Readability of Colorectal Cancer Online Information: A Brief Report

Corey Basch
William Paterson University

Danna Ethan
CUNY Lehman College

Sarah A. MacLean
Icahn School of Medicine at Mount Sinai

Philip Garcia
William Paterson University

Charles E. Basch
Columbia University

How does access to this work benefit you? Let us know!

Follow this and additional works at: https://academicworks.cuny.edu/le_pubs

Part of the [Health Communication Commons](https://academicworks.cuny.edu/health-communication) and the [Oncology Commons](https://academicworks.cuny.edu/oncology)

Recommended Citation

Basch, Corey; Ethan, Danna; MacLean, Sarah A.; Garcia, Philip; and Basch, Charles E., "Readability of Colorectal Cancer Online Information: A Brief Report" (2017). CUNY Academic Works.
https://academicworks.cuny.edu/le_pubs/263
Readability of Colorectal Cancer Online Information: A Brief Report

Corey H. Basch, Danna Ethan, Sarah A. MacLean, Philip Garcia, and Charles E. Basch

Department of Public Health, William Paterson University, Wayne, USA
Department of Health Sciences, Lehman College, Bronx, NY, USA
Icahn School of Medicine at Mount Sinai, NY, USA
Department of Health and Behavior Studies, Teachers College, Columbia University, NY, USA

Address for correspondence: Dr. Danna Ethan, Lehman College, CUNY, 250 Bedford Park Boulevard West, Gillet Hall, Rm. 431, Bronx, NY 10956, USA. E-mail: danna.ethan@lehman.cuny.edu

Received 2018 Feb 23; Accepted 2018 Apr 10.

Copyright: © 2018 International Journal of Preventive Medicine

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Abstract

Purpose:

Colorectal cancer (CRC) is the third leading cause of cancer-related death in the United States. A decline in deaths caused by CRC has been largely attributable to screening and prompt treatment. Motivation, shown to influence cancer-related screening and treatment decisions, can be shaped by information from the Internet. The extent to which this information is easily readable on cancer-related websites is not known. The purpose of this study was to assess the readability levels of CRC information on 100 websites.

Methods:

Using methods from a prior study, the keyword, “colorectal cancer,” was searched on a cleared Internet browser. Scores for each website (n = 100) were generated using five commonly recommended readability tests.

Results:

All five tests demonstrated difficult readability for the majority of the websites.

Conclusions:

Online information related to CRC is difficult to read and highlights the need for developing cancer-related online material that is understandable to a wider audience.

Keywords: Colorectal cancer, online information, readability
Introduction

In the United States, colorectal cancer (CRC) is the third leading cause of cancer-related death in women and men.[1] In 2018, it is expected that there will be 97,220 new cases of colon cancer and 43,030 new cases of rectal cancer, resulting in 50,630 deaths.[1] Early detection and treatment of CRC influence survival rates.[1] There has been a decline in deaths caused by CRC, which is largely attributable to screening and prompt treatment.[1] Motivation influences cancer screening and treatment decisions,[2] and both may be affected by the communications conveyed on the Internet.[3] The extent to which this information is readable and comprehendible can shape motivation and health-care decisions. A recent review of the literature suggests that effective health communication is multifaceted, and when health education efforts are ineffective, health can be impacted directly and/or indirectly.[4] Health education experts suggest that materials be written at the sixth-grade reading level for increased understandability,[5] but little is known about the extent to which this guidance is followed on websites related to cancer. The purpose of this study was to assess the readability levels of CRC information on 100 websites.

Methods

Methods, based on a prior study,[6] entailed searching a cleared Internet browser with the keyword “colorectal cancer.” The URLs of the first 100 websites written in English were included to create the sample. We then used readable.io, a Medline-recommended service, to generate readability scores for each website.[7] The service provides scores for five commonly recommended readability tests: Flesch–Kincaid Grade Level, Gunning Fog Index, Coleman–Liau Index, the Simple Measure of Gobbledygook Grade Level, and Flesch–Kincaid Reading Ease (FRE). We then grouped the scores and classified the readability as “easy” (grade <6), “average” (Grade 6–10), or difficult (Grade >10).

Results

All five tests revealed that the majority of websites had difficult readability [Table 1]. Based on the FRE, 89% of the websites were graded as difficult and the remaining 11% were graded as average. All five tests showed that <6% of sites had easy readability. Among the four tests that determined readability based on grade level, all found the average grade to be above the 10th grade, which indicates difficult readability. There were no significant differences found between websites with.org., gov, or.edu extensions (Group 1) and those with.com., net, or other extensions (Group 2). Independent sample t-tests [Table 2] and Fisher's exact tests [Table 3] showed no significant differences in readability between the groups categorized based on their extension.

Conclusions

The findings of this study indicate that, regardless of the URL type, online information related to CRC is difficult to read. Given that a facilitating factor for CRC screening is familiarity with CRC screening tests, increasing the ease with which materials can be read can lead to facilitating prevention efforts.[8] Study limitations include the cross-sectional design and restriction of material written in English. Nevertheless, this study supports the conclusion that cancer communications on the Internet are difficult to read[9] and highlights the need for developing health-related online material that is understandable to a wider audience. Further studies could explore the extent to which readability of materials influences one's motivations and actions.

Financial support and sponsorship

Nil.
Conflicts of interest

There are no conflicts of interest.

References

Figures and Tables
Table 1

Descriptive statistics on the readability tests of all sites (n=100)

<table>
<thead>
<tr>
<th>Test</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Easy: Grade <6</th>
<th>Average: Grade 6-10</th>
<th>Difficult: Grade >10</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>FKGL</td>
<td>5.0</td>
<td>16.0</td>
<td>1</td>
<td>48</td>
<td>51</td>
<td>10.4</td>
<td>2.1</td>
</tr>
<tr>
<td>GPS</td>
<td>2.0</td>
<td>18.1</td>
<td>5</td>
<td>19</td>
<td>76</td>
<td>11.3</td>
<td>2.9</td>
</tr>
<tr>
<td>CLI</td>
<td>3.0</td>
<td>19.3</td>
<td>1</td>
<td>18</td>
<td>81</td>
<td>11.6</td>
<td>2.2</td>
</tr>
<tr>
<td>SMOG</td>
<td>7.8</td>
<td>16.6</td>
<td>0</td>
<td>13</td>
<td>87</td>
<td>12.0</td>
<td>1.9</td>
</tr>
<tr>
<td>FRE*</td>
<td>16.6</td>
<td>78.7</td>
<td>0</td>
<td>11</td>
<td>89</td>
<td>47.5</td>
<td>11.0</td>
</tr>
</tbody>
</table>

*Scoring is as follows: Easy: Score 80–100; Average: Score 60–79; Difficult: Score 0–59. SD=Standard deviation, FRE=Flesch–Kincaid Reading Ease, FKGL=Flesch–Kincaid Grade Level, CLI=Coleman–Liau Index, SMOG=Simple Measure of Gobbledygook, GFS=Gunning Fog Score

Table 2

Mean readability scores based on website and URL type

<table>
<thead>
<tr>
<th>Test</th>
<th>Group 1 (n=54)</th>
<th>Group 2 (n=46)</th>
<th>(P^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRE</td>
<td>47.7</td>
<td>47.1</td>
<td>0.789</td>
</tr>
<tr>
<td>FKGL</td>
<td>10.3</td>
<td>10.7</td>
<td>0.334</td>
</tr>
<tr>
<td>GFS</td>
<td>11.0</td>
<td>11.6</td>
<td>0.326</td>
</tr>
<tr>
<td>CLI</td>
<td>11.7</td>
<td>11.5</td>
<td>0.645</td>
</tr>
<tr>
<td>SMOG</td>
<td>11.9</td>
<td>12.2</td>
<td>0.408</td>
</tr>
</tbody>
</table>

*Independent sample t-test. Group 1=.org, .gov, .edu, Group 2=.com, .net, other. FRE=Flesch–Kincaid Reading Ease, FKGL=Flesch–Kincaid Grade Level, CLI=Coleman–Liau Index, SMOG=Simple Measure of Gobbledygook, GFS=Gunning Fog Score
Table 3

Counts of easy, average, and difficult scores

<table>
<thead>
<tr>
<th>Test</th>
<th>Group 1 (n=54)</th>
<th>Group 2 (n=46)</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Easy</td>
<td>Average</td>
<td>Difficult</td>
</tr>
<tr>
<td>FRE</td>
<td>0</td>
<td>6</td>
<td>48</td>
</tr>
<tr>
<td>TKOL</td>
<td>1</td>
<td>30</td>
<td>23</td>
</tr>
<tr>
<td>GFS</td>
<td>2</td>
<td>12</td>
<td>40</td>
</tr>
<tr>
<td>CLI</td>
<td>0</td>
<td>9</td>
<td>45</td>
</tr>
<tr>
<td>SMOG</td>
<td>0</td>
<td>7</td>
<td>47</td>
</tr>
</tbody>
</table>

*Fisher’s exact test; FKGL=Flesch–Kincaid Reading Ease, FKGL=Flesch–Kincaid Grade Level, CLI=Coleman–Liau Index, SMOG=Simple Measure of Gobbledygook, GFS=Gunning Fog Score