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EVERY P-RECURSION CATEGORY HAS AN INDEX
COMPOSER

FLORIAN LENGYEL

ABSTRACT. In a P-recursion category, composition of morphisms is definable
uniformly in the collection of indices with respect to a Turing morphism. This
fact follows from the coassociativity of the near-product of a P-category.

MSC: 03D75; 03G30

1. INTRODUCTION

In [Ste93], Stefano Stefani defined the notion of a composer, which was intended
as a reflection principle for P-recursion categories. A composer in a P-recursion
category enables composition of morphisms to be expressed internally. We show
that every P-recursion category contains a morphism called an index composer,
closely related to a composer in Stefani’s sense, which enables a P-category to
express composition of any two of its morphisms ¢ and %, uniformly in terms of
a fixed expression in the indices of ¢ and 1. The existence of an index composer
in a P-recursion category follows from the coassociativity of the near-product of a
P-category.

A recursive function f : w — w is an index morphism if, with respect to some
standard numbering of the partial computable functions, f is a recursive enumer-
ation of indices of some fixed partial computable function. In contrast to Stefani’s
notion of a composer, the definition of which involves quantification over all total
morphisms in a P-recursion category, the notion of an index composer reflects that
in classical recursion theory, not every recursive function is an index morphism.

2. P- AND P-RECURSION CATEGORIES

Let C be a category; for our purposes, categories may be taken to be small.
The diagonal functor dc : C — C x C is given on objects by A — (A4, A) and on
morphisms by f +— (f, f).

A P-category consists of a category C together with a bifunctor x : C x C — C,
called a near product, a natural transformation A : 1¢ — X od¢g, and for each
object X of C, natural transformations

po()x () x X —le, pix(): X x()—lc
such that the conditions i), ii) and iii) below are satisfied [Ros86].
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i) The following equations hold.

pox,xAx = 1x = p1x,xAx, (pox,y X pPix,y)Axxy = lxxy,
pox,vy(1x X pov,z) = Pox,yxz, Pox,z(1x X P1v,z) = Dox,yx2;
pix,z(Pox,y X 1z) =pixxv.z, Piv,z(Pix,y X 1z) =Dpixxv,z-

ii) There is an isomorphism
assy : (=X =) x =) = (= x (= x =)
of functors C3 — C, whose component assy X.y,z 1s given by

(Pox,yPoxxv,7, (P1x,yPoxxv,Zz,P1xxv,z)) (X xY)x Z = X x (Y x Z),
in which, for morphisms f: X — Y, g: X — Z of C, we set
(fL9)=(xgAx: X =Y xZ.

iii) Let trx be the endofunctor on C x C given by (X,Y) — (Y, X). There is an
isomorphism
trye : X — X otry

of functors C? — C? whose component try x y is given by
(Pixy, Pox,y): X XY =Y x X.

The isomorphisms assx and try are natural in each of their component variables.

One might say that the projections of a P-category are “half natural”—while
po(p X 1x) = @po holds, the companion equation p1(p X 1x) = 1xp; fails in gen-
eral (the right side is always total, the left may not be). In general, the projections
pi,x,y of a P-category C are natural in both variables if and only if for any mor-
phisms ¢; : Y — X; (i = 0,1) in C, p;(¢o,p1) = ;. Cockett and Lack observe
that P-categories are “symmetric monoidal categories in which each object has a
a monoidal natural cocommutative coassociative comultiplication (and possibly an
unnatural counit)” [CL02].

A category is isotypical if any two objects are isomorphic. A system of zero
morphisms is a collection of morphisms Oxy : X — Y for each pair of objects X
and Y of C such that for objects W, Z and morphisms f: W — X and g:Y — Z
of C, one has g0x vy f = Ow,z. A system of zero morphisms is unique if it exists. A
P-category is prodominical if it contains a system of zero morphisms and, for any
¢:A— B, ¢ x0c,p =0axc,Bxp- We write Ox for Ox x [Hel90]. We will always
assume that our P-categories are prodominical.

2.1. Domains and total morphisms. We recall the definition of the domain of
a morphism in a P-category [DPH87, Ros86].

The domain of a morphism ¢ : X — Y in a P-category is a morphism 9(¢y) :
X — X, defined by

(1) 0(p) =po(lx x ¢)Ax =p1(p x 1x)Ax.

The morphism ¢ is total if (¢) = 1x. We will use the following properties of
domains:

(2) @ = pd(p)
(3) (V)
(4) (Y (9p)) = 0Ydp
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For any object X of C, the collection of domains d¢ for some ¢ : X — Y is
denoted by Dom(X).! The set Dom(X) forms a commutative meet-semilattice
under composition, with least element Ox x and greatest element 1x.

The collection Cr of total morphisms of C forms a subcategory [Ros86]; the
near product of a P-category becomes a categorical product on this subcategory.

In general, a P-category is equivalent to one obtained from a category with
products, following a procedure analogous to that by which the category Pfn of
sets and partial functions can be obtained from the category Set of sets [Ros88,
Theorem 1.2].

2.2. Turing morphisms and P-recursion categories. A Turing morphism in a
prodominical isotype is a morphism 7 : W x X — Y such that forany ¢ : V x X —
Y there exists a total g : V' — W, such that the following diagram commutes.

