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Abstract

Versus the customary preconditioners, our weakly random ones are generated more readily
and for a much larger class of input matrices. Furthermore our preconditioners have a wider
range of applications, in particular to linear systems with rectangular and rank deficient co-
efficient matrices and to eigen-solving. We study the generation of such preconditioners and
their impact on conditioning of the input matrix. Our analysis and experiments show the power
of this approach even where we use weak randomization, with fewer random parameters, and
choose sparse and structured preconditioners.

2000 Math. Subject Classification: 65F22, 65F35, 65A12

Key words: Matrix computations, Additive preconditioning, Weak randomization

1 Introduction

1.1 Background: multiplicative preconditioning

Originally, preconditioning of a linear systems of equations Ay = b meant the transition to an
equivalent but better conditioned linear systems MAy = Mb, ANx = b, or more generally

∗Supported by PSC CUNY Awards 66437-0035, 67297-0036 and 68291–0037 Some results of this paper have been
presented at the International Conferences on the Matrix Methods and Operator Equations in Moscow, Russia, in
June of 2005 and July 2007, on the Foundations of Computational Mathematics (FoCM’2005) in Santander, Spain, in
July 2005, and on Industrial and Applied Mathematics, in Zürich, Switzerland, in July 2007, as well as at the SIAM
Annual Meeting, in Boston, in July 2006, at the Third International Workshop on Symbolic-Numeric Computation
(SNC’07) in London, Ontario, Canada, in July 2007, and at the Third International Computer Science Symposium
in Moscow, Russia, in June of 2008.
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MANx = Mb for y = Nx and readily computable nonsingular matrices M and N , called precon-
ditioners (see [1]–[4] and the bibliography therein). Such systems can be solved faster and more
accurately. Generally, however, computing the desired multiplicative preconditioners M and N

can be as costly as Gaussian elimination, and so preconditioning florishes only for large but special
classes of input matrices A.

1.2 Weakly random additive preprocessing

As an alternative or complementary tool, we propose weakly random additive preprocessing A ←
C = A + P , i.e., we add a matrix P (having a smaller rank or structured) to the input matrix
A to obtain its additive modification C with a smaller condition number. Hereafter we use the
abbreviations “A-” for “additive”, “APPs” for A-preprocessors, “AC” for “A-complements”, and
“APCs” for “A-preconditioners”. ACs (resp. APCs) are the APPs P such that the input matrix
A is rank deficient (resp. ill conditioned), whereas the matrix C = A + P is not.

For ill conditioned matrices A with at most r small singular values and random APPs P of
ranks of at least r such that the ratios ||A||/||P || are neither large nor small, we quite regularly
arrive at well conditioned matrices C = A + P . As usual we assume that the concepts “large”,
“small”, “well” and “ill” are quantified in the context of the computational tasks and computer
environment, and we assume the customary IEEE model of numerical computing with rounding.
We write MH to denote the Hermitian (complex conjugate) transpose of a matrix M (which is the
transpose MT if M is a real matrix), and we let A = SΣTH denote the SVD of a matrix A where
S and T are the unitary (orthogonal) matrices of the left and right singular vectors of the matrix
A, respectively.

We can explain the above phenomenon based on two properties below.

1. Random matrices tend to be well conditioned. This claim has been proved for various large
classes of matrices and is generally supported by huge empirical evidence.

2. Assume an APP P = UV H , a pair of properly scaled n × r matrices U and V , and an SVD
A = SΣTH of an n × n matrix A having at most r singular values that are small relative to
the norm ||A||. Then we prove that the matrix C = A + P is well conditioned if so are the
r × r tailing (southern) submatrices of the matrices SHU and THV .

It follows that the A-modification C tends to be well conditioned for scaled random matrices
U and V of rank r, and empirically even weak randomization is sufficient where the APPs have
some fixed patterns of structure and sparseness and depend on fewer random parameters. This is
in contrast with random multiplicative preconditioning because random matrices tend to be well
conditioned and because cond A ≤∏

i cond Fi if A =
∏

i Fi.
To summarize, our APCs and ACs are generated more readily and for a much larger class of

matrices than multiplicative preconditioners. Furthermore they better preserve matrix structure
and sparseness and have a wider range of applications. In particular they remain effective for
rectangular and rank deficient matrices A.

The papers [5]–[11] cover effective applications of such APCs and ACs to the solution of singular
and nonsingular linear systems of equations, eigen-solving, and the computation of determinants.
In this paper (which is the journal version of the proceedings paper [9]) we generate ACs and APCs
and study their impact on conditioning.
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1.3 Organization of our paper

We organize our paper as follows. We begin with the definitions in the next section. We generate
random AC and APCs in Section 3 and sparse and structured APCs in Section 6. In Section 5 we
generate, refine and compress the APCs. In Section 7 we cover dual APPs. We study conditioning
of A-modifications of an input matrix A theoretically in Section 4 and experimentally in Section 8.
In Section 9 we briefly comment on preconditioning by expansion and its link to A-preconditioning.

Our numerical tests have been designed by the first author and performed by his coauthors.
Otherwise this work with all typos and other errors is due to the first author.

We present our study for square matrices but a large part of it can be extended to rectangular
matrices.

Acknowledgements. E. E. Tyrtyshnikov, S. A. Goreinov, and N. L. Zamarashkin from the
Institute of Numerical Analysis of the Russian Academy of Sciences in Moscow, Russia, and B.
Mourrain from the INRIA in Sophia Antipolis, France, provided the first author of this paper with
the access to the computer and library facilities during his visits to their Institutes in 2005/06.
X. Wang was the first reader of our papers on A-preconditioning and responded with his original
contribution [12]. Helpful and encouraging were the interest and comments to our work from the
participants of the International Conferences on the Matrix Methods and Operator Equations in
Moscow, Russia in 2005 and 2007 and on FoCM 2005 in Santander, Spain in 2005 (particularly
from J. W. Demmel, G. H. Golub, V. Olshevsky, and M. Van Barel).

2 Basic definitions

Most of our basic definitions reproduce or slightly modify the customary definitions in [13]–[19]
for matrix computations, in particular, for Hermitian, unitary (orthogonal), singular, full-rank and
rank deficient matrices, the k× k identity matrices I = Ik, k× l matrices 0 = 0k,l filled with zeros,
the transpose AT and the Hermitian transpose AH of an n × n matrix A, its rank ρ = rankA,
nullity nul A = n − ρ, singular values σj(A), in the nonincreasing order for j = 1, . . . , ρ; 2-norm
||A|| = σ1(A), the condition number cond A = σ1(A)

σρ(A)
, and the Moore-Penrose generalized inverse

A+ (also called pseudo inverse and equal to the inverse A−1 for a nonsingular matrix A). A matrix
A is normalized if ||A|| = 1. We write M ≥ 0 for a nonnegative definite Hermitian matrix M . We
write α � γ where the ratio α/γ is large. We say that r = nnul A is the numerical nullity and
n − r = nrank A is the numerical rank of the matrix A if the ratio σ1(A)

σn−r(A) is not large, whereas
σ1(A) � σn−r+1(A), that is if the matrix has exactly r singular values that are small relatively
to its norm ||A|| = σ1(A), e.g. are less than τ ||A|| for a fixed small positive tolerance value τ .
(B1, . . . , Bk) and diag(Bi)k

i=1 denote the 1× k block matrix with the blocks B1, . . . , Bk and k × k

block diagonal matrix with the diagonal blocks B1, . . . , Bk, respectively. We write Q(M) for the
Q-factor of the size m×n in the thin QR factorization of an m×n matrix M of the full rank where
the R-factor has positive diagonal entries. C is the field of complex numbers.

3 Generation of ACs and APCs

3.1 Error-free A-preprocessing

We represent an n × n APPs P of a rank r by a pair of n × r generators U and V such that
P = UV H . If the input size n × n is reasonable and the entries of the n × n matrix A are not
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full precision numbers, we can control or avoid rounding errors in numerical computation of APPs
UV H and A-modifications C = A + UV H with rounding. To achieve this, we can fill the generator
matrices U and V with short (lower precision) numbers (possibly just with the integers −2, −1, 0,
1, and 2 or even −1, 0, and 1) or apply the expansion approach in Section 9.

3.2 The basic theorem for ACs

Suppose A, C ∈ Cn×n, U, V ∈ Cn×r , and U and V have full rank r. Then

{rankC = n} =⇒ {r ≥ nulA},
{r ≥ nul A for random U and V } =⇒ {rankC = n (likely)}.

Let us formalize these simple relationships.
Random sampling of elements from a finite set ∆ is their selection from the set ∆ at random,

independently of each other, under the uniform probability distribution on ∆. A matrix is random
if its entries are randomly sampled (from a fixed finite set ∆). A k× l random unitary matrix is the
k× l Q-factor Q(M) in the thin QR factorization of random k× l matrix M of full rank where the
R-factor R(M) has positive diagonal entries. (QR factorization reveals if a matrix has full rank,
and if it does not, we can generate a new matrix M .)

Lemma 3.1. [20] (cf. also [21], [22]). For a finite set ∆ of cardinality |∆| in a ring R, let a
polynomial in m variables not vanish identically on the set ∆m, let it have total degree d, and let
the values of its variables be randomly sampled from the set ∆. Then the polynomial vanishes with
a probability of at most d

|∆| .

Theorem 3.1. For a finite set ∆ of cardinality |∆| in a ring R and four matrices A ∈ Rn×n of a
rank ρ, U and V in ∆r×n, and C = A + UV T , we have

a) rankC ≤ r + ρ,

b) rankC = n with a probability of at least 1 − 2r
|∆| if r + ρ ≥ n and either the entries of both

matrices U and V have been randomly sampled from the set ∆ or U = V and the entries of
the matrix U have been randomly sampled from this set,

c) rankC = n with a probability of at least 1 − r
|∆| if r + ρ ≥ n, the matrix U (respectively V )

has full rank r, and the entries of the matrix V (respectively U) have been randomly sampled
from the set ∆.

Proof. Part a) is verified immediately. Now let r + ρ ≥ n. Then clearly, rankC = n if U = V and
if the entries of the matrix U are indeterminates. Since det C is a polynomial of a total degree of
at most 2(n− ρ) ≤ 2r in these entries, part b) follows from Lemma 3.1. Part c) is proved similarly
to part b).

3.3 Generation of randomized ACs and APCs

In virtue of Theorem 3.1 a random APP UV H of a rank r is likely to be an AC if r ≥ nulA,
whereas an APP of a rank r is never an AC otherwise. Randomized linear or binary search for the
value nul A can rely on these properties.

Likewise, assuming M ∈ C and nnulM = r, we can generate APCs based on the following
(sketched) extension of Theorem 3.1:

{nrank C = n} =⇒ {r ≥ nnulA},

4



{r ≥ nnul A and random U and V } =⇒ {nrank C = n (likely)}.
Seeking nnul A, however, we should choose properly scaled well conditioned APPs for which the
ratio ||UV H ||

||A|| is neither large nor small, and in such a search we should test the candidate A-
modifications for being well conditioned rather than having full rank. The algorithm only requires
a random number generator and crude estimates for the ratio ||UV H ||

||A|| . Formally we also ought to
estimate the condition numbers of the matrices U , V and C (see [13, Sections 2.3.2, 2.3.3, 3.5.4, and
12.5], [14, Sections 5.3 and 5.4], and [16, Chapter 15] on the norm and condition estimators), but
practically this stage can be relaxed because random matrices U and V tend to be well conditioned.

4 APPs and conditioning

4.1 Sharp lower estimates

In this section we estimate the ratio condA
condC from above but first recall the following sharp lower

bounds from [12].

Theorem 4.1. For any n× n matrix A ≥ 0, we have

min
P≥0,rankP≤k

cond(A + P ) = σ1(A)
σn−k(A)

.

The minimum is reached where

A = diag(σj)n
j=1 and P = diag(0, . . . , 0, σn−k − σn−k+1, . . . , σn−k − σn).

Theorem 4.2. For any n× n nonsingular matrix A,

min
rankP≤k

cond(A + P ) =

{
σk+1(A)
σn−k(A) , k < n

2

1, k ≥ n
2

If we know the SVD of the input matrix A = SHΣT , we can compute an APC supporting this
theorem as follows: first bring the matrix A into the diagonal form Σ and then recursively apply
the following result [12].

