Fall 2018

Jupyter: Intro to Data Science - Lecture 12 Clustering and Topic Modeling

Grant Long
CUNY City College

NYC Tech-in-Residence Corps

Follow this and additional works at: https://academicworks.cuny.edu/cc_oers

How does access to this work benefit you? Let us know!

Recommended Citation
https://academicworks.cuny.edu/cc_oers/158

This Lecture or Presentation is brought to you for free and open access by the City College of New York at CUNY Academic Works. It has been accepted for inclusion in Open Educational Resources by an authorized administrator of CUNY Academic Works. For more information, please contact AcademicWorks@cuny.edu.
Data Dive 12: Clustering and Topic Modeling

This week we'll use movie data from the movie database (TMDb) (https://www.themoviedb.org/?language=en-US) available on Kaggle (https://www.kaggle.com/tmdb/).

The Movie Database (TMDb) is a community built movie and TV database. Every piece of data has been added by our amazing community dating back to 2008. TMDb’s strong international focus and breadth of data is largely unmatched and something we’re incredibly proud of. Put simply, we live and breathe community and that’s precisely what makes us different.

Tech Specs

Among some familiar tools from recent data dives, we'll be using StandardScaler (https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html) and KMeans (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html) from scikit-learn. As we discussed in class, we'll also be using altair, gensim, and pyLDAvis.
In []: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.feature_extraction.text import CountVectorizer

Instruct Colab (or your personal machine) to install non-standard packages.

In []: imUsingColab = False

if imUsingColab:
 !pip install gensim
 !pip install pyLDAvis
 !pip install vega
 !pip install altair

Import non-standard packages.

In []: from gensim import corpora
from gensim.models.ldamodel import LdaModel

try:
 import altair as alt
 if imUsingColab:
 alt.renderers.enable('colab')
 else:
 alt.renderers.enable('notebook')
 imUsingAltair = True
 print('Altair successfully loaded.')
except ModuleNotFoundError:
 imUsingAltair = False
 print('Altair loading failed. Will default to matplotlib.')

Attempt to load altair. Will not work without altair and vega pre-installed.

In []: import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
warnings.simplefilter(action='ignore', category=DeprecationWarning)
pd.options.mode.chained_assignment = None

random_state = 20181126
Load data from web

```python
In [ ]: df = pd.read_csv('https://grantmlong.com/data/tmdb_5000_movies.csv')
```

Drop na values, filter for recent movies produced in English.

```python
In [ ]:
    print(df.shape)
    cluster_vars = ['budget', 'popularity', 'revenue', 'runtime', 'vote_average']
    df = df.dropna(subset=cluster_vars+['release_date'])
    print(df.shape)
```

```python
In [ ]:
    df['release_year'] = df.release_date.str.slice(0,4).astype(int)
    samp_df = df.loc[(df.release_year>=1900) & (df.original_language=='en')].reset_index()
    titles = {samp_df.title.loc[i] : i for i in samp_df.index.values}
    print(samp_df.shape)
```

Create Vector of Normalized Data for Clustering.

```python
In [ ]:
    scaler = StandardScaler()
    scaler.fit(samp_df[cluster_vars].astype(float))
    X = pd.DataFrame(scaler.transform(samp_df[cluster_vars].astype(float)), col
```

Cluster with KMeans

To start off, we'll create 5 clusters. Obviously we'll want to play with this to see what kinds of results we get.

```python
In [ ]:
    kmeans = KMeans(n_clusters=5, random_state=random_state)
    kmeans.fit(X)
    y_kmeans = kmeans.predict(X)
    samp_df['cluster'] = (y_kmeans+1).astype(str)
```

Visualize Results

I've included code for altair hear for those interested. It's a lot nicer to use in this case because we'll be able to add tooltips to see which movies land where. If that's not working for you, you can always use matplotlib as a fall back.
In this section, we will be using our movie data to perform topic modeling. Our movie data contains brief overviews of movie contents which we can use in topic modeling! Here, we will transform the raw text into tokens for use in the bag-of-words style analysis we need to do topic modeling.

First, let's take a look at a few overviews. Ideally, for the richest analysis, our documents would be a bit longer, but these should nonetheless give us some interesting results.

Let's both vectorize and tokenize our text. I've filled in a lot for you already, but suffice to say that tokens are the preferred way to \texttt{gensim} takes its input.

```python
In [ ]:
x_var = 'budget'
y_var = 'revenue'

if imUsingAltair:
    chart = alt.Chart(
        samp_df,
        width=650,
        height=400
    ).mark_circle(
        size=80
    ).encode(
        x=x_var,
        y=y_var,
        color='cluster',
        tooltip=[
            'title',
            'revenue',
            'release_date'
        ]
    ).interactive()
else:
    chart = plt.figure(figsize=[14,7])
    chart = plt.scatter(samp_df[x_var], samp_df[y_var], c=samp_df.cluster)
    chart = plt.xlim([0, 300000000])
    chart = plt.ylim([0, 300])
    chart = plt.xlabel(x_var)
    chart = plt.ylabel(y_var)

chart
```

```
In [ ]:
```

```
In [ ]:
```

```
In [ ]:
```

Topic Modeling the Movies

Our movie data also contains brief overviews of movie contents which we can use in topic modeling! Here, we'll transform the raw text into tokens for use in the bag-of-words style analysis we need to do topic modeling.

First, let's take a look at a few overviews. Ideally, for the richest analysis, our documents would be a bit longer, but these should nonetheless give us some interesting results.

```python
In [ ]:
for i in np.random.choice(df.index.values, 3):
    print()
    print(df.overview.loc[i], '
')
```

Let's both vectorize and tokenize our text. I've filled in a lot for you already, but suffice to say that tokens are the preferred way to \texttt{gensim} takes its input.
vectorizer = CountVectorizer(max_df=.5,
min_df=8,
max_features=1000,
stop_words='english')

X_text = pd.DataFrame((vectorizer.fit_transform(samp_df.overview)>0).toarray()
all_words = vectorizer.get_feature_names()
d = {i : all_words[i] for i in range(len(all_words))}

tokens = [[d[j] for j in X_text.columns[X_text.loc[i]].tolist()] for i in range(len(tokens))]

print(np.random.choice(tokens, 2))

Next, we'll use gensim's built in functionality to create a dictionary and bag of words for us.

dictionary = corpora.Dictionary(tokens)
corpus = [dictionary.doc2bow(text) for text in tokens]

Finally, we train our model and output our results.

ldamodel = LdaModel(corpus, num_topics=10, id2word=dictionary, passes=30, r

topics = ldamodel.print_topics(num_words=6)
for topic in topics:
 print(topic)

Let's see how our model classifies some of our favorite movies.

i = titles["X-Men: Days of Future Past"]

print(samp_df.title.loc[i])
print(samp_df.overview.loc[i])
ldamodel.get_document_topics(corpus[i])

Using pyLDAvis, we can also build an interactive visualization of our topic model.

lda_display = pyLDAvis.gensim.prepare(ldamodel, corpus, dictionary, sort_to
c=pyLDAvis.display(lda_display)

In []:
In []:
In []:
In []:
In []: