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A Dynamic-Trend Exponential Smoothing Model 
 

 

Don Miller and Dan Williams



A Dynamic-Trend Exponential Smoothing Model 

 

Abstract 
 

Forecasters often encounter situations in which the local pattern of a time series is not 

expected to persist over the forecasting horizon. Since exponential smoothing models 

emphasize recent behavior, their forecasts may not be appropriate over longer horizons. 

In this paper, we develop a new model in which the local trend line projected by 

exponential smoothing converges asymptotically to an assumed future long-run trend 

line, which might be an extension of a historical long-run trend line. The rapidity of 

convergence is governed by a parameter. A familiar example is an economic series 

exhibiting persistent long-run trend with cyclic variation. This new model is also useful 

in applying judgmental adjustments to a statistical forecast. For example, this new model 

can converge an exponential smoothing forecast to a judgment-imposed future trend line 

that represents – say – a 10% increase over the extrapolated trend. The accuracy of this 

new method will be compared (later – haven’t done this yet) to that of existing methods 

in forecasting a sample of cyclical series with long-run trends. 

 

 



1.  Introduction 

 

Forecasters often encounter situations in which the local pattern of a time series is not 

expected to persist over the forecasting horizon. Thus, the forecast of an exponential 

smoothing model may not be appropriate over a longer forecasting horizon. This problem 

arises in a variety of contexts, including: (1) forecasting series exhibiting persistent long-

run trend with cyclic variation; (2) judgmental adjustment of a statistical forecast; and (3) 

forecasting a series that has experienced a recent disruption of its underlying pattern. In 

this paper, we present a  new exponential smoothing model called dynamic-trend that is 

useful in each of these situations. 

 

Long-run trends with cyclic variation  

The presence of cycles may create a short-term (local) trend that differs from the long-run 

trend. Holt’s method of linear exponential smoothing is ill-equipped for such a situation 

because it tends to misinterpret cyclic variation as a local trend. It may forecast 

accurately for the short term but can miss badly as the local trend is extended over the 

forecasting horizon. Damped-trend exponential smoothing (Gardner and McKenzie, 

1985) is ineffective in this situation because it damps the local trend asymptotically to 

zero. Snyder (2006) developed an “augmented damped-trend” model in which the local 

trend converges over time to a fixed long-run value. This helps, but it is insufficient 

because its forecast does not return to the level of the long-run trend line.  

 

Several studies have provided ways to reconcile local and long-run forecasts. Carbone 

and Makridakis (1986) developed two models, one short-term and one long-run, along 

with a formula for reconciling them at various forecasting horizons. Armstrong and 

Collopy (1992) used a similar approach within rule-based forecasting. The latter paper 

also incorporated domain knowledge regarding “causal forces.” Both achieved 

improvements in accuracy compared to conventional methods, but they are relatively 

complex. 

  

 



Judgmental adjustments 

Forecasting accuracy can often be improved via judgmental adjustment of a statistical 

forecast (Sanders, 2005). When this occurs, using a dynamic-trend model can simplify 

the ongoing forecasting process considerably. Judgmental adjustments are typically 

applied after a statistical model has produced a forecast, i.e., applied outside the model.  

This can lead to modeling problems down the road. Once the anticipated change is in the 

data, the statistical model may not be useful until it can adapt to the new pattern. The 

statistical model may also be compromised for tracking purposes: If the future changes 

(predicted judgmentally) occur as expected, the model itself will produce large errors. If 

change does not occurr as expected, the model may produce small errors.  

 

With the dynamic-trend model, a parameter controls the rate of transition from the 

extrapolation forecast to the judgmentally-adjusted forecast. Thus, dynamic-trend 

incorporates judgmental adjustments within the model. It remains viable for updating and 

tracking as new data become available, whether the change occurs or not. (Level-adjusted 

exponential smoothing, Miller and Williams, 1999, accomplishes this when a future level 

shift is expected.) 

 

To be effective, judgmental adjustments should be based on information about the future 

that is not contained in the existing data (Goodwin, 2005). Using a dynamic-trend model 

promotes this. Since judgmental adjustments are incorporated within the model, some 

level of interaction between the manager and the forecaster is required. The manager is 

likely to feel a need to explain the adjustment to the forecaster, thereby reducing the 

likelihood that adjustments are based something other than outside-the-data information 

about future events.  