Theorem 4.3. For any numbers a1 ≥ b1 ≥ b2 ≥ a2 > 0, there exist real numbers u and v such
that the 2× 2 matrix (

a1 − u2 −uv
−uv a2 − v2

)
has singular values b1 and b2.

This APC is Hermitian (respectively real) if so is the input matrix.
In contrast to the above restriction on the dynamics of singular values, any prescribed change of

the eigenvalues can be obtained even with a rank-one modification, e.g., for a Frobenius (companion)
matrix.

4.2 Randomized upper estimates (the objective and the two main steps)

Even without costly computation of the SVD, we can achieve quite strong preconditioning power.
Namely our analysis and extensive tests show that the value cond C is likely to be roughly of the
order of σ1(A)

σn−r(A) provided A is an n × n matrix and an APP UV H of a rank r is weakly random

and scaled so that the ratio ||UV H ||
||A|| is neither large nor small. We first show this property for a

singular well conditioned matrix A with a nullity r. Then in Sections 4.5 and 4.6 we extend our
study to nonsingular ill conditioned matrices A with numerical nullity r = nnulA.
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4.3 ACs and conditioning: the basic estimates

We first factorize the A-modification C.

Theorem 4.4. Let A = SΣTH be the SVD of an n×n matrix A, where S and T are n×n unitary
matrices, so that SHS = SSH = THT = TTH = In, Σ = diag(ΣA, 0r) is an n× n diagonal matrix
of a rank ρ = n− r, and ΣA = diag(σj)

ρ
j=1 is the diagonal matrix of the positive singular values of

the matrix A (cf. our comment 3 in Section 4.6). Let U and V be n × r matrices for r < n such
that the n × n matrix C = A + UV H is nonsingular. Write

SHU =
(

Uρ

Ur

)
, THV =

(
Vρ

Vr

)
, RU =

(
Iρ Uρ

0 Ur

)
, RV =

(
Iρ Vρ

0 Vr

)

where Ur and Vr are r × r block submatrices. Then
a) C = SRU diag(ΣA, Ir)RH

V TH and
b) the matrices RU , RV , Ur, and Vr are nonsingular.

Proof. Observe that SHCT = Σ + SHUV HT , RUΣRH
V = Σ, SHU = RU

(
0
Ir

)
, THV = RV

(
0
Ir

)
,

and
(

0
Ir

)
(0, Ir) = diag(0, Ir). Deduce that

S̃HCT = RUΣRH
V + RU diag(0, Ir)RH

V = RU diag(ΣA, Ir)RH
V

and arrive at part a). Part b) follows because the matrix C is nonsingular.

Corollary 4.1. Under the assumptions of Theorem 4.4 we have

|| diag(ΣA, Ir)||
||R−1

U || ||R−1
V ||

≤ ||C|| ≤ || diag(ΣA, Ir)|| ||RU || ||RV ||,

|| diag(Σ−1
A , Ir)||

||RU || ||RV || ≤ ||C
−1|| ≤ || diag(Σ−1

A , Ir)|| ||R−1
U || ||R−1

V ||,

so that
cond(diag(ΣA, Ir))
(condRU) cond RV

≤ cond C ≤ (condRU)(cond RV ) cond(diag(ΣA, Ir)).

Proof. The corollary follows from Theorem 4.4 because cond M = ||M || ||M+|| and ||MH || = ||M ||
for any matrix M and because S and T are unitary matrices.

4.4 ACs and conditioning: refined estimates

Lemma 4.1. For any pair of matrices X and Y of compatible sizes we have

max{||X ||, ||Y ||} ≤ ||(X, Y )|| = ||(X, Y )H || ≤
√
||X ||2 + ||Y ||2.

Proof. Let ||(X, Y )
(
u
v

)
|| = ||(X, Y )|| for two vectors u and v such that

||
(
u
v

)
||2 = ||u||2 + ||v||2 = 1.
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Recall that (X, Y )
(
u
v

)
= Xu + Y v and deduce that

||(X, Y )|| = ||Xu+ Y v|| = ||(X, Y )
(
u
v

)
||.

Apply Cauchy–Schwartz bound and obtain that

||(X, Y )||2 ≤ (||X ||2 + ||Y ||2)(||u||2 + ||v||2) = ||X ||2 + ||Y ||2,

which is the claimed upper bound. Now let ||Xw|| = ||X || where ||w|| = 1. Then ||X || =

||(X, Y )
(
w
0

)
|| ≤ ||(X, Y )||. Similarly we obtain that ||Y || ≤ ||(X, Y )||. Finally recall that ||L|| =

||LH || for any matrix L.

Theorem 4.5. Suppose the matrices U and V have full rank. Then we have

max{1, ||U ||2} ≤ ||RU ||2 ≤ 1 + ||U ||2,
max{1, ||V ||2} ≤ ||RV ||2 ≤ 1 + ||V ||2,

1 ≤ ||R−1
U ||2 ≤ 1 + (1 + ||U ||2)||U−1

r ||2,
1 ≤ ||R−H

V ||2 = ||R−1
V ||2 ≤ 1 + (1 + ||V ||2)||V −1

r ||2.
Proof. The bounds on the norms ||RU || and ||RV || follow from Lemma 4.1 because RU = (In,ρ, U)

and RV = (In,ρ, V ) where In,ρ =
(

Iρ

0

)
. The lower bounds on the norms ||R−1

U || and ||R−1
V || are

obvious. To bound the norm ||R−1
U || from above, first observe that R−1

U = diag(Iρ, 0)+
(−Uρ

Ir

)
U−1

r .

Now apply Lemma 4.1 at first to this matrix and then to the matrix
(−Uρ

Ir

)
and obtain that

||R−1
U ||2 ≤ 1 + ||

(−Uρ

Ir

)
U−1

r ||2 ≤ 1 + ||
(−Uρ

Ir

)
||2||U−1

r ||2

and

||
(−Uρ

Ir

)
||2 ≤ 1 + ||U ||2.

By combining the latter bounds obtain the desired estimate for the norm ||R−1
U ||. The norm ||R−1

V ||
is estimated similarly.

The next two theorems are immediately verified,

Theorem 4.6. Under the assumptions of Theorem 4.4, suppose that

σn−r ≤ 1 ≤ σ1. (4.1)

Then || diag(ΣA, Ir)|| = ||A|| and ||(diag(ΣA, Ir))−1|| = σn−r.