Vx X 25 wxx

Y

A P-recursion category (or, simply, a recursion category) is a prodominical iso-
type which contains a Turing morphism.? Examples of Turing morphisms and
recursion categories are given in [DPH87, Mon89, Hel90, DPM91, Ste93, Len04].

A morphism e : X — X is idempotent if e2 = e. A morphism ¢t : X x X — X
in a prodominical isotype C is an (idempotent) weak Turing morphism if for every
morphism f : X — X, there exists a total (idempotent) morphism e : X — X such
that the following diagram commutes.

€><1X

(5) X xX X xX

f

X——X

We call the morphism e in (5) a t-index of f. More generally, a t-index is a total
morphism e such that for some morphism f, the diagram (5) commutes. If ¢ is
a Turing morphism, then in the situation of diagram (5), ¢ is also a weak Turing
morphism, and we say that e is a t-index of f.

Every Turing morphism in a P-recursion category is a weak Turing morphism;
conversely, in a prodominical isotype, a Turing morphism can be obtained from a
weak Turing morphism [Hel90, Lemma 9.1].

Lemma 2.0.1. If a prodominical isotype has a weak Turing morphism, then it has
a Turing morphism.

3. INDEX COMPOSERS

A total morphism s : X x X — X in a P-recursion category C is a composer
relative to a morphism t : X x X — X if for each pair of total morphisms f, g :

ISince our categories are assumed to be small, Dom(X) will be a set.
2Previously, the term recursion category was used for dominical P-recursion categories.
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X — X, the following identity holds [Ste93].
(6) t(S(f X g)AX X 1X)AX = t(f X 1x)Axt(g X 1x)Ax.

The apparent motivation, from classical recursion theory, of this definition is
that there exists a recursive function s of two variables such that for all natural
numbers f and g,

Ps(f.9) = PPy
This assertion is translated in P-categories by equation (6) if one assumes that
index morphisms behave somewhat like constants; however, constant morphisms
need not exist in a P-category.

Let t: X x X — X be a Turing morphism in a P-category C. Recall that ¢ is
also a weak Turing morphism. In a P-recursion category C with Turing morphism
t: X xX — X, a t-index composer is a total morphism s : X x X — X such
that for each weak t-index f : X — X, and for each weak ¢t-index g : X — X, the
identity (6) holds.

In the notation of the preceding, let ¢,% : X — X be morphisms in the P-
recursion category C, and suppose that s is a t-index composer. If f is a t-index
of ¢ and if g is a t-index of 9, then equation (6) immediately yields

(7) t(s(f x 9)Ax x 1x)Ax = .

This shows that composition in the monoid C(X, X) is definable uniformly in terms
of the left hand expression in (7) and the collection of ¢-indices.

Theorem 3.1. Fvery P-recursion category C contains an index composer.

This fact follows from the coassociativity of the near-product of a P-category;
for completeness, we include a statement and proof of coassociativity.

Proposition 3.1.1. In a P-category, the following diagram commutes.

Axxlx

X xX (X xX)x X
s
X assx X, X, X
e
X x X 2P X (X x X)

Proof.
assy x,x,x (Ax X 1x)Ax

=(Pox, X Pox x X,X» (D1X, X Pox x X, X, P1xx X, x)) (Ax X 1x)Ax

Pox, xPox xx,x (Ax X 1x), (P1x,xPoxxx,x,P1xxx,x)(Ax X 1x))Ax

Pox,x AxPox,x, (P1x,xPox xx,x (Ax X 1x),pixxx,x(Ax x 1x)))Ax

Pox,x X lxxx)(Ax x Ax)Ax = (pox,x Ax X Ax)Ax

(
(
(
(Pox,x, Pox,x,P1x,x))Ax = (Pox,x X Ixxx)AxxxAx
(
(Ix x Ax)Ax

O

We let t : X x X — X be a Turing morphism in C. A t-index composer will be
exhibited. We make the following observation.
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Proposition 3.1.2. Ife: X — X is a t'-index of a morphism ¢ : X — X, where
t': X x X — X is a weak Turing morphism, then for any morphism ¢ : X — X,
t'(e x p)Ax = =t(e x 1x)Axep.

Proof. The first identity follows from the diagram below.

1x><<p ex1lx

XX xxX X x X

pP1x Pix t
® P

X X X

The second identity follows from the diagram below.

XX L xxx X x

X
pPix t/
P

X—X

3.1. Proof of Theorem 3.1.

Proof. Since t is a Turing morphism, there exists a total morphism s : X x X — X
such that

sX1x

(X xX)x X X xX
assxl lt
X x (X xX) X
t(lxXt)

Here assy is the natural associativity isomorphism.
Compute as follows; the third and fourth lines use coassociativity, and the last
line uses Proposition 3.1.2 with e = f and ¢ = t(g x 1x)Ax.

t(s(f x 9)Ax x 1x)Ax =t(s x Ix)((f x g) x 1x)(Ax x 1x)Ax
=t(1x x t)assx ((f x g) x 1x)(Ax x 1x)Ax
=t(lx xt)(f x (g x 1x))assx (Ax x 1x)Ax

=t(f xt(g x 1x))(1x x Ax)Ax

=t(f xt(g x 1x)Ax)Ax

t(f x 1x)Axt(g x 1x)Ax.

Note that the property that g is a weak t-index was not used.

Acknowledgements. 1 thank Sergei Artemov, Alex Heller, Alphonse Vasquez,
and Noson Yanofsky for their comments.
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