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EVERY P -RECURSION CATEGORY HAS AN INDEX
COMPOSER

FLORIAN LENGYEL

Abstract. In a P -recursion category, composition of morphisms is definable
uniformly in the collection of indices with respect to a Turing morphism. This
fact follows from the coassociativity of the near-product of a P -category.

MSC: 03D75; 03G30

1. Introduction

In [Ste93], Stefano Stefani defined the notion of a composer, which was intended
as a reflection principle for P -recursion categories. A composer in a P -recursion
category enables composition of morphisms to be expressed internally. We show
that every P -recursion category contains a morphism called an index composer,
closely related to a composer in Stefani’s sense, which enables a P -category to
express composition of any two of its morphisms ϕ and ψ, uniformly in terms of
a fixed expression in the indices of ϕ and ψ. The existence of an index composer
in a P -recursion category follows from the coassociativity of the near-product of a
P -category.

A recursive function f : ω → ω is an index morphism if, with respect to some
standard numbering of the partial computable functions, f is a recursive enumer-
ation of indices of some fixed partial computable function. In contrast to Stefani’s
notion of a composer, the definition of which involves quantification over all total
morphisms in a P -recursion category, the notion of an index composer reflects that
in classical recursion theory, not every recursive function is an index morphism.

2. P - and P -recursion categories

Let C be a category; for our purposes, categories may be taken to be small.
The diagonal functor δC : C → C×C is given on objects by A 7→ (A,A) and on
morphisms by f 7→ (f, f).

A P-category consists of a category C together with a bifunctor × : C×C → C,
called a near product, a natural transformation ∆ : 1C → × ◦ δC, and for each
object X of C, natural transformations

p0( ),X : ( )×X → 1C, p1X,( ) : X × ( ) → 1C

such that the conditions i), ii) and iii) below are satisfied [Ros86].
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2 FLORIAN LENGYEL

i) The following equations hold.

p0X,X∆X = 1X = p1X,X∆X , (p0X,Y × p1X,Y )∆X×Y = 1X×Y ,
p0X,Y (1X × p0Y,Z) = p0X,Y×Z , p0X,Z(1X × p1Y,Z) = p0X,Y×Z ,
p1X,Z(p0X,Y × 1Z) = p1X×Y,Z , p1Y,Z(p1X,Y × 1Z) = p1X×Y,Z .

ii) There is an isomorphism

ass× : ((−×−)×−) → (−× (−×−))

of functors C3 → C, whose component ass×X,Y,Z is given by

〈p0X,Y p0X×Y,Z , 〈p1X,Y p0X×Y,Z , p1X×Y,Z〉〉 : (X × Y )× Z → X × (Y × Z),

in which, for morphisms f : X → Y , g : X → Z of C, we set

〈f, g〉 = (f × g)∆X : X → Y × Z.

iii) Let tr× be the endofunctor on C×C given by (X,Y ) 7→ (Y,X). There is an
isomorphism

tr× : × → × ◦ tr×
of functors C2 → C2 whose component tr×X,Y is given by

〈p1X,Y , p0X,Y 〉 : X × Y → Y ×X.

The isomorphisms ass× and tr× are natural in each of their component variables.
One might say that the projections of a P -category are “half natural”–while

p0(ϕ× 1X) = ϕp0 holds, the companion equation p1(ϕ× 1X) = 1Xp1 fails in gen-
eral (the right side is always total, the left may not be). In general, the projections
pi,X,Y of a P -category C are natural in both variables if and only if for any mor-
phisms ϕi : Y → Xi (i = 0, 1) in C, pi〈ϕ0, ϕ1〉 = ϕi. Cockett and Lack observe
that P -categories are “symmetric monoidal categories in which each object has a
a monoidal natural cocommutative coassociative comultiplication (and possibly an
unnatural counit)” [CL02].

