
City University of New York (CUNY) City University of New York (CUNY)

CUNY Academic Works CUNY Academic Works

Computer Science Technical Reports CUNY Academic Works

2006

TR-2006013: The Dom Event and Its Use in Implementing TR-2006013: The Dom Event and Its Use in Implementing

Constraint Propagators Constraint Propagators

Neng-Fa Zhou

Mark Wallace

Peter J. Stuckey

How does access to this work benefit you? Let us know!

More information about this work at: https://academicworks.cuny.edu/gc_cs_tr/279

Discover additional works at: https://academicworks.cuny.edu

This work is made publicly available by the City University of New York (CUNY).
Contact: AcademicWorks@cuny.edu

https://academicworks.cuny.edu/
https://academicworks.cuny.edu/gc_cs_tr
https://academicworks.cuny.edu/
http://ols.cuny.edu/academicworks/?ref=https://academicworks.cuny.edu/gc_cs_tr/279
https://academicworks.cuny.edu/gc_cs_tr/279
https://academicworks.cuny.edu/?
mailto:AcademicWorks@cuny.edu

The dom event and its use in implementing
constraint propagators

Neng-Fa Zhou1�, Mark Wallace2 and Peter J. Stuckey3

1 CUNY Brooklyn College & Graduate Center
zhou@sci.brooklyn.cuny.edu

2 Monash University
Mark.Wallace@infotech.monash.edu.au

3 NICTA Victoria Laboratory
Department of Comp. Sci. and Soft. Eng.

University of Melbourne
pjs@cs.mu.OZ.AU

Abstract. This paper argues the usefulness of the dom event in pro-
gramming several constraint propagators. The dom event is introduced
for implementing the AC-4 algorithm. For a binary constraint, whenever
a value is excluded from the domain of a variable, the propagator with
the dom event can locate the no-good values in the domain of the other
variable in constant time. In this paper we present three application ex-
amples of the dom event in addition to the AC-4 algorithm for binary
support constraints: the element constraint, channeling constraints, and
set constraints. For each example, we show that the implementation using
the dom event is significantly more efficient than previous implementa-
tions that rely on reification constraints or other techniques.

1 Introduction

Finite domain propagation in constraint (logic) programming systems is a pow-
erful technique for solving combinatorial problems. In [24] an event-handling
language called AR (Action Rules) is proposed for programming constraint prop-
agators. An action rule specifies, amongst other things, a set of event patterns
for events that can activate propagators. Events include instantiations of vari-
ables, bounds changes, and events in the form of dom(X ,E) which means that
an inner value E is excluded from the domain of X . A new event pattern, called
dom any(X ,E), has recently been introduced into AR for capturing the exclusion
of any value E from the domain of X .

The rational for having the event pattern dom(X ,E) is that it facilitates
implementing propagators for maintaining arc consistency for functional con-
straints [10]. For a binary functional constraint, once an inner value is excluded
from the domain of a variable, its supporting value in the domain of the other

� Part of this work was conducted while Neng-Fa Zhou visited Monash University and
The University of Melbourne in 2005.

variable can be excluded in constant time. Arc consistency of functional con-
straints is maintained by propagators that watch dom(X ,E) events together with
propagators that handle bounds changes and variable instantiations.

The event pattern dom any(X ,E) is introduced for implementing the AC-4
algorithm [15] for general support constraints. For an arbitrary binary support
constraint, once a value (either an inner value or a bound) is excluded from the
domain of a variable, the counters of those values in the other domain supported
by the value can be decremented in constant time [26].

A language construct like the dom event is not common in languages for
implementing constraint propagators. Many languages and systems support a
coarse-grained event, such as the dom(X) expression in Sicstus Prolog [3] and
GNU-Prolog [5], demons in ECLiPSe, and the whenDomain event in CHARME
and ILOG [16], which does not capture the excluded value.

Usually in finite domain constraint (logic) programming systems, AC-3 [13]
is used to maintain arc consistency of binary constraints. In AC-3, binary con-
straints are revisited each time one of the domains of the involved variables
changes. This accords well with the event notions typically supported by finite
domain propagation systems, which are tied to variables but not their values.
Propagation system designers are reluctant to introduce fine-grained events into
their systems because of the complexity of doing so, and evidence that in many
cases the AC-3 algorithm is as efficient as, if not more efficient than, the AC-4
algorithm [20, 22].

This paper presents several novel application examples of the dom event.
Firstly, we show that with the dom event the AC-4 algorithm can be made more
efficient than the AC-3 algorithm in practice because most support constraints
encountered in practical applications are functional constraints for which no
construction of value-based constraint graphs [22] is necessary. Secondly, we show
that the dom event has applications beyond the AC-4 algorithm. We present three
examples: the element constraint, channeling constraints, and set constraints.
For each example, we show that the implementation using the dom event is
significantly more efficient than previous implementations that rely on reified
constraints or other techniques. The finite-domain and set solvers implemented
in AR in B-Prolog are considerably faster than solvers in other constraint logic
programming systems4 and one important reason for the high performance can
be attributed to the propagators implemented with the dom event.

