EGFR Polymorphisms in Drosophila melanogaster

Stacie Chue
CUNY Bernard M Baruch College

Neha Mehta
CUNY Bernard M Baruch College

Samantha Poon
CUNY Bernard M Baruch College

Heather Trazino
CUNY Bernard M Baruch College

How does access to this work benefit you? Let us know!

Follow this and additional works at: https://academicworks.cuny.edu/bb_pubs

Part of the [Developmental Biology Commons](https://academicworks.cuny.edu/bb_pubs)

Recommended Citation

Chue, Stacie; Mehta, Neha; Poon, Samantha; and Trazino, Heather, "EGFR Polymorphisms in Drosophila melanogaster" (2018).

[CUNY Academic Works](https://academicworks.cuny.edu).

https://academicworks.cuny.edu/bb_pubs/262

This Poster is brought to you for free and open access by the Baruch College at CUNY Academic Works. It has been accepted for inclusion in Publications and Research by an authorized administrator of CUNY Academic Works. For more information, please contact AcademicWorks@cuny.edu.
EGFR Polymorphisms in *Drosophila melanogaster*

By Stacie Chue, Neha Mehta, Samantha Poon, and Heather Trazino

Introduction

Genome-wide association studies (GWAS)- observational study that examines genetic variation in different *Drosophila* individuals to identify overarching associations between genetic variants and phenotypic traits.

In normal *D. melanogaster*, juvenile hormone along with Ecdysone plays an important role in development and prevents the larva from entering metamorphosis too soon.

Ecdysone trigger every molt: larva-to-larva as well as pupa-to-adult

- *EGFR*: gene that encodes for the epidermal growth factor receptor
- Transmembrane tyrosine kinase receptor that plays a significant role in regulating growth, cell fate determination and survival, and early embryonic planning
- EGFR signaling, along with MAPK complex, has been closely related to tumor and cancer formation
- Promotes the growth and development of lymphoblasts and other blood cell types

Materials and Methods

- Larva collected during committed wandering 3rd instar phase
- Ethanol was used for control specimen and as solvent for methoprene
- Larva were heat-shocked at 70°C using a thermal cycler for 10 minutes and crystal cells counted
- Same genotypes were treated with 25 microliters methoprene
- Crystals cells recounted
- *Genome Wide Association Study (GWAS)* conducted to find correlations

Hypothesis

- *Drosophila* larvae of varying genotypes exhibit different amounts of crystal cells with and without treatment
- Difference in crystal cell count, the phenotypic trait we are observing across genotypes, can be attributed to genetic variation
- Through observing genetic variation in crystal cell formation, with and without treatment, we hypothesize that specific genes, and the polymorphisms associated with these genes, influence hormone sensitivity

Results

Mean Change in Crystal Cells +266 n=14 (had at least 2 non reference alleles)

- *Drosophila* genotypes that have the non-reference allele exhibit greater crystal cell count than *Drosophila* with the reference allele
- Average crystal cell count with reference allele: ~38
- Average crystal cell count with non-reference allele: +266
- Indicates that EGFR gene increases crystal cell hormone sensitivity

Discussion

- *EGFR* Polymorphisms associated with *EGFR*
 - All polymorphisms are located within fourth intron, in a 30 base-pair proximity
 - *EGFR* normal associated polymorphisms appear to be correlated with increased crystal cell hormone sensitivity
 - *H3K27AC*- acetylation modification on *H3* that is associated with greater activation of transcription; often referred to as an “active enhancer mark”
 - *H3K4ME2*- methylation modification on *H3* is closely linked to facilitating tissue specificity, as well as Hox gene activation
 - Change in chromatin structure may cause binding of varying transcription factors to activate transcription of *EGFR* gene
 - May lead to different amino acid and protein formation

Further Research

- Broaden sample size to include more of the DGRP genotypes available for *Drosophila*
- Preemptively treat larvae for infection, which may have increased crystal cell count number
- Overexpress or knock-out *EGFR* gene to drive or prevent expression of gene
- Greater *EGFR* signaling will increase the number of crystal cells after methoprene treatment
- Measure *EGFR* RNA levels in untreated and methoprene treated larvae
- RNA will be higher in larvae that have undergone methoprene treatment

Bibliography

3. *Genome Browser*: image of intron, shows EGFR as a whole and the genes that are nearby.
4. Fly Treated with Ethanol (31908)
5. Fly Treated with Methoprene (31908)
6. *Materials and Methods*
7. *Results*
8. *Discussion*
9. *Images*