Theorem 4.7. Let us write θ = ||UV H ||
||A|| . Then we have

|1− θ| ≤ ||C||||A|| ≤ 1 + θ.

7



Corollary 4.2. Write

θ = ||UV H ||/||A||, q = ||RU || ||RV || and p = ||R−1
U || ||R−1

V ||,

so that
max{1, ||U ||, ||V ||, ||U || ||V ||} ≤ q ≤

√
(1 + ||U ||2)(1 + ||V ||2),

1 ≤ p2 ≤ (1 + (1 + ||U ||2)||U−1
r ||2)(1 + (1 + ||V ||2)||V −1

r ||2).
Then under the bounds (4.1) and the assumptions of Theorems 4.4 and 4.7 we have

a) max{|1− θ|, 1
p} ≤ ||C||

||A|| ≤ min{1 + θ, q},

b) 1
q ≤ σn−r ||C−1|| = ||C−1||

||A+|| ≤ p,

c) 1
q max{|1− θ|, 1

p} ≤ condC
condA ≤ p min{1 + θ, q}.

Proof. Parts a) and b) follow from Corollary 4.1 and Theorems 4.5-4.7. Part c) follows from parts
a) and b).

The corollary shows that the transition A → C (which tends to yield the full rank property)
changes the norms and condition numbers of the matrices only within the factor p min{1 + θ, q}.
Clearly we can nicely bound the parameters θ and q by properly scaling the matrices A, U and V .
We estimate the bound p in Section 4.6.

Now suppose we represent an ill conditioned matrix of full rank as the sum A + E where E
is a small norm matrix and A is a well conditioned and rank deficient matrix. Then perturbation
by the matrix E little affects our analysis, and so our next results extend it to the A-modification
C = A + E + UV H for a random APP UV H .

4.5 The impacts of A-modification on full rank matrices

We extend the bounds of Corollary 4.2 in the cases where ||E|| is small or C ≥ 0 and E ≥ 0.

Theorem 4.8. Let the matrices C and C̃ = C + E be nonsingular. Write δ = ||E|| and δC =
δ||C−1||. Then we have

a) ||C̃|| ≤ δ + ||C||,

b) if δC < 1, then ||C̃−1|| ≤ ||C−1||
1−δC

, so that cond C̃ ≤ condC+δ
1−δC

,

c) if C ≥ 0 and E ≥ 0, then ||C̃−1|| ≤ ||C−1||, so that cond C̃ ≤ (1 + δ
||C||)condC.

Proof. Parts a) and c) follow immediately. Part b) follows because ||C̃−1|| = 1
σn(C̃)

≤ 1
σn(C)−δ .

4.6 Further comments

1. Bounds (4.1) in Corollary 4.2 are no loss of generality. Indeed scale the matrices A, UV H ,
and C = A+UV H by the same scalar s and observe that the ratios ||C||

||A|| ,
||C−1||
||A+|| , and condC

condA

do not change, whereas σj → sσj .

8



2. An APP UV H cannot be an APC if the ratio θ = ||UV H ||
||A|| is small because σn(C) ≤

σn(A) + ||UV H ||. Furthermore, an APP UV H cannot be an APC if the ratio θ is large and if
rank(UV H) < rankA. Corollary 4.2 provides us, however, with reasonable bounds on the ra-
tio condC

condA as long as the norms ||U ||, ||V ||, ||U−1
r ||, and ||V −1

r || are reasonable. We can assume
that ||U || = ||V || = 1 and then obtain that 1 ≤ q ≤ 2 and 1 ≤ p2 ≤ (1+2||U−1

r ||)(1+2||V −1
r ||)

in Corollary 4.2.

3. The value p in Corollary 4.2 is not large where the matrices Ur and Vr are well conditioned.
Now recall about huge empirical evidence and some formal support in [23]–[26] and the
references therein that random matrices tend to be well conditioned. Thus in the case of
random generators U and V we can expect that the value p is not large.

Can we expect to have the same property when we restrict randomness of the matrices U
and V by imposing various patterns of structure and sparseness on these matrices and using
fewer random parameters? Yes, according to our extensive tests (see Sections 6 and 8). We
speculate that premultiplication by matrices SH and TH strengthens the randomness of the
matrices U and V because typically the latter matrices U and V are generated independently
of the former matrices S and T of the singular vectors of the matrix A.

4. In virtue of Theorem 3.1, the A-modifications C̃ = Ã + P of a singular matrix Ã having
nullity r are likely to be nonsingular for random APPs P of rank r. Corollary 4.2 shows that
preprocessing Ã → C̃ with scaled random APPs of rank r tends to keep the matrix A well
conditioned, and then preprocessing A→ C = A + P with the same APPs P would turn the
nearby ill conditioned matrices A with nnul A = r into well conditioned nonsingular matrices
C.

5. According to our extensive tests (see Section 8 ), the estimated impact of A-preconditioning
on the singular values is quite regular so that random APPs can be used for detecting large
jumps in the spectra of the singular values and for computing numerical rank and numerical
nullity. This application can be reinforced with the techniques in the next section.

5 Generation, refinement, and compression of APCs

In the unlikely case where our randomization works poorly, we can just reapply A-preconditioning
with a new scaled weakly random APP. This has a good chances for success, according to our
study in the previous section and test results, but let us next fix our APPs without generation of
new random APPs. Suppose for an ill conditioned matrix A, we have arrived at a substantially
better conditioned but still too crude A-modification C = A + UV H of a rank r, so that cond A�
cond C � σ1

σρ−r
. Then the following transform serves as a remedy, according to our extensive tests

(cf. Table 8.2) and the analysis in [7, Section 6] and [12]:

(U ← Q(C+U), V H ← Q(V HC+)) (5.1)

where we use the notation Q(M) in Section 2.
Now suppose we have an upper bound r+ on the unknown number r of small and zero singular

values of an input matrix A. Then we can generate a random scaled APC UV H of rank r+ and
compress it into APCs of recursively decreasing ranks r by extending transform (5.1) as follows.

Procedure 5.1. Generation of an APC via inflation and compression.

9



1. (Generation of an inflated APC.) Select an integer h > r, e.g., h = 2r, and generate an APC
UV H of rank h.