This paper is organized as follows: Section 2 overviews the AR language
and the supported events. Section 3 describes the use of the dom event in the
implementation of the AC-4 algorithm. Each of the next three sections from
4 through 6 is devoted to an example of the dom event. For each example, we
present the implementation and compare it with an implementation that uses
reification constraints. All the experimental results are obtained with B-Prolog
version 6.9 on a Windows XP machine (Intel 1.4GHz CPU, 1GB RAM). Section
7 gives related work and and Section 8 concludes the paper.

4 See www.probp.com/benchmark clpfd.htm for an up-to-date comparison with
ECLiPSe, GNU-Prolog, and Sicstus Prolog.

2

Readers are assumed to be familiar with constraint logic programming over
finite domains, CLP(FD). The de facto standard notation used for finite-domain
constraints in major CLP(FD) systems such as ECLiPSe, GNU-Prolog, Sicstus,
and B-Prolog is used in this paper. Operators that begin with the symbol #
denote constraints. So X #= Y is an equality constraint, X#\=Y a disequality
constraint, X #>= Y an inequality constraint, X#=>Y an entailment Boolean
constraint, and X#<=> Y a Boolean equivalence constraint. The primitive X ::
D restricts the domain of X to D and the primitive X notin D forbids X to
take any value from D, where D is an interval l..u or a list of atomic values.

2 Action Rules and Events

The AR (Action Rules) language is designed to facilitate the specification of
event-driven functionality needed by applications such as constraint propagators
and graphical user interfaces where interactions of multiple entities are essential
[24]. An action rule takes the following form:

Agent, Condition, {Event} => Action

where Agent is an atomic formula that represents a pattern for agents, Condition
is a conjunction of conditions on the agents, Event is a non-empty disjunction
of patterns for events that can activate the agents, and Action is a sequence of
arbitrary subgoals. An action rule degenerates into a commitment rule if Event
together with the enclosing braces are missing. In general, a predicate can be
defined with multiple action rules. For the sake of simplicity, we assume in this
paper that each predicate is defined with only one action rule possibly followed
by a sequence of commitment rules.

Definition 1. A subgoal is called an agent if it can be suspended and activated
by events. For an agent α, a rule “H, C, {E} => B” is applicable to the agent
if there exists a matching substitution θ such that Hθ = α and the condition Cθ
is satisfied.

When an agent is created, the system checks if the action rule in its predicate
is applicable to it.5 If so, the agent will be suspended until it is activated by one
of the events specified in the rule. Whenever the agent is activated by an event,
the condition of the action rule is tested again. If it is met, the action is executed.
The agent does not vanish after the action is executed, but instead sleeps until
it is activated again. There is no primitive for killing agents explicitly. An agent
vanishes only when a commitment rule is applied to it. The reader is referred to
[24] for a detailed description of the language and its operational semantics.

The following event patterns are supported for programming constraint prop-
agators:
5 Notice that since one-directional matching rather than full-unification is used to

search for an applicable rule and only tests are allowed in the condition, the agent
will remain the same after an applicable rule is found.

3

– generated: After an agent is generated but before it is suspended for the
first time. The sole purpose of this pattern is to make it possible to specify
preprocessing and constraint propagation actions in one rule.

– ins(X): when the variable X is instantiated.
– bound(X): when a bound of the domain of X is updated. There is no dis-

tinction between lower and upper bounds changes.
– dom(X ,E): when an inner value E is excluded from the domain of X . Since

E is used to reference the excluded value, it must be the first occurrence of
the variable in the rule.

– dom(X): same as dom(X ,E) but the excluded value is ignored.
– dom any(X ,E): when an arbitrary value E is excluded from the domain of

X . Unlike in dom(X ,E), the excluded value E here can be a bound of the
domain of X .

– dom any(X): equivalent to the disjunction of dom(X) and bound(X).

Note that when a variable is instantiated, no bound or dom event is posted.
Consider the following example:

p(X),{dom(X,E)} => write(dom(E)).
q(X),{dom any(X,E)} => write(dom any(E)).
r(X),{bound(X)} => write(bound).
go:-X :: 1..4, p(X), q(X), r(X), X #\= 2, X #\= 4, X #\= 1.

The query go gives the following outputs: dom(2), dom any(2), dom any(4) and
bound.6 The outputs dom(2) and dom any(2) are caused by X #\= 2, and the
outputs dom any(4) and bound are caused by X #\= 4. After the constraint
X #\= 1 is posted, X is instantiated to 3, which posts an ins(X) event but not
a bound or dom event.

A rule is allowed to specify multiple event patterns, but the dom(X ,E) and
dom any(X ,E) patterns are allowed to co-exist with ins patterns only. For each
co-existing ins(X) pattern, there must be a condition var(X) in the guard so
that the action is never executed when the rule is triggered by an ins event.

Note also that the dom any(X ,E) event pattern should be used only on small-
sized domains. If used on large domains, constraint propagators could be flooded
with a huge number of dom any events. For instance, for the propagators defined
in the previous example, the query

X :: 1..1002, q(X), X #>1000

posts 1000 dom any events, while it would post only one bound event if q(X) were
p(X) or r(X). For this reason, in B-Prolog propagators for handling dom any(X ,E)
events are generated only after constraints are preprocessed and the domains of
variables in them become small.

