relative to their pre-industrial values, respectively. In (6) $II$ is the rate of anthropogenic CO2 emissions relative to the pre-industrial CO2 in the atmosphere. It is the only input to our model. The feedback processes in the terrestrial ecosystem are neglected. The second term in (7) is responsible for CO2 exchange between the mixed layer and the deep ocean. Following Oeschger et al. [1975] we use

$$D = \frac{\mu K}{h_m} \tanh \left( \frac{h_d}{\sqrt{\mu/K}} \right), \quad (8)$$

where $\mu = 1/34.5$ yr over the period from 1864 to 1999. For the emission scenario IS92e prescribed by IPCC [1992], $\mu$ can be estimated to be 0.0127 yr$^{-1}$ and it is used over the period from 2000 to 2100. The results were insensitive to $\mu$.

In our model there are two key factors for the feedback between atmospheric CO2 and climate, the buffer factor $\xi$ and the atmospheric effective emissivity $\varepsilon_a$. The anthropogenic CO2 is first partitioned among the atmosphere, ocean and land using the box diffusion scheme in (6) and (7). The partition of CO2 between the atmosphere and ocean is controlled by the buffer factor. It is not constant and depends instantaneously on $DIC = 2.053(1 + \nu_m)$. As seen from Figure 1c, the buffer factor increases with DIC, and this increase leads to a reduction of oceanic CO2 uptake, i.e., the carbon cycle itself influences partition between the carbon reservoirs. We refer to this process as buffer feedback. In our model the change in atmospheric CO2 concentration affects the temperature through the greenhouse forcing $\varepsilon_a \ln [292(1 + \nu_m)]$, and the change in temperature in turn affects the CO2 partition between the atmosphere and the ocean. We refer to this process as the temperature feedback.

Results and Discussion

As seen from Figure 1c, the buffer factor $\xi$ depends strongly on DIC and is insensitive to $T$. This conclusion differs from that of Sundquist et al. [1979], i.e. the variations of the buffer factor depend systematically on the sea surface

<table>
<thead>
<tr>
<th>Table 1. Model parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>I$\theta$</td>
</tr>
<tr>
<td>$a_1$</td>
</tr>
<tr>
<td>$a_2$</td>
</tr>
<tr>
<td>$\alpha$</td>
</tr>
<tr>
<td>$\varepsilon_c$</td>
</tr>
<tr>
<td>$\varepsilon_s$</td>
</tr>
<tr>
<td>$\varepsilon_T$</td>
</tr>
<tr>
<td>$\varepsilon_0$</td>
</tr>
<tr>
<td>$N_a$</td>
</tr>
<tr>
<td>$N_m$</td>
</tr>
<tr>
<td>$k_{am}$</td>
</tr>
<tr>
<td>$k_{ma}$</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>$h_m$</td>
</tr>
<tr>
<td>$h_d$</td>
</tr>
<tr>
<td>$\mu$</td>
</tr>
<tr>
<td>K</td>
</tr>
</tbody>
</table>
temperature. The dependency of the buffer factor on the sea surface temperature was calculated by Sundquist et al. [1979] holding $P_{CO_2}$ as a constant. However, $P_{CO_2}$, DIC and $T$ must meet the equilibrium relationship (2). As $P_{CO_2}$ is kept unchanged DIC varies with $T$. Therefore, the variation of the buffer factor in Figure 1 of Sundquist et al. [1979] is caused largely by DIC, not by $T$.

The initial conditions of the feedback model were prescribed as 292 ppm of atmospheric $CO_2$ concentration, $DIC_0=2.053$ mol m$^{-2}$, $v_{m0}=v_{a0}=0$ and $T_0=15^\circ$C. For the anthropogenic $CO_2$ production, the data compiled by Marland et al. [1999] from 1860 to 1996 were used. For the period of 1997 to 2100, the IS92e emission scenario [IPCC, 1992] was used as the model input. For the other emission scenarios, similar results were obtained but the result from IS92e is a bound of all possibilities as it is a scenario with the greatest changes. The simulations of atmospheric $CO_2$ concentration from 1860 to 1998 are shown in Figure 2a with a comparison to the observed values [Keeling and Whorf, 1990]. The observed atmospheric $CO_2$ concentration in 1998 is 366.7 ppm, 366.6 ppm is predicted by the feedback model and 364.4 ppm by the box diffusion model ($\xi = 9$) with no feedback. The difference between the predictions with and without the feedback becomes more distinguishable as atmospheric $CO_2$ increases, and results from our feedback model are closer to the observed values. Even though the differences until 1998 are small, they indicate that the nonlinearity due to the feedback plays a more and more important role with the increased accumulation of anthropogenic $CO_2$ emissions. An increase of 0.65$^\circ$C in global mean temperature from 1860 to 1990 is predicted by the feedback model, which is in well agreement with the 0.61$^\circ$C reported by IPCC [1990]. The mean annual $CO_2$ flux into the ocean over the period from 1980 to 1989 is estimated as 1.73 GtC yr$^{-1}$ (with feedback), quite a bit lower than 2.0 GtC yr$^{-1}$ concluded by IPCC [1990]. If the buffer factor is kept constant ($\xi = 9$, without feedback), the model yields 1.91 GtC yr$^{-1}$.

In order to estimate the effects of feedback on the predictions of atmospheric $CO_2$ concentration we fixed $\xi = 9$ in (6)-(7) and $T = 15^\circ$C in (4). Thus the box diffusion model becomes a linear model that does not consider feedback of either $CO_2$ or temperature. The results show that the total feedback causes an increase of approximately 98.1 ppm in atmospheric $CO_2$ concentration by 2100 and a cumulative reduction of 242.5 GtC in oceanic uptake of $CO_2$ between 1860 and 2100 (Figure 2b). Out of the total feedback, the buffer feedback causes an increase of 98.7 ppm in atmospheric $CO_2$ concentration and a cumulative reduction of 241.1 GtC in the oceans. The temperature feedback causes a decrease of 0.6 ppm in the atmosphere and an increase of 1.6 GtC in the oceans. This implies that the temperature feedback is negligible compared with the buffer feedback. The result also indicates that ocean carbonate chemistry is insensitive to global temperature.

Warming caused by the increase of atmospheric $CO_2$ has no substantial impact on the ocean carbon cycle but may significantly influence terrestrial carbon sources and sinks locally and seasonally. Warming may enhance net primary production in the north as indicated by satellite remote sensing [Myneni et al., 1997] but this increase may offset the decrease in the tropics. Increases in soil respiration by warming in winter and spring may offset increases of net ecosystem production in summer. On the global scale, the annual imbalance of terrestrial sources and sinks caused by climate change is quite small [Cao and Woodward, 1998]. Therefore, the ignored feedback between terrestrial carbon cycle and climate change may not significantly affect our conclusions.

Conclusions

(1) The capacity of the oceanic uptake of anthropogenic $CO_2$ emission will be greatly reduced due to nonlinear buffer feedback between 2000 and 2100 under IPCC scenario IS92e.

(2) Ocean carbonate chemistry is insensitive to global temperature.

References


G. Yi, Department of Meteorology, the Pennsylvania State University, 416 Walker Building, University Park, PA 16802, USA.

P. Gong, M. Xu, and Y. Qi, Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA. (e-mail: cxyi@essc.psu.edu)

(Received February 24, 2000; revised October 19, 2000; accepted October 27, 2000.)