2. Compute suitably scaled and well conditioned matrix T (U) (resp. TH(V )) of full rank whose
columns (resp. rows) generate the right (resp. left) singular space of the matrix AC+U (resp.
V HC+A) associated with the r smallest singular values of these matrices. (Here we count the
singular values with their multiplicity and include the vanishing singular values zero.)

3. (Compression.) Compute and output the new generators U ← Q(C+UT (U)) and V H ←
Q((TH(V )V HC+)H) and the new APC UV H.

The ranges of the resulting matrices U = Q(C+UT (U)) and V = Q((TH(V )V HC+)H) approx-
imate the bases for the left and right singular spaces, respectively, associated with the r smallest
singular values of the matrix A (cf. [7], [11], [12]). According to our tests and the ones in [12], this
yields highly effective preconditioners UV H of rank r.

6 Structured and sparse APPs

All APPs of small ranks are structured, but next we supply various examples of sparse and struc-
tured APPs of any rank. In our extensive tests, these APPs were typically APCs for all classes of
tested input matrices. We welcome more such examples of weakly random APCs from the readers.

Example 6.1. Circulant APPs. UV H = F−1DrF for the n× n unitary matrix

F =
1√
n

(exp
2πij
√−1
n

)n−1
i,j=0

of the discrete Fourier transform at the n-th roots of unity and for the n × n diagonal matrix
Dr = diag(di)n−1

i=0 that has exactly r nonzero entries fixed or sampled at random in r fixed sets
S1, . . . , Sr and placed at r fixed or random positions on the diagonal. Such an APP UV H is a
circulant matrix of the rank r that has the first column F−1d for d = (di)n−1

i=0 (cf., e.g., [27,
Theorem 2.6.4]). It is sufficient to perform O(n max{r, logn}) ops to multiply it by a vector. The
bound decreases to O(n log r) where the r nonzeros occupy r successive positions on the diagonal.
If S1, . . . , Sr are real sets, then the APP is Hermitian. If the sets S1, . . . , Sr lie in the annulus
{x : d− ≤ |x| ≤ d+}, then cond(UV H) = cond Dr ≤ d+/d−.

Example 6.2. f-circulant APPs [27, Section 2.6]. In the previous example replace the matrix F
with the matrix FD− where D− = diag(gi)n−1

i=0 and g is a primitive n-th root of a nonzero scalar f .
In this case the APP is f-circulant. (It is circulant for f = 1 and skew-circulant for f = −1.) As
in the previous example, one can readily bound the condition number of the APP and the arithmetic
cost of its multiplication by a vector.

Example 6.3. Toeplitz-like APPs I. Define an n × r well conditioned Toeplitz matrix U of
full rank. Either fix such a matrix or define it by varying u random parameters for a nonnegative
integer u < n + r until you yield well conditioning. Output FAILURE if this does not work. Define
a matrix V a) either similarly or b) set V = U (to produce a Hermitian APP). The APP UV H

has a rank of at most r and a displacement rank of at most four and can be multiplied by a vector
in O(n log r) ops (cf. [27]).
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Example 6.4. Structured or sparse APPs I. Define a matrix U = PW, P for a fixed or
random n × n permutation matrix P (in the simplest case P = In) and a fixed or random n × r
block W of the n × n matrix of the discrete Fourier, sine or cosine transform [27, Section 3.11],
or of another well conditioned matrix with a fixed structure such as the sparseness structure or
the displacement structure of Toeplitz, Hankel, Vandermonde, or Cauchy types. Example 6.3 is
the special case where P = In and W is a Toeplitz matrix. Define a matrix V a) either similarly
or b) set V = U (to produce a Hermitian APP). Define an APP UV H. The complexity of its
multiplication by a vector can be linear or nearly linear, depending on its structure.

Example 6.5. Toeplitz-like APPs II. Define an n× r Toeplitz matrix

U = (T1, 0r,n1, . . . , Tk, 0r,nk
)T .

Here Ti are r × r Toeplitz matrices, 0r,ni are r × ni matrices filled with zeros for i = 1, . . . , k,
and k, n1, . . . , nk are positive integers (fixed or random) such that kr + n1 + · · ·+ nk = n. Fix
or choose at random the Toeplitz matrices Ti such that the resulting matrix U is well conditioned.
Ti can denote general Toeplitz matrices or special, e.g., circulant, f-circulant, triangular Toeplitz
or banded Toeplitz matrices. Define a matrix V a) either similarly or b) set V = U (to produce
a Hermitian APP). For general Toeplitz matrices T1, . . . , Tk and the shift operators associated
with the Toeplitz structure, the APP UV H has a displacement rank of at most 2k ≤ 2
n/r� and
can be multiplied by a vector in O(kr log r) flops. For banded Toeplitz matrices Ti with a constant
bandwidth we only need O(kr) flops to multiply the APP by a vector. For Ti = ciIr the matrix
U has orthogonal columns, and we make it unitary by choosing the scalars c1, . . . , ck such that
c2
1 + · · ·+ c2

k = 1.

Example 6.6. Structured or sparse APPs II. Define a well conditioned matrix

U = P (T1, 0r,n1, . . . , Tk, 0r,nk
)T

for an n × n permutation matrix P and integers k, n1, . . . , nk chosen as in Example 6.5 but for
all i let Ti be r × r fixed or random structured matrices, e.g., the matrices of the discrete Fourier,
sign or cosine transforms, matrices with a fixed displacement structure, or sparse matrices with
fixed patterns of sparseness. Define a matrix V a) either similarly or b) set V = U (to produce a
Hermitian APP). Define an APP UV H . Example 6.5 is the special case where P = In and Ti are
Toeplitz matrices.

Finally, we can generate APCs by appending pairs of (block) rows and (block) columns that
preserve the structure of an input matrix.

7 Dual A-preprocessing

Let us next generate dual APCs by implicitly applying A-preconditioning to the (generalized)
inverse A+ matrix without computing this matrix. This option is valuable because it enables
division-free reduction of solving linear systems and computation of determinants to the case of
well conditioned input. Namely, we represent the dual A-modification C− = A+ + V UH by its
(generalized) inverse

(C−)+ = (A+ + V UH)+ = A −AV H+UHA, H = Iq + UHAV. (7.1)

We call this equation the dual SMW formula (cf. the Sherman–Morrison–Woodbury formula in [13,
page 50]).
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Having the matrix (C−)+ available, we can compute the vector y = A+b as follows,

y = A+b = z− V UHb, (C−)+z = b.