For each event type, each domain variable has a slot for the list of watching
propagators. Therefore, the dom event imposes little space overhead: one slot
6 In the implementation of AR in B-Prolog, when more than one agent is activated

the one that was generated first is executed first. This explains why dom(2) occurs
before dom any(2) and also why dom any(4) occurs before bound.

4

for dom(X, E) and another slot for dom any(X, E) for each domain variable X .
There is almost no time overhead because an event is posted only when the
watching list is not empty.

3 The AC-4 Algorithm

The AC-3 algorithm [13] is a naive algorithm for maintaining arc consistency
of constraints. For each pair of variables (Xi,Xj) connected in the constraint
network, if any value is excluded from the domain of Xi, all the arcs in the
network pointing to Xi are examined. The AC-4 algorithm [15] is a semi-naive
algorithm for maintaining arc consistency. It propagates updates of values more
intelligently: whenever a value is removed from the domain of a variable Xi, it
only examines the values in the domains of the connected variables of Xi that are
supported by the value. The AC-5 algorithm [10] specializes the AC-4 algorithm
by taking the semantics of constraints into account. The AC-5 algorithm has
a lower complexity than the AC-4 algorithm for proprocessing certain types of
constraints to achieve arc consistency. As far as maintaining arc consistency
during search is concered, there is no difference between AC-5 and AC-4.

The dom(X ,E) event is introduced for implementing the AC-4 algorithm
for binary functional constraints. For a functional binary constraint, there is
only one supporting value for each value in a domain. Therefore, whenever a
value is excluded from a domain, we only need to exclude its counterpart in the
other domain to maintain arc consistency. Consider, for example, the constraint
X+Y #= C where X and Y are domain variables and C is an integer. The propagator
defined in the following propagates exclusions of values from the domain of Y to
X to achieve arc consistency:

’X in C-Y_ac’(X,Y,C),var(X),var(Y),
{dom(Y,Ey)}
=>
Ex is C-Ey,
X #\= Ex.

’X in C-Y_ac’(X,Y,C) => true.

For the original constraint X+Y #= C, we need to generate two propagators,
namely, ’X in C-Y ac’(X,Y,C) and ’X in C-Y ac’(Y,X,C), to maintain the
arc consistency. Note that in addition to these two propagators, we also need to
generate propagators for maintaining interval consistency since no dom(Y,Ey)
event is posted if the excluded value happens to be a bound. Note also that we
need to preprocess the constraint to make it arc consistent before the propagators
are generated.

For general binary constraints defined as extensional tables, each value in
the domain of a variable can have multiple supporting values in the domain
of the other variable. We set up a counter for each value in each domain for
counting the support values in the other domain. Whenever the counter of a value

5

becomes zero, the value is excluded from its domain. So the job of maintaining
arc consistency reduces to maintaining the counters.

Let BinaryRelation be a representation of the binary relation on two vari-
ables X and Y. An efficient data structure such as a hash table is used for the
representation such that for each value in the domain of X, it takes constant time
to retrieve its supporting values and their associated counters. The propagator
for maintaining Y’s counters can be implemented easily as follows:

ac4(BinaryRelation,X,Y),var(X),var(Y),
{dom_any(X,E)}
=>
decrement_counters(BinaryRelation,E,Y).

ac4(BinaryRelation,X,Y) => true.

Whenever a value E is excluded from the domain of X, the counters of the values
in the domain of Y supported by E are decremented. If the counter of a value
becomes zero, the value is excluded from the domain of Y.

It is also possible to implement the AC-3 algorithm in action rules. For ex-
ample, the propagator based on the AC-3 algorithm for the constraint X+Y #= C
can be implemented as follows:

’X in C-Y_ac’(X,Y,C),var(Y),
{dom(Y),bound(Y),ins(Y)}
=> remove_no_good(X,Y,C).

’X in C-Y_ac’(X,Y,C) => X is C-Y.

where remove no good(X,Y,C) removes all no-good values from the domain of X
that are not supported by any values in the domain of Y. Because the propagator
does not have the information about what values are excluded, it has to go
through the domain elements of X to locate possible no-good values.

As for the constraint X+Y #= C, the implementation of the AC-4 algorithm is
clearly faster than the implementation of the AC-3 algorithm since updates of do-
mains are propagated from one to another in constant time in the AC-4 algorithm
and no value-based constraint graph is needed [22]. This is true for binary func-
tional constraints in general. For a general binary support constraint, the prop-
agator ac4(BinaryRelation,X,Y) takes an extra argument BinaryRelation
which corresponds to the value-based constraint graph. Nevertheless, the con-
struction of such a graph affects the complexity of the preprocessing phase but
not the search phase.

Computational results

To experimentally compare the performance of the two implementations of ’X
in C-Y ac’(X ,Y ,C), we use the propagator to maintain the arc consistency of
the constraint X #= Y + 1, where initially X and Y are defined over 0..n for a
given n and then the values from 2 to n − 1 are removed from the domain of
Y . The test program follows. In order for B-Prolog to maintain arc consistency

6

Table 1. Comparing the AC-3 and AC-4 implementations (CPU time).