A category is isotypical if any two objects are isomorphic. A system of zero
morphisms is a collection of morphisms 0X,Y : X → Y for each pair of objects X
and Y of C such that for objects W,Z and morphisms f : W → X and g : Y → Z
of C, one has g0X,Y f = 0W,Z . A system of zero morphisms is unique if it exists. A
P -category is prodominical if it contains a system of zero morphisms and, for any
φ : A→ B, φ× 0C,D = 0A×C,B×D. We write 0X for 0X,X [Hel90]. We will always
assume that our P -categories are prodominical.

2.1. Domains and total morphisms. We recall the definition of the domain of
a morphism in a P -category [DPH87, Ros86].

The domain of a morphism ϕ : X → Y in a P -category is a morphism ∂(ϕ) :
X → X, defined by

∂(ϕ) = p0(1X × ϕ)∆X = p1(ϕ× 1X)∆X .(1)

The morphism ϕ is total if ∂(ϕ) = 1X . We will use the following properties of
domains:

ϕ = ϕ∂(ϕ)(2)

∂(ψϕ) = ∂(∂(ψ)ϕ)(3)

∂(ψ(∂ϕ)) = ∂ψ∂ϕ(4)
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For any object X of C, the collection of domains ∂ϕ for some ϕ : X → Y is
denoted by Dom(X).1 The set Dom(X) forms a commutative meet-semilattice
under composition, with least element 0X,X and greatest element 1X .

The collection CT of total morphisms of C forms a subcategory [Ros86]; the
near product of a P -category becomes a categorical product on this subcategory.

In general, a P -category is equivalent to one obtained from a category with
products, following a procedure analogous to that by which the category Pfn of
sets and partial functions can be obtained from the category Set of sets [Ros88,
Theorem 1.2].

2.2. Turing morphisms and P -recursion categories. A Turing morphism in a
prodominical isotype is a morphism τ : W ×X → Y such that for any φ : V ×X →
Y there exists a total g : V →W , such that the following diagram commutes.

V ×X
g×1X //

φ

$$IIIIIIIIIIIIII W ×X

τ

��
Y

A P -recursion category (or, simply, a recursion category) is a prodominical iso-
type which contains a Turing morphism.2 Examples of Turing morphisms and
recursion categories are given in [DPH87, Mon89, Hel90, DPM91, Ste93, Len04].

A morphism e : X → X is idempotent if e2 = e. A morphism t : X ×X → X
in a prodominical isotype C is an (idempotent) weak Turing morphism if for every
morphism f : X → X, there exists a total (idempotent) morphism e : X → X such
that the following diagram commutes.

X ×X
e×1X //

p1X

��

X ×X

t

��
X

f // X

(5)

We call the morphism e in (5) a t-index of f . More generally, a t-index is a total
morphism e such that for some morphism f , the diagram (5) commutes. If t is
a Turing morphism, then in the situation of diagram (5), t is also a weak Turing
morphism, and we say that e is a t-index of f .

Every Turing morphism in a P -recursion category is a weak Turing morphism;
conversely, in a prodominical isotype, a Turing morphism can be obtained from a
weak Turing morphism [Hel90, Lemma 9.1].

Lemma 2.0.1. If a prodominical isotype has a weak Turing morphism, then it has
a Turing morphism.

3. Index composers

A total morphism s : X ×X → X in a P -recursion category C is a composer
relative to a morphism t : X ×X → X if for each pair of total morphisms f, g :

1Since our categories are assumed to be small, Dom(X) will be a set.
2Previously, the term recursion category was used for dominical P -recursion categories.
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X → X, the following identity holds [Ste93].

t(s(f × g)∆X × 1X)∆X = t(f × 1X)∆Xt(g × 1X)∆X .(6)

The apparent motivation, from classical recursion theory, of this definition is
that there exists a recursive function s of two variables such that for all natural
numbers f and g,

ϕs(f,g) = ϕfϕg.

This assertion is translated in P -categories by equation (6) if one assumes that
index morphisms behave somewhat like constants; however, constant morphisms
need not exist in a P -category.