We readily extend our analysis to dual A-preprocessing. In particular, the matrix (C−)+ is
likely to be well conditioned where the ratio ||V UH ||

||A+|| is neither large nor small for a weakly random
(well conditioned) APP V UH of a sufficiently large rank. The latter ratio involves the norm ||A+||,
which is a little harder to compute than the norm ||A||, involved into the generation of APPs UV H .

Finally, here is a natural extension of our policy (5.1) to dual APPs V UH ,

V ← Q((C−)+V ), U ← Q((CH
− )+U)).

8 Numerical tests for generating APCs

In our tests we first generated singular and nearly singular matrices of 16 classes, modified them
with random and weakly random APPs of eight classes, and computed the condition numbers of
the input and modified matrices. We run such tests for over 100,000 input instances and observed
quite similar statistics for all selected classes of input matrices A and APPs. Moreover, the test
results varied little with the matrix size.

Then we applied similar tests to the diagonal matrices with singular values forming a geometric
progression.

In all tests we used the following CPU and memory configuration, operating system, mathe-
matical application software, and random number generator.

CPU AMD Athlon XP 2800+ 2.09GHZ
Memory 512MB

Microsoft Windows XP
OS Professional Version 2002

Service Pack 2
Platform Matlab Version 7.0.0.19920(R14)

Random Number Matlab Statistics Toolbox’s
Generator Uniform Distribution

Unless we specify otherwise, we sampled the entries of random matrices in the closed line interval
[−1, 1].

We display sample data in Tables 8.1 and 8.2.
Dealing with real (in particular integer or rational) matrices, we use the nomenclatures “orthogo-

nal”, “symmetric”, and “nonsymmetric” rather than “unitary”, “Hermitian”, and “non-Hermitian”
(cf. [13], [14]).

Throughout this section we assign the values n = 100 and ν = 1, 2, 4, 8 to the parameters n and
ν.

8.1 Generation of singular input matrices A

In our tests we used the following real singular input matrices A with nul A = ν for ν = 1, 2, 4, 8.
(“s” is our abbreviation for “symmetric” and “n” for “nonsymmetric”.)

1n. Nonsymmetric matrices of type I with nullity ν. A = GΣνH
T are n× n matrices where G

and H are n × n random orthogonal matrices, that is, the Q-factors in the QR factorizations of
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random real matrices; Σν = diag(σj)n
j=1 is the diagonal matrix filled with zeros and the singular

values of the matrix A such that σj+1 ≤ σj for j = 1, . . . , n− 1, σ1 = 1, the values σ2, . . . , σn−ν−1

are randomly sampled in the semi-open interval [0.1, 1), σn−ν = 0.1, σj = 0 for j = n−ν+1, . . . , n,

and therefore cond A = 10.
1s. Symmetric matrices of type I with nullity ν. The same as in part 1n, but for G = H .
2n. Nonsymmetric matrices of type II with nullity ν. A = (W, WZ) where W and Z are random

orthogonal matrices of sizes n × (n− ν) and (n− ν)× ν, respectively.
2s. Symmetric matrices of type II with nullity ν. A = WWH where W are random orthogonal

matrices of size n× (n− ν).
3n. Nonsymmetric Toeplitz-like matrices with nullity ν. A = c(T, TS) for random Toeplitz

matrices T of size n×(n−ν) and S of size (n−ν)×ν and for a positive scalar c such that ||A|| ≈ 1.
3s. Symmetric Toeplitz-like matrices with nullity ν. A = cTTH for random Toeplitz matrices

T of size n× (n− ν) and a positive scalar c such that ||A|| ≈ 1.
4n. Nonsymmetric Toeplitz-like matrices with nullity one. A = (ai,j)n−1

i,j=0 is an n × n Toeplitz
matrix. Its entries ai,j = ai−j are random for i− j < n − 1. The entry an−1,0 is selected to ensure
that the last row is linearly expressed through the other rows.

4s. Symmetric Toeplitz-like matrices with nullity one. A = (ai,j)n−1
i,j=0 is an n × n Toeplitz

matrix. Its entries ai,j = ai−j are random for |i− j| < n − 1, whereas the entry a0,n−1 = an−1,0 is
a root of the quadratic equation det A = 0. We have repeatedly generated the matrices A until we
arrived at the quadratic equation having real roots.

8.2 Generation of ill conditioned input matrices A

We modified the above matrices with nullity ν to turn them into nonsingular matrices with nu-
merical nullity ν in two ways. (To our previous abbreviations “s” and“n”, we add another “n” for
“nonsingular”.)

1nn and 1ns. Matrices of type I having numerical nullity ν. The same matrices as in parts 1n
and 1s in the previous subsection except that now σj = 10−16 for j > n−ν, so that cond A = 1016.

2nn, 3nn, 4nn, 2ns, 3ns, and 4ns. Matrices of type II and Toeplitz-like matrices having numerical
nullity ν. A = W

||W || + βIn where we defined the matrices W in the same way as the matrices A

in the previous subsection. We set the scalar β equal to 10−16 in the symmetric case, so that
σ1(A) = 1 + 10−16, σj(A) = 10−16 for j = n − ν + 1, . . . , n, whereas in the nonsymmetric case we
iteratively computed a nonnegative scalar β such that σ1(A) ≈ 1 and

10−18 ≤ σn−ν+1(A) ≤ 10−16. (8.1)

We initialized this iterative process with β = 10−16, which implied that σj(A) ≤ 10−16 for j =
n − ν + 1, . . . , n. If also σn−ν+1(A) > 10−18, so that bounds (8.1) held, we output this value of β

and stopped. Otherwise we recursively set β ← 10−16β
σn−ν+1(A) . We output the current value of β and

stopped as soon as bounds (8.1) were satisfied for the resulting matrix A. If they were not satisfied
in 100 recursive steps, we restarted the process for a new input W .

8.3 Generation of APPs and the data on conditioning

In Tables 8.1 and 8.2 we display the data on generating APPs UV H and on the conditioning of the
A-modifications C = A + UV H and C1 = A + U1V

H
1 where we use APPs from Example 6.6b) and

their corrections U1V
H
1 defined below and where U = V , U1 = V1, and we write Ti = cIr for all i

with scalar c chosen to normalize the matrix U .
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In the first column of each table we display the type of the input matrix A.
The second and the third columns show the values of ν, denoting the nullity (or numerical

nullity) of the basic matrix A, and cond A, denoting its condition number.
The fourth columns show the rank r of the APP UV H from Example 6.6b).
The fifth columns show the condition numbers cond C of the A-modifications C = A + UV H .
The sixth columns have blank entries where cond C ≤ 105. Wherever we had cond C > 105,

we computed a new APP U1V
H
1 and the matrix C1 = A + U1V

H
1 and then displayed the condition

number cond C1 in the sixth column and the rank of the new APP U1V
H
1 in the fourth column.

To generate the APP U1V
H
1 , we either reapplied the same rules as before but with the APP’s

rank r incremented by one (see the results in Table 8.1) or defined this APP by the formulae
U1 ← Q(C−1U), V H

1 ← Q(V HC−1) in equation (5.1), without changing the rank r (see the results
in Table 8.2).

We applied the same tests and obtained quite similar results for APPs of seven other types,
namely,

a) and b) for APPs from Example 6.6b) but with the sparse Toeplitz APCs, such that Ti = ciIr

where we first randomly sampled the coefficients ci from one of the sets {−1, 1} for type a) or
{−2,−1, 1, 2} for type b) and then normalized the matrix U by scaling,

c) for APPs from the same example but with Ti being real circulant matrices with random first
columns,

d) for APPs from Example 6.1,
e) and f) for real APPs from Example 6.3b) with random parameters from the line intervals

[−1, 1] for type e) or [−10, 10] for type f), and
g) random real APPs.
For every selected APP UV H we computed the matrices C(p) = A + 10pUV H for p = −10, −5,

0, 5, 10. In all tests, the values cond C(p) were minimized for p = 0 and grew steadily (within the
factor of |p|) as the integer |p| grew. In Tables 8.1 and 8.2 we reported only the results for p = 0.

8.4 The case of diagonal input matrices

We applied A-preconditioning with APPs UV T to n × n diagonal matrices

A = (diag 264 i
n )n−1

i=0 for n = 64, 128.

We first generated the following n × r matrices U1 and V1 for r = nj
8 , j = 1, 2, 3, 4, 5, 6, 7.

1. Random matrices U1 and V1

2. Random matrix U1, V1 = U1

3. Random unitary matrices U1 and V1

4. Random unitary matrix U1, V1 = U1

5. Random Toeplitz matrices U1 and V1

6. Random Toeplitz matrix U1, V1 = U1.

Then we scaled the matrices U1 and V1 to yield the matrices U2 and V2 such that ||U2V
T
2 || ≈ ||A||.

Finally we truncated all entries of the matrices U2 and V2 to eight bits and denoted the resulting
matrices U and V . The truncation has ensured that the APPs UV T had the desired ranks r and
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Table 8.1: APPs and conditioning I

Type ν Cond(A) r Cond(C) Cond(C1)
1n 1 8.40E+16 1 3.21E+2
1n 2 4.56E+16 2 4.52E+3
1n 4 3.90E+18 5 2.09E+5 1.81E+3
1n 8 5.69E+16 8 6.40E+2
1s 1 1.98E+16 1 5.86E+2
1s 2 3.69E+16 2 1.06E+4
1s 4 2.91E+16 4 1.72E+3
1s 8 3.36E+16 8 5.60E+3
2n 1 3.48E+16 1 8.05E+1
2n 2 1.53E+17 2 6.82E+3
2n 4 2.73E+16 4 2.78E+4
2n 8 1.23E+17 8 3.59E+3
2s 1 4.13E+16 1 1.19E+3
2s 2 4.67E+16 2 1.96E+3
2s 4 4.40E+16 4 1.09E+4
2s 8 1.33E+18 8 9.71E+3
3n 1 3.96E+16 1 2.02E+4
3n 2 2.18E+17 2 1.53E+3
3n 4 1.37E+18 4 6.06E+2
3n 8 4.24E+17 8 5.67E+2
3s 1 1.69E+17 1 2.39E+4
3s 2 4.58E+16 2 2.38E+3
3s 4 1.39E+17 4 1.69E+3
3s 8 1.60E+17 8 6.74E+3
4n 1 1.22E+17 1 4.93E+2
4n 2 3.26E+16 2 4.48E+2
4n 4 5.99E+16 4 2.65E+2
4n 8 1.23E+17 8 1.64E+2
4s 1 3.22E+15 1 1.45E+3
4s 2 2.34E+16 2 5.11E+2
4s 4 1.09E+17 4 7.21E+2
4s 8 2.29E+16 8 2.99E+2

that C −A = UV T , even though we computed these APPs and the A-modifications C = A + UV T

with floating point and with rounding to the standard IEEE double precision.
Our Tables 8.3–8.14 display the test results observed in 1000 tests for each pair of n and r.

They show that the ratio (n−r) log condA
n log condC was consistently in a rather narrow range between 0.5 and

1.
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Table 8.2: APPs and conditioning II

Type ν Cond(A) r Cond(C) Cond(C1)
1n 1 2.63E+16 1 2.81E+2
1n 2 2.98E+16 2 1.66E+3
1n 4 3.85E+16 4 4.26E+3
1n 8 3.55E+17 8 8.60E+2
1s 1 5.10E+16 1 5.29E+2
1s 2 2.22E+16 2 3.24E+4
1s 4 2.96E+16 4 3.96E+4
1s 8 2.88E+16 8 1.69E+3
2n 1 1.06E+17 1 1.86E+2
2n 2 3.58E+16 2 4.05E+2
2n 4 9.90E+16 4 5.84E+3
2n 8 8.29E+16 8 1.10E+4
2s 1 1.25E+16 1 8.34E+2
2s 2 2.71E+16 2 9.63E+2
2s 4 5.91E+16 4 8.90E+3
2s 8 5.49E+16 8 1.81E+4
3n 1 1.85E+17 1 3.63E+3
3n 2 9.71E+16 2 2.13E+4
3n 4 1.76E+17 4 2.49E+3
3n 8 3.70E+17 8 7.61E+2
3s 1 1.30E+17 1 6.03E+3
3s 2 1.03E+17 2 2.15E+4
3s 4 7.20E+16 4 1.46E+4
3s 8 8.98E+16 8 1.73E+6 9.93E+2
4n 1 1.74E+18 1 1.08E+3
4n 2 9.08E+16 2 2.04E+2
4n 4 2.57E+16 4 5.81E+1
4n 8 7.66E+15 8 3.33E+1
4s 1 2.60E+16 1 4.21E+2
4s 2 2.55E+16 2 1.88E+2
4s 4 7.80E+16 4 8.95E+2
4s 8 1.81E+16 8 3.83E+2