N AC-3 (ms) AC-4 (ms) AC−3
AC−4

5000 696.79 1.26 550.38
6000 1006.30 1.53 657.27
7000 1373.40 1.73 791.58
8000 1792.20 2.01 888.98
9000 2264.10 2.31 979.27
10000 2806.19 2.51 1115.33

of the constraint, the domains must be represented as bit vectors when a hole
occurs. The call fd vector min max(0,N) resets the range such that the domains
are represented as bit vectors for any given N.

go(N):-
fd_vector_min_max(0,N),
[X,Y] in 0..N,
’X in C-Y_ac’(X,Y,1),
N1 is N-2,
make_holes(Y,2,N1).

make_holes(X,I,N):-I=:=N,!.
make_holes(X,I,N):-

X #\= I,
I1 is I+1,
make_holes(X,I1,N).

Table 1 compares the time taken by the two implementations for different
domain sizes. The AC-4 implementation clearly outperforms the AC-3 imple-
mentation. In general, the AC-4 implementation takes linear time in the size of
the number of holes while the AC-3 implementation takes quadratic time.

4 The Constraint element(I,L,X)

The constraint element(I,L,X) means that the Ith element of L is X , where I
must be an integer or a domain variable, X a domain variable, and L a list of
terms. The original version of the constraint presented in [2] requires X and the
elements of L to be integers or domain variables. Here we consider the special
case where L is restricted to be a list of ground terms. Notice that with this
restriction, the constraint degenerates into a binary one but not necessarily a
functional one. So the propagators given in this section are another application
of the AC-4 algorithm.

Let L be a list of ground elements [L1, . . ., Ln]. Then I must be in the range
of 1..n. On one hand, each value in the domain of I must be supported by X . As
long as X is known not to be equal to some element Li, i can be excluded from
the domain of I. This relationship can be expressed by the following entailment

7

constraint X #\= Li #=> I #\= i. On the other hand, each value in the domain
of X must be supported by values in the domain of I as well. We use a counter
CLi for Li that tells the number of occurrences of Li in L. Each time a value i
is excluded from the domain of I, the counter CLi is decremented. If it becomes
zero, then we can post the constraint X #\= Li.

The entailment constraints X #\= Li #=> I #\= i (1 ≤ i ≤ n) can be encoded
using only one propagator thanks to the availability of the dom any event. To
achieve this, we represent L as an association map such that for each Li its
indexes and counter can be returned in constant time. The following shows the
propagator:

element_X_to_I(X,I,Map),var(X),
{dom_any(X,E)}
=>
map_get_indexes(Map,E,Indexes),
I notin Indexes.

element_X_to_I(X,I,Map) => true.

Whenever a value E is excluded from X’s domain, the constraint I notin Indexes
ensures that I cannot take the index of any occurrence of E. When X is instan-
tiated to be a non-variable term, the propagator vanishes.

The propagation from I to X can be done using only one propagator as well.
Let Vect be a vector representation of L with which the element of a given index
can be returned in constant time. The following defines the propagator:

element_I_to_X(I,X,Vect,Map),var(I),
{dom_any(I,E)}
=>
arg(E,Vect,Le),
decrement_counter(Map,X,Le).

element_I_to_X(I,X,Vect,Counters) => true.

The call decrement counter(Map,X,Le) decrements the counter of Le and posts
the constraint X #\= Le if Le’s counter becomes zero.

In addition to the two propagators element X to I and element I to X, we
need two extra propagators to handle ins(I) and ins(X) events. When I is
instantiated to an integer i, the constraint X #= Li is generated, and when X
is instantiated, the domain of I is reduced to contain only the indexes of the
occurrences of X in L.

Computational results

We experimentally compared the performance of the two implementations of
the element constraint. We could find only two benchmark programs: one called
Cars, which uses the element constraint for sequencing cars in assembly lines [9]
and the other for solving a cutting stock problem [6]. To deal with the scarcity
of programs, we implemented the alldifferent and permutation constraints

8

Table 2. Comparing the two implementations of element (CPU time).

Program dom any (ms) bool (ms) bool
dom any

Cars 4.70 7.19 1.52
Cutting-stock 278.10 1145.3 4.11

Sudoku 250 (element) 101.50 160.90 1.58
Sort 304.69 495.30 1.62

using the element constraint for this comparison. With these two constraints,
we could use two new benchmarks: Sudoku for solving a Sudoku puzzle and Sort
for sorting a randomly generated list using the permutation constraint.

For this comparison, the alldifferent(Xs) constraint is artificially imple-
mented using the element constraint as follows:7 Let Xs be a list of variables
[X1, . . ., Xn] where each variable Xi has the domain 1..n, and let L be the
list of integers [1, . . ., n]. We use the following n element constraints to encode
alldifferent(Xs):

element(I1,L,X1) ... element(In,L,Xn)

where each pair Ii and Ij (i �= j) are constrained to take different values by
separate disequalities, so in reality we are simply mapping alldifferent on a
set of variables to alldifferent on their indexes. The propagators for element
are tested because the original set of variables Xs, rather than the new set, is
enumerated.

The permutation(L,P) constraint is true if P is a permutation of L. It is
encoded for this comparison by using element as follows:

permutation(L,P):-
length(L,N), length(Is,N),
permutation(L,P,Is),
alldifferent(Is).

permutation(L,[],[]).
permutation(L,[X|Xs],[I|Is]):-

element(I,L,X),
permutation(L,Xs,Is).