 

Pattern breaks in recent data 

When there is a pattern break in the most recent data, several very different future 

patterns may seem plausible, ranging for example from never returning to the historical 

pattern to a rapid return.  The dynamic-trend model supports the forecaster by providing a 



way to depict very different possible futures via manipulation of the parameters of a 

single statistical model.  

 

In section 2, we formulate the model. In section 3, we provide examples of using the 

model for cyclic series with long-run trends, when judgmental adjustments are made, and 

when pattern breaks occur near the end of a series. We compare the model’s accuracy 

compared to conventional models for selected series from the M3-competiton 

(Makridakis and Hibon, 2000). We summarize results and offer conclusions in Section 4. 

 

2.  Model Formulations 

 

The dynamic-trend model can be based on any extrapolation model that projects a local 

pattern. Here we develop its application to Holt’s linear exponential smoothing model. 

We begin with the standard formulation of Holt’s model.  
 

Holt’s linear exponential smoothing 
 

Lt  = α Xt + (1 – α)(Lt-1 + Bt-1), (1) 

 

 = Ft-1(1)  +  α et (2) 

 

Bt  = β (Lt – Lt-1) + (1 – β)(Bt-1), (3) 

 

 =  Bt-1  +   αβ et (4) 

 

Ft(m)  = Lt + mBt (5) 

 

Lt is the local level of the series; Bt Is the local trend; Ft(m) is the forecast at origin t for 

m periods ahead; and et = Xt - Ft-1(1), the one-step-ahead forecasting error at period t. 

Ft(m) is a projection of the local trend line, determined at t, over the next m periods. The 

smoothing parameters for level and trend, α and β, are usually restricted to the range (0, 

1). Equations (2) and (4) are simpler, error-correction forms of (1) and (3). The Holt 



model becomes simple exponential smoothing if both β and the initial trend B1 are set to 

0. 
 

The dynamic-trend model 

The dynamic-trend forecast starts with a short-term forecast such as that of Holt’s model 

and transitions asymptotically to a long-run (future) trend line.  

 

Let L*t = A* + B* t  represent the long-run trend line at period t. 

 

The dynamic-trend model blends the Holt model and the basic trend: 

 
Lt  = α Xt + (1 – α)[ Lt-1 + (1 – φ1) (L*t-1 - Lt-1)]     +    [Bt-1 + (1 – φ2)(B* – Bt-1) ], (6) 

 

 =  Ft-1(1)  +  α et  (7) 

 

Bt  = β { Lt – [Lt-1 + (1 – φ1) (L*t-1 - Lt-1)] }  + (1 – β) [ Bt-1 + (1 – φ2)(B* – Bt-1 ) ], (8) 

 

 =  φ2
 Bt-1 + (1 – φ2) B*  + αβ et (9) 

 

Ft(1)  = [ φ1 Lt  +  (1 – φ1) L*t ]    +   [ φ2 Bt-1  +   (1 - φ2 ) B*] (10) 

 

Ft(m)  = [ φ1
m Lt  +  (1 – φ1

m) L*t ]   +  [ ∑ [φ2
i Bt-1  +   (1 - φ2

i ) B* ] (11) 

 

 =  Ft(m-1)  +   [ φ1
m-1 (1 – φ1) (L*t - Lt) ]   +  [ φ2

m Bt  +   (1 - φ2
m) B* ] (12) 

 
 

Lt and Bt are the level and trend at period t. Lt* is the level of the long-run trend line at t, 

and B* is the slope of the long-run trend line. Ft(m) is the forecast, determined at t, for 

the next m periods. The parameters α and β smooth the level and trend, as in the Holt 

model. The parameter φ1 governs the rate at which the Holt level transitions to the level 

of the basic trend line, and φ2 governs the rate at which the Holt trend transitions to the 

slope of the basic trend line. Both  φ1 and φ2 are restricted to the range (0, 1). The nearer 

φ1 and φ2 are to 0, the more rapid the transition. 