Let t : X ×X → X be a Turing morphism in a P -category C. Recall that t is
also a weak Turing morphism. In a P -recursion category C with Turing morphism
t : X × X → X, a t-index composer is a total morphism s : X ×X → X such
that for each weak t-index f : X → X, and for each weak t-index g : X → X, the
identity (6) holds.

In the notation of the preceding, let ϕ,ψ : X → X be morphisms in the P -
recursion category C, and suppose that s is a t-index composer. If f is a t-index
of ϕ and if g is a t-index of ψ, then equation (6) immediately yields

t(s(f × g)∆X × 1X)∆X = ϕψ.(7)

This shows that composition in the monoid C(X,X) is definable uniformly in terms
of the left hand expression in (7) and the collection of t-indices.

Theorem 3.1. Every P -recursion category C contains an index composer.

This fact follows from the coassociativity of the near-product of a P -category;
for completeness, we include a statement and proof of coassociativity.

Proposition 3.1.1. In a P -category, the following diagram commutes.

X ×X
∆X×1X // (X ×X)×X

ass×X,X,X

��

X

∆X

66nnnnnnnnn

∆X ((PPPPPPPPP

X ×X
1X×∆X // X × (X ×X)

Proof.

ass×X,X,X(∆X × 1X)∆X

=〈p0X,Xp0X×X,X , 〈p1X,Xp0X×X,X , p1X×X,X〉〉(∆X × 1X)∆X

=〈p0X,Xp0X×X,X(∆X × 1X), 〈p1X,Xp0X×X,X , p1X×X,X〉(∆X × 1X)〉∆X

=〈p0X,X∆Xp0X,X , 〈p1X,Xp0X×X,X(∆X × 1X), p1X×X,X(∆X × 1X)〉〉∆X

=〈p0X,X , 〈p0X,X , p1X,X〉〉∆X = (p0X,X × 1X×X)∆X×X∆X

=(p0X,X × 1X×X)(∆X ×∆X)∆X = (p0X,X∆X ×∆X)∆X

=(1X ×∆X)∆X

�

We let t : X ×X → X be a Turing morphism in C. A t-index composer will be
exhibited. We make the following observation.
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Proposition 3.1.2. If e : X → X is a t′-index of a morphism ψ : X → X, where
t′ : X ×X → X is a weak Turing morphism, then for any morphism ϕ : X → X,
t′(e× ϕ)∆X = ψϕ = t(e× 1X)∆Xϕ.

Proof. The first identity follows from the diagram below.

X
∆X //

1X

%%LLLLLLLLLLL X ×X
1X×ϕ //

p1X

��

X ×X
e×1X //

p1X

��

X ×X

t′

��
X

ϕ // X
ψ // X

The second identity follows from the diagram below.

X
∆X //

1X

%%LLLLLLLLLLL X ×X
e×1X //

p1X

��

X ×X

t′

��
X

ψ // X

�

3.1. Proof of Theorem 3.1.

Proof. Since t is a Turing morphism, there exists a total morphism s : X ×X → X
such that

(X ×X)×X
s×1X //

ass×

��

X ×X

t

��
X × (X ×X)

t(1X×t)
// X

Here ass× is the natural associativity isomorphism.
Compute as follows; the third and fourth lines use coassociativity, and the last

line uses Proposition 3.1.2 with e = f and ϕ = t(g × 1X)∆X .

t(s(f × g)∆X × 1X)∆X = t(s× 1X)((f × g)× 1X)(∆X × 1X)∆X

= t(1X × t)ass×((f × g)× 1X)(∆X × 1X)∆X

= t(1X × t)(f × (g × 1X))ass×(∆X × 1X)∆X

= t(f × t(g × 1X))(1X ×∆X)∆X

= t(f × t(g × 1X)∆X)∆X

= t(f × 1X)∆Xt(g × 1X)∆X .

�

Note that the property that g is a weak t-index was not used.

Acknowledgements. I thank Sergei Artemov, Alex Heller, Alphonse Vasquez,
and Noson Yanofsky for their comments.
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