Table 2 reports the results. The column dom any shows the time taken by
the implementation that uses the dom any event, while the column bool shows
the time taken by the implementation that uses reified constraints to propagate
information from X to I. The propagator element I to X cannot be encoded
easily using reified constraints. For this reason, this propagator is encoded using
the dom any event in both implementations.

It is not surprising that dom any outperforms bool since the exclusion of each
value from X activates only one propagator in dom any while it activates n (the

7 This program is not intended to be another implementation of alldifferent but is
written only for the benchmarking purpose.

9

size of L in element(I,L,X)) propagators in the implementation that uses reified
constraints.

5 Channeling Constraints

For certain problems, e.g., permutation problems where there are as many values
as variables and each variable takes an unique value [4, 21], it is possible to have
dual models and use channeling constraints to relate the two models. Using chan-
neling constraints may increase the pruning power of constraint propagation [4].
Channeling constraints can be expressed as Boolean constraints. In this section
we show that with the dom event we can use significantly fewer propagators to
implement channeling constraints.

As an example, we consider the permutation channel primal dual(Xs,Y s)
where Xs and Y s are n variables ranging over the domain 1..n, and they satisfy
the following relationship:

∀i,j(Xi = j ⇔ Yj = i) or equivalently ∀i,j(Xi �= j ⇔ Yj �= i)

We can use the primal dual constraint for improving propagation of alldifferent
constraints. Many algorithms have been proposed for maintaining different lev-
els of consistency for alldifferent [19]. The filtering algorithm by Regin [17]
achieves hyper-arc consistency. However, because of the almost cubic order of
complexity, many CLP(FD) systems such as B-Prolog and ECLiPSe employ
Hall-set finding algorithms.8

Since there are an exponential number of potential Hall sets, we have to
rely on some heuristics to choose what sets to test. In the implementation in B-
Prolog, whenever the domain of a variable is updated, a propagator is activated
to check if the updated domain is a Hall set [24]. Understandably, since no union
of domains is considered, this heuristic has its limitations. Consider, for example,
the constraint alldifferent([X1,X2,X3,X4]) where X1 ∈ {1, 2}, X2 ∈ {1, 3},
X3 ∈ {2, 3}, and X4 ∈ {1, 2, 3, 4}. The heuristic fails to find the Hall set {1, 2, 3}
and thus fails to bind X4 to 4.

Using channeling can increase pruning power. By adding the constraints
primal dual(Xs,Y s) and alldifferent(Y s), the dual variables have the fol-
lowing domains: Y1 ∈ {1, 2, 4}, Y2 ∈ {1, 3, 4}, Y3 ∈ {2, 3, 4}, and Y4 ∈ {4}. After
Y4 is instantiated to 4, X4 is instantiated to 4 as well. As demonstrated by this
example, using dual models can to some extent remedy the limitation of the
Hall-set finding algorithm.

The channeling constraint between primal and dual variables ∀i,j(Xi �= j ⇔
Yj �= i) can be represented as Boolean constraints. Since for each primal variable
Xi and each dual variable Yj one Boolean constraint is needed to connect them,
in total n2 Boolean constraints are needed.
8 For the constraint alldifferent([X1 ,. . .,Xn]) where Xi has the domain Di (1 ≤ i ≤

n), a set H is a Hall set if the number of subsets of H among D1, . . ., Dn is greater
than or equal to the size of H . Formally, H is a Hall set if |{Di | Di ⊆ H}| ≥ |H |.

10

With the dom event, we can use only 2 × n propagators to implement the
channeling constraint. Let DualVarVector be a vector created from the list of
dual variables. For each primal variable Xi (with the index I), a propagator
defined below is created to handle exclusions of values from the domain of Xi.

primal_dual(Xi,I,DualVarVector),var(Xi),
{dom_any(Xi,J)}
=>
arg(J,DualVarVector,Yj),
Yj #\= I.

primal_dual(Xi,I,DualVarVector) => true.

Each time a value J is excluded from the domain of Xi, assume Yj is the Jth
variable in DualVarVector, then I must be excluded from the domain of Yj. We
need to exchange primal and dual variables and create a propagator for each
dual variable as well. Therefore, in total 2 × n propagators are needed.

Note that a preprocessing phase is needed to ensure that the channeling
constraints are consistent before any propagator is generated. The preprocessing
phase takes O(n2) time.

Computational results

Table 3 compares the performance of the two encodings of channeling constraints
on three benchmarks:

– Sudoku: This program contains only alldifferent constraints. Dual mod-
els and the Hall-set finding algorithm described above are used for the con-
straints. Two problem instances are tested: one with 250 variables and the
other with 368 variables.

– Queens: Dual models are used to solve the 100-queens problem.
– Hamilton: This program finds a Hamilton circuit in a graph. It contains the

circuit constraint. The circuit(L) constraint, which is the same as the
cycle(L) constraint introduced in [2], entails alldifferent(L). A valuation
L=[X1,. . .,Xn] satisfies the constraint if the list of arcs [1 → X1,. . .,n → Xn]
forms a Hamilton cycle. Dual models are used for the circuit constraint.

The column dom any shows the time taken by the implementation that uses the
dom any event, and the column bool shows the time taken by the implementation
that uses equivalent Boolean constraints for relating primal and dual variables.
Note that the search space explored is the same in each case.

The speed-ups for channeling constraints are higher than those for the element
constraint. The speed-up for Sudoku-368 is over 30. Just as the results for the
element constraint, dom any is much faster than bool since the exclusion of each
value from a domain activates only one propagator in dom any rather than a
linear number of propagators as in bool.

11

Table 3. Comparing the two implementations of channeling constraints (CPU time).

Program dom any (ms) bool (ms) bool
dom any

Sudoku-250 (alldifferent) 71.90 275.00 3.82
Sudoku-368 (alldifferent) 110.00 3422.00 31.10

Queens 51.60 468.80 9.08
Hamilton 737.50 1487.5 2.01

6 Set Constraints

As the final example, we present a set solver implemented using the dom event.
One of the key issues in implementing set constraints concerns how to represent
set domains. Since a set of size n has 2n subsets, it is unrealistic to enumerate
all the values in a domain and represent them explicitly when n is large. Our
solver inherits the interval representation scheme for set domains from Conjunto
[8], but represents the lower and upper bounds as two finite domain variables
rather than as two sorted lists. In our representation, originally presented in
[25], updates of bounds of set domains can be captured in constant time and
propagated to other domains quickly thanks to the availability of the dom event.

Let V be a set variable. We use the following notations to reference the at-
tributes: V l for the lower bound, V u for the upper bound, V c for the cardinality,
and V univ for the universal set. V l is represented as a finite-domain variable
whose domain is the complement of the set of all definite elements that are
known to be in V , V u is represented as a finite-domain variable whose domain is
the set of possible elements of V . V c is represented as a domain variable whose
domain is 1..|V univ |. To prevent V l and V u from being instantiated, we include
two dummy elements in them that are not in the universal set. This represen-
tation facilitates updates of bounds of set domains. Both updates of lower and
upper bounds can be modeled as dom events.

For example, consider the set variable V over the domain {1}..{1, 2, 3}. V l

is a finite-domain variable with the domain [0,2,3,4] (the complement of {1} is
{2, 3}) and V u has the domain [0,1,2,3,4] where 0 and 4 are dummy elements.
Suppose 2 is known to be an element of V . Updating the lower bound means
excluding 2 from V l, which results in a new lower domain [0,3,4]. Suppose 3
is known to be an infeasible element of V . Updating the upper bound means
excluding 3 from V u, which results in a new upper domain [0,1,2,4].

The complete set of rules for maintaining interval consistency for set con-
straints is given in [25]. The following gives the two rules for maintaining the
bounds consistency of the subset constraint R ⊆ S:

if x ∈ R then x ∈ S if x �∈ S then x �∈ R

Whenever an element x is added into R, it must be added into S as well; and
whenever an element x is excluded from the domain of S, it must be excluded
from the domain of R as well. The two propagation rules can be implemented in

12

the following way, where for simplicity we assume a set variable S is represented
as a term set(Sl,Su) containing two domain variables:9

subset_from_R_to_S(set(Rl,_Ru),S),
{dom(Rl,E)}
=>
clpset_add(S,E).

subset_from_S_to_R(R,set(_Sl,Su)),
{dom(Su,E)}
=>
clpset_exclude(R,E).

Where clpset add(S,E) adds the element E into the lower bound of S by ex-
cluding it from Sl and clpset exclude(R,E) removes E from the upper bound
of R by excluding it from Ru. Note that because of the existence of dummy
elements, no bound of the finite-domain variables Rl or Su will ever change,
and therefore the use of the dom event pattern rather than the dom any pattern
suffices.

The propagator subset from R to S(R,S) would have to be encoded as reifi-
cation constraints as follows if the dom event were not available: For each element
E in the domain of the lower bound Rl of R,

Rl #\= E #=> Flag #=1, freeze(Flag,clpset_add(S,E))

Instead of one propagator with the dom event, we need a linear number of prop-
agators to implement the propagation rule.

Computational results

Table 4 reports the comparison results of the two implementations of set con-
straints: The column dom shows the time taken by the implementation that uses
the dom event, and the column bool shows the time taken by the one that uses
reification constraints. The following benchmark programs are used:

– Steiner: The ternary Steiner problem of order n is to find n(n − 1)/6 sets
over the universal set {1, 2, ..., n} such that each set contains three elements
and any two sets have at most one element in common. This program was
taken from [8]. No constraint for breaking symmetry is used.

– Golf: This is taken from the ECLiPSe sample program suite. It schedules a
round-robin golf tournament on which each player plays in a group in every
round and each player can only play with the same person once.

For Steiner, dom is 23 times as fast as bool, and for Golf, dom finds a solution
in 609 milliseconds while bool fails to find one in 1000 seconds because of repeated
invocations of the garbage collector.
9 In the real implementation in B-Prolog, a set domain variable is represented as an

attributed variable with the lower and upper bounds attached as attributes.

13

Table 4. Comparing the two implementations of set constraints (CPU time).

Program dom (ms) bool (ms) bool
dom

Steiner (9) 125 2,950 23.6
Golf (32-9-8) 609 > 16 > 1,600

Table 5 compares the performance of two set solvers: the fd sets solver as
provided in ECLiPSe 5.8 #107, and the BP set solver presented in this paper
as provided in B-Prolog 6.8. Both fd sets and the BP set solver adopt the same
domain representation originally presented in [25]. The propagation rules from
the Conjunto solver [8] are implemented in both solvers.