 

In (6), (1 – φ1)(L*t-1 - Lt-1) is the amount by which the level is predicted to transition at 

period t toward the level of basic trend line. Similarly, in (6), (1 – φ2)(B* – Bt-1) is the 

amount by which the trend is predicted to transition at period t toward the slope of basic 

trend line. Equations (7) and (9) are simpler, error-correction forms of (6) and (8). 

Equation (12) is an equivalent form of (11) that may be more convenient for computation 

within a spreadsheet. In (12),  [ φ1
m-1 (1 – φ1) (L*t - Lt) ] is the amount by which the level 

is predicted to transition toward the long-run trend line from period t+m-1 to t+m, and [ 

φ2
m Bt  +   (1 - φ2

m) B* ] is the predicted trend in period t + m. 

 

Expression (11) can be expressed in closed form as follows: 
 

Ft(m)  = [ φ1
m Lt  +  (1 – φ1

m) L*t ]  +   mB  -  [ φ2 (1 – φ2
m) / (1 – φ2) ] (Tt – B*) ],      if φ2 < 1   (13) 

 

 = φ1
m Lt  +  (1 – φ1

m) L*t   +  mBt       if φ2 = 1 (14) 

 

This model contains many conventional models as special cases, including simple and 

linear exponential smoothing, damped-trend exponential smoothing (Gardner and 

McKenzie, 1985), Snyder’s augmented damped-trend model (Snyder, 2006), and the 

Theta model (Assimakopoulos and Nikolopoulos, 2000; Hyndman and Billah, 2003). 

Each of these models results from specific settings of φ1  and φ2, as follows: 

 

1. Holt’s linear exponential smoothing:  Set φ1 = 1 and φ2 = 1.   

2. Damped-trend: Set φ1 = 1 and the basic trend B* = 0. The damping parameter is φ2. 

3. Snyder’s augmented damped-trend:  Set φ1 = 1.  

4. Theta model: Set φ1 = 1 and φ2 = 1 (producing Holt’s model).  Set the initial trend B1 

to ½ B* (where B* = the slope of the fitted trend line through the original series.) Set 

β = 0. (Thus, the trend remains constant at ½ B*.) 

 

 



3.  Examples and Evaluation 

 

Long-run trend with cyclic variation 

Consider the use of the dynamic-trend model for forecasting monthly gaming revenues 

for Clark County, Nevada (Las Vegas)1. Gaming revenues grew steadily on a percentage 

basis from January 1990 to August 2001 (when growth was disrupted by the events of 9-

11), a period of almost 11 years. Figure 1 is a plot of the logarithm of gaming revenues 

(seasonally adjusted), which exhibit a linearly increasing trend with cyclic variation, 

along with the the long-run trend line determined by least-squares fit to the data and the 

estimated trend-cycle. 

 

Figure 1 

Log(deseasonalized gaming revenue),
trend-cycle and long-run trend line
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We fit Holt, damped-trend, augmented damped-trend, and dynamic-trend models to the 

entire series through August 2001 (n = 140). (We stopped here because the events of 9/11 

disrupted the series.) Parameter values and initial conditions were determined in the 

following way: For Holt, we optimized α and β by choosing the values that minimized 

                                                           
1 We express our appreciation to Dr. Keith Schwer, former Director of The Center for Business and 
Economic Research at the University of Nevada, Las Vegas for providing these data. 



within-sample 1-month-ahead root-mean-square error (RMSE). For damped-trend, we 

used the same values for α and β, then chose the optimal value of φ.  For augmented 

damped-trend, the long-run trend was determine by least-squares fit to the in-sample data. 

As with damped-trend, we used the Holt values for α and β, then optimized φ. For the 

dynamic-trend model, we used the same long-run trend line and the same values for α 

and β, then chose the optimal values of φ1 and φ2. We then repeated the exercise in the 

same way, except that we optimized the parameters by minimizing 12-month-ahead 

RMSE. 

 

Table 2 provides model details and the results of fitting. Dynamic-trend had the smallest 

RMSE and Holt the largest, but the differences are not great. For 12-month-ahead 

comparisons, dynamic-trend is clearly the best fit (RMSE = .0520), followed by 

augmented-damped trend  (RMSE = .0606), then Holt (RMSE = .0630). 