The BP set solver is significantly faster than for both programs although the
same domain representation and propagation rules are used in both solvers. In
fd sets, set domain variables are represented as attributed variables and prop-
agation rules are encoded in demons. The speed difference is mainly caused by
the lack of a swift mechanism in ECLiPSe for handling the dom event.

The fd sets solver is several times faster than the Conjunto solver. In Con-
junto, set bounds are represented as sorted lists and it takes linear time in the
worse case to update a bound.

Table 5. Comparison of two set solvers (CPU time).

Program fd sets (ms) BP (ms) fd sets
BP

Steiner(9) 2,025 125 16.19
Golf 2,000 609 3.28

7 Related Work

The AR language is an extension of delay clauses [14, 23] for supporting events
and actions. In very early versions, only ins, bound and dom(X) events were
supported. The dom(X, E) event was first introduced into AR in year 2000 [25]
for implementing propagators for set constraints. An elaboration of the use of the
AR language in programming basic propagators for arithmetic and alldifferent
constraints is given in [24]. The dom any(X, E) event is new in this paper.

This paper is a successor of [24], which demonstrates the use of the dom event
in propagators for arbitrary binary support constraints, the element constraints,
channeling constraints and set constraints. The propagators presented in this
paper could be implemented with ease in any language that supports dom-like
events such as CHOCO [12]10. ILOG solver allows a propagator to access a
domain delta structure which records the changes in the domain of a variable
since the last time all propagators on the variable were executed. This allows
10 Since the original workshop paper on CHOCO is unavailable and the manual of the

Choco system does not mention similar event constructs, we cannot give a detailed
comparison.

14

access to the deleted values of a variable in an approximate way, and hence an
indirect support of the dom event.

Most constraint logic programming systems such as Eclipse, SICStus, and
GNU-Prolog provide non-value specific events similar to ins(X), bound(X) and
dom(X). In ECLiPSe, a finite-domain variable has an attribute called hole and
demons can be attached to the attribute. Whenever inner values are excluded
from a domain, i.e., whenever values are added into the hole, the attached demons
are activated. In Sicstus and GNU-Prolog, a range expression or wakeup condi-
tion of the form dom(X) can be used, which activates the associated propagators
whenever the domain of X is updated. Nevertheless, in these systems no value
can be transmitted to the propagators and thus it is impossible to achieve the
same effect as the dom(X, E) or dom any(X, E) event.

cc(FD) [11] compiles a functional constraint into Boolean implication con-
straints to maintain its arc consistency. An optimization technique is then used
to combine implication constraints to achieve better space efficiency. But, as
far we know, cc(FD) provides no construct like the dom event to the user for
implementing arc consistency algorithms.

CHR (Constraint Handling Rules) [7] has been used to implement various
kinds of constraint propagators (see e.g., [1]). If events are treated as constraints,
then all the propagators presented in this paper could be translated into CHR.
Treating events as constraints, however, can hardly achieve the same perfor-
mance. Events are removed automatically after all the watching agents are ac-
tivated. In CHR, however, there must be rules to remove events explicitly. Re-
cently it has been found that action rules can serve as an efficient alternative
intermediate language for compiling CHR [18].

There are two reasons for the reluctance of introducing dom-like construct into
CLP languages for implementing propagators. Firstly, in register-based abstract
machines like the WAM a considerable cost must be paid to pass an extra value
to a propagator when it is activated. In those systems, propagators are stored
as terms on the heap and the arguments must be rearranged into appropriate
registers before they can be executed. In B-Prolog, in contrast, propagators are
stored as stack frames, and passing an extra value into a propagator means
placing it in a designated slot in the frame [23, 24]. Therefore, the overhead of
the dom event is extremely small in B-Prolog. It remains an open issue how to
implement the dom event in a register-based machine with low overhead.

The second reason why the dom-like construct has not been widely accepted
is because of the perception that maintaining interval consistency is efficient
enough in practice and even for those problems that do require arc consistency
the AC-3 algorithm is as efficient as, if not more efficient than, the AC-4 al-
gorithm [20, 22]. As reported in the computational results in Section 3, the
difference between the time complexities of the AC-3 and AC-4 algorithms is
significant for functional constraints although it can be erased in theory for
general constraints [20, 22]. For example, the AC-3.1 algorithm [22] does not
perform better than original AC-3 algorithm for bi-directional functional con-

15

straints since each value has only one supporting value in the other domain and
there is no need to remember the resumption point for each value.

8 Concluding Remarks

We have presented several application examples, for which the dom event facil-
itates propagating updates of domains and/or makes it possible to describe a
relationship with an-order-of-magnitude fewer propagators. The contributions of
this paper are as follows:

– It describes the dom event and illustrates its use in the implementation of
the AC-4 algorithm for not only functional constraints but also arbitrary
support constraints and the element constraint.

– It proposes an innovative use of the dom event in encoding propagators for
channeling and set constraints. As far as we know, no similar attempt has
been made by other authors.

– It gives experimental results to confirm the importance of the dom event.