 



Table 2 

Quantity Holt 
Augmented 

damped trend 
Dynamic-

trend 
Initial level (L1) 19.594 19.594 19.594 

Initial trend (B1)
 

.00526 
 

 
.00526 

 

 
.00526 

 
α .217 .217 .217 

β .010 .010 .010 

φ1 * * .911 

φ2 (this is “φ" for “augmented”) * .754 .832 

Long-run trend line, intercept A* * * 19.586 

Long-run trend line, slope B* * .00526 .00526 

In-sample RMSE
(1-ahead) .0475 .0473 .0465 

In-sample RMSE
(12-ahead) .0630 .0606 .0520 

* = not applicable to this method    
 

 

A good fit does not necessarily lead to good forecasting. We developed five out-of-

sample 12-month- ahead forecasts using Holt, damped-trend, augmented damped-trend, 

and dynamic-trend models. These forecasts were produced every 18 months starting in 

December 1993. Each time the forecasts were updated, we re-optimized the parameters 

and re-estimated the long-run trend line. The initial values for level and trend were 

developed from the parameters of the long-run trend line (L1 = A* + B*, B1 = B*). 

 

We found that relative model performances depended on (1) the accuracy of the 

estimated long-run trend, and (2) the recent data pattern leading up to the forecasting 

period. Figures 2, 3, and 4 illustrate how these factors affected model accuracy for three 

of the five forecasts. Damped-trend is not included in the figures as it fares poorly – 

which is not surprising since it isn’t designed for series with sustained trend. 



● December 1993 (Figure 2): The dynamic-trend forecast is the least accurate, and the 

Holt forecast is most accurate. The reason for dynamic-trend’s poor performance is 

that the estimated long-run trend based on the first four years’ data is inaccurate. 

Subsequent data revels that December 1993 marks the beginning of a return to the 

long-run trend from the bottom of a down cycle. 

● June 1995 (Figure 3): The local level and trend are close to the level and trend of 

the long-run trend line. Thus, the three forecasts are similar and there is little 

difference in model performance.  

● December 1996 (Figure 4): The Holt model is strongly affected by a temporary 

downturn in the data, and its forecast is wildly inaccurate. The dynamic-trend 

forecast is the most accurate. 

 

Figure 2 

12/93: Log(deseas gaming revenue),
estimated long-run trend, and 3 forecasts
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Figure 3 

June 1995: Log(deseas gaming revenue),
estimated long-run trend, and 3 forecasts
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Figure 4 

12/96: Log(deseas gaming revenue),
estimated long-run trend, and 3 forecasts
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Table 3 provides the out-of-sample mean absolute percentage error (MAPE) for 12 month 

forecasts for all five forecasts. Dynamic-trend was the most accurate in all cases except 



the 12/93 forecast, for which the data were insufficient to estimate the long-run trend 

accurately. 

  

  
MAPE (Out-of sample, over 12 

months) 
Estimated long-run 

trend line 

  Holt 

Augmented 
damped-

trend 
Dynamic-

trend intercept slope 
12-93** 0.212 0.386 0.496** 19.59977 0.00422 

Jun-95 0.224 0.219 0.214 19.56824 0.00595 
Dec-96 0.38 0.202 0.158 19.57718 0.00563 
Jun-98 0.192 0.183 0.145 19.59031 0.00522 
Dec-99 0.165 0.146 0.08 19.58855 0.00526 

 

** Data (3 years) were insufficient to estimate the long-run trend accurately  
 

Empirical evaluation of model performance 

(Here we will describe the results of forecasting withheld data for lots of series with 

long-run trend and cyclic variation,probably taken from the M- and/or M3-competitions.) 

 

 

Judgmental adjustment of statistical forecasts 

In 1995, the Virginia General Assembly approved the construction of a number of new 

prisons in conjunction with mandated sentences and elimination of parole. Because of 

insufficient space in prisons, felons were also being housed in local jails, creating 

overcrowded conditions there as well. This number had been increasing steadily for a 

number of years. When new prisons were completed, the number of felons housed in 

local jails was expected to decline from about 1,740 to 1,000 over two years, at which 

point it would start increasing at one-half its current trend. Figure 4 plots the monthly 

local prison population through June 1995, along with the Holt forecast, the future trend 

line that was expected once the decline was complete, and the dynamic-trend forecast that 

represents the judgmental adjustment of the Holt forecast.  



 

Since the judgmental adjustment is based on information not contained in the data, the 

model used to produce the pre-judgment, statistical forecast does not have to include a 

dynamic-trend component. For this example, the pre-adjustment forecast developed at 

June 1995 was produced by fitting a Holt model [α = .7, β = .01 in expressions (1) – (4)] 

to the historical data through June 1995. The expected future trend line was the line with 

level = 1,000 at June 1997 and slope = 3.73 per month (½ the Holt trend value at June 

1995 of 7.45 per month). The dynamic-trend forecast used the parameter values (φ1 = 

.892 and φ2 = .5) in expressions (8) and (9) which produced a transition from the Holt 

forecast to the expected future trend line (approximately) in June 1997.  

 

Figure 4 

June 1995: Felons in local jails: Historical data, Holt forecast, 
expected future trend line, and  

dynamic trend (judgmental adjustment) forecast
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How did this forecast work out? Quite well, as shown in Figure 5. The forecast errors 

over the 24-month horizon are relatively small, and there is no need to reconsider plans. 

The greatest benefit of incorporating judgment within the model is forecast management, 

as the model remains viable for tracking and updating. Figure 6 shows an easily produced 

updated forecast using data through February 1997. 

 



Figure 5 

June 1995: Felons in local jails: Historical data, 
dynamic trend forecast, and future (out-of-sample) actuals
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Figure 6 

February 1997: Felons in local jails
 Updated dynamic trend forecast vs. actuals
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Disruptions of the pattern in the recent data 

Now we return to the Clark County, Nevada (Las Vegas) gaming series. The events of 

9/11 caused gaming revenues to decline precipitously. In the immediate aftermath of 

9/11, most construction was suspended, services were cut, shows went dark, free 

entertainment was curtailed, and thousands of employees were furloughed or laid-off. 

Casino and hotel management had to decide how long to put plans on hold, or whether 

these cuts should be permanent, even greater cuts were required, or wholly new strategies 



were needed for a post 9/11 environment (Las Vegas Review-Herald, September 11, 

2004). In the wake of 9/11, the best decision alternative depended on the nature and 

speed of recovery. 

 

Figure 3 shows actual gaming revenues up to and including the September 2001 drop 

along with the pre-9/11 forecast developed with data through August 2001 using the 

dynamic-trend model (α = .235; β = .021; φ1 = .92 and φ2 = .78). It also shows four 

different “recovery” paths, each of which might require different decisions. These 

alternative futures start from the lower, post-9/11 level, so we introduced a one-period 

decline of $72,000,000 (estimated judgmentally) in September 2001 via level-adjusted 

exponential smoothing (Williams and Miller, 1999) within the dynamic-trend model. 

Then we updated the forecast four times, with each new forecast representing a different 

recovery path. The four forecasts used the same values of  α and β as the pre-9/11 model 

and were differentiated by the values used for  φ1 and φ2. 

 

In one path, revenues return to the pre-9/11 forecast within about 6 months. This path is 

the forecast that results from setting φ1 = .6 and φ2 = .6 in the dynamic-trend model and 

defining the future long-run trend line to be the pre-9/11 forecast. A second path has 

revenue returning to the pre-9/11 forecast more slowly, over about 18 months. This path 

was achieved by setting φ1 = .9 and φ2 = .9. In a third possible scenario, revenues 

immediately resume the trend of the pre-9/11 forecast but never recover to its level. Here, 

we set φ1 = 1.0 and φ2 = 0. The fourth scenario has revenue staying at the September 2001 

level for the foreseeable future. For this path, we set φ1 = 1.0 and φ2 = 0, and we set the 

future long-run trend value to zero for all future periods. Simply by manipulating the 

parameters, the model can be adjusted to produce the scenarios that are meaningful to 

planners.  

 

In the immediate aftermath of a disruption, each of the scenarios may seem plausible. As 

new, post-disruption data become available, plans can be firmed up as one or two 

scenarios begin to emerge. If additional scenarios of interest emerge, they can be added 



by further manipulation of the parameters. Custer and Miller (2007) provide a procedure 

for such analysis. 

 

Figure 3 

Pre-9-11 FC & 4 post-9/11 scenarios
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Summary and Conclusions 

(later) 
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