The availability of the dom event together with an efficient mechanism for han-
dling it is a key factor for the high performance of the finite-domain and set
solvers in B-Prolog.

We believe that the dom event can be found useful in more applications such
as global constraints. For example, in the incremental version of Regin’s filtering
algorithm [17], the dom event could be used to detect if an edge in the current
maximal match has been removed. The dom event can also be used in propagators
for problem-specific constraints. The future work is to explore new applications.

References

1. Krzysztof R. Apt and Eric Monfroy. Constraint programming viewed as rule-based
programming. Theory and Practice of Logic Programming, 1(6):713–750, 2001.

2. N. Beldiceanu and E. Contjean. Introducing global constraints in CHIP. Mathe-
matical and Computer Modeling, 12:97–123, 1994.

3. Mats Carlsson, Greger Ottosson, and Björn Carlson. An Open-Ended Finite Do-
main Constraint Solver. In Hugh Glaser, Pieter H. Hartel, and Herbert Kuchen,
editors, PLILP’97: Proceedings of the 9th International Symposium on Program-
ming Languages: Implementations, Logics, and Programs, volume 1292 of Lecture
Notes in Computer Science, pages 191–206, Southhampton, UK, September 1997.
Springer.

4. B. M. W. Cheng, Kenneth M. F. Choi, Jimmy Ho-Man Lee, and J. C. K. Wu.
Increasing constraint propagation by redundant modeling: an experience report.
Constraints, 4(2):167–192, 1999.

5. D. Diaz and P. Codognet. Design and implementation of the GNU Prolog system.
Journal of Functional and Logic Programming, 2001(1):1–29, 2001.

6. Mehmet Dincbas, Helmut Simonis, and Pascal Van Hentenryck. Solving a cutting-
stock problem in constraint logic programming. In ICLP/SLP, pages 42–58, 1988.

16

7. Th. Frühwirth. Theory and practice of constraint handling rules, special issue on
constraint logic programming. Journal of Logic Programming, 37:95–138, 1998.

8. Carmen Gervet. Interval propagation to reason about sets: Definition and imple-
mentation of a practical language. Constraints, 1(3):191–244, 1997.

9. Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,
1989.

10. Pascal Van Hentenryck, Yves Deville, and Choh-Man Teng. A generic arc-
consistency algorithm and its specializations. Artif. Intell., 57(2-3):291–321, 1992.

11. Pascal Van Hentenryck, Vijay A. Saraswat, and Yves Deville. Design, implemen-
tation, and evaluation of the constraint language cc(fd). J. Log. Program., 37(1-
3):139–164, 1998.

12. M. Laburthe. Choco: implementing a cp kernel. In Proceedings of the CP00 Post
Conference Workshop on Techniques for Implementing Constraint Programming
Systems, pages 71–85, 2000.

13. Alan K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8(1):99–118, 1977.

14. M. Meier. Better late than never. In E. Tick and G. Succi, editors, Implementations
of Logic Programming Systems. Kluwer Academic Publishers, 1994.

15. Roger Mohr and Thomas C. Henderson. Arc and path consistency revisited. Ar-
tificial Intelligence, 28:225–233, 1986.

16. J.F. Puget and M. Leconte. Beyond the glass box: Constraints as objects. In Proc.
International Logic Programming Symposium, pages 513–527. MIT Press, 1995.

17. J.C. Regin. A filtering algorithm for constraints of difference in CSPs. In Proceed-
ings of the National Conference on Artificial Intelligence(AAAI-94), pages 362–
367. AAAI Press, 1994.

18. Tom Schrijvers, Neng-Fa Zhou, and Bart Demoen. Translating constraint handling
rules into action rules. In The Third Workshop on Constraint Handling Rules, 2006.

19. W J van Hoeve. The alldifferent constraint: A survey, 2001.
20. Richard J. Wallace. Why AC-3 is almost always better than ac4 for establishing

arc consistency in csps. In Proceedings of IJCAI, pages 239–247, 1993.
21. Toby Walsh. Permutation problems and channelling constraints. In LPAR, pages

377–391, 2001.
22. Yuanlin Zhang and Roland H.C. Yap. Making AC-3 an optimal algorithm. In

Proceedings of IJCAI, pages 316–321, 2001.
23. Neng-Fa Zhou. A novel implementation method of delay. In Proc. Joint Inter-

national Conference and Symposium on Logic Programming, pages 97–111. MIT
Press, 1996.

24. Neng-Fa Zhou. Programming finite-domain constraint propagators in action rules.
Theory and Practice of Logic Programming (TPLP), 2006.

25. Neng-Fa Zhou and Joachim Schimpf. Implementation of propagation rules for set
constraints revisited. http://www.sci.brooklyn.cuny.edu/˜ zhou/papers/clpset.pdf,
Unpublished manuscript, preliminary results published in First Workshop on Rule-
Based Constraint Reasoning and Programming, 2000, 2000.

26. Neng-Fa Zhou and Mark Wallace. A simple constraint solver in action rules for
the cp’05 solver competition. In Proceedings of the CP workshop on Constraint
Propagation and Implementation, 2005.

17

	TR-2006013: The Dom Event and Its Use in Implementing Constraint Propagators
	How does access to this work benefit you? Let us know!

	cunytr.dvi