9 Further work

[10, Section 12] describes preconditioning by expansion, that is by appending to an input matrix A
new rows and columns. Namely, in [10, Section 12] the matrix A is embedded into a matrix M =(

ηI 0
B A

)
, and then A-preconditioning M → M + P is applied for P =

(
I

0

)
(0, F ) =

(
ηI F

B A

)
,

η ≈ ||A||, and weakly random matrices B and F scaled so that ||B|| ≈ ||A|| and ||F || ≈ ||A||.
Because of the latter rstriction on the values η, ||B||, and ||F ||, embedding does not change the
condition number cond A substantially, whereas the impact of this special A-preconditioning is
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Table 8.3: A = diag(
√

2
128i/n

)n
i=1, n = 64, r = 8, cond(A) = 9.223372e + 18

APP mean(cond C) std(cond C) min(cond C) max(cond C) Ratio
Random 1.08361e+018 1.20196e+019 4.58727e+016 2.83277e+020 9.51630e-001

Random Sym 3.90744e+017 1.61882e+018 2.86030e+016 3.79442e+019 9.60910e-001
Unitary 2.29417e+017 6.12078e+017 2.06627e+016 9.75414e+018 9.71501e-001

Unitary Sym 2.60456e+017 1.07133e+018 1.93541e+016 2.70620e+019 9.71356e-001
Toeplitz 6.79930e+017 6.38405e+018 2.82636e+016 1.96062e+020 9.57215e-001

Toeplitz Sym 6.03878e+017 9.20230e+018 2.91564e+016 2.88241e+020 9.65704e-001

Table 8.4: A = diag(
√

2
128i/n

)n
i=1, n = 64, r = 16, cond(A) = 9.223372e + 18

APP mean(cond C) std(cond C) min(cond C) max(cond C) Ratio
Random 2.36668e+016 1.30529e+017 7.11146e+014 2.99944e+018 8.96245e-001

Random Sym 3.21429e+015 2.91459e+015 5.65028e+014 5.82154e+016 9.23034e-001
Unitary 1.98699e+016 5.29672e+016 9.30829e+014 6.63291e+017 8.93742e-001

Unitary Sym 5.42922e+015 1.63799e+016 6.94890e+014 3.70468e+017 9.15474e-001
Toeplitz 1.31361e+016 1.63651e+017 4.11882e+014 5.10288e+018 9.15238e-001

Toeplitz Sym 2.05219e+015 2.15409e+015 3.51954e+014 2.71915e+016 9.36637e-001

Table 8.5: A = diag(
√

2
128i/n

)n
i=1, n = 64, r = 24, cond(A) = 9.223372e + 18

APP mean(cond C) std(cond C) min(cond C) max(cond C) Ratio
Random 1.34201e+014 5.63648e+014 3.14062e+012 1.35806e+016 8.70034e-001

Random Sym 2.04270e+013 1.86455e+013 2.45158e+012 1.85291e+014 8.98305e-001
Unitary 6.63454e+014 1.05562e+016 4.69794e+012 3.18549e+017 8.63487e-001

Unitary Sym 2.90021e+013 3.34354e+013 4.41430e+012 7.09881e+014 8.88235e-001
Toeplitz 6.65849e+013 2.88842e+014 2.28106e+012 6.63841e+015 8.90152e-001

Toeplitz Sym 1.14082e+013 1.39032e+013 1.46568e+012 2.70185e+014 9.17782e-001

similar to the usual impact.
Preconditioning by expansion requires limited increase of the input size, but is error-free. More-

over, because of the special form of the generators U =
(

I

0

)
and V = (0, F ) of the APP, we can

simplify the subsequent solution of the original ill conditioned problem.
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Table 8.6: A = diag(
√

2
128i/n

)n
i=1, n = 64, r = 32, cond(A) = 9.223372e + 18

APP mean(cond C) std(cond C) min(cond C) max(cond C) Ratio
Random 1.03706e+012 7.84853e+012 2.29102e+010 1.64716e+014 8.35496e-001

Random Sym 1.02168e+011 8.45415e+010 1.30935e+010 8.59375e+011 8.69133e-001
Unitary 8.77737e+011 4.06730e+012 3.34894e+010 9.13614e+013 8.28184e-001

Unitary Sym 1.53717e+011 1.25814e+011 2.18668e+010 1.23496e+012 8.55484e-001
Toeplitz 3.94729e+011 2.80367e+012 1.05051e+010 7.98411e+013 8.63554e-001

Toeplitz Sym 5.26510e+010 4.92329e+010 6.64650e+009 4.19800e+011 8.95642e-001

Table 8.7: A = diag(
√

2
128i/n

)n
i=1, n = 64, r = 40, cond(A) = 9.223372e + 18

APP mean(cond C) std(cond C) min(cond C) max(cond C) Ratio
Random 3.64023e+009 2.07266e+010 1.04842e+008 5.14567e+011 7.88829e-001

Random Sym 5.21963e+008 4.20833e+008 8.05181e+007 3.87211e+009 8.25645e-001
Unitary 5.40394e+009 3.65762e+010 1.71588e+008 9.17457e+011 7.74924e-001

Unitary Sym 8.23576e+008 6.90037e+008 9.71479e+007 5.67202e+009 8.07622e-001
Toeplitz 1.33295e+009 5.23862e+009 5.37118e+007 1.20304e+011 8.21210e-001

Toeplitz Sym 2.73046e+008 3.57683e+008 3.58696e+007 4.89314e+009 8.58927e-001

Table 8.8: A = diag(
√

2
128i/n

)n
i=1, n = 64, r = 48, cond(A) = 9.223372e + 18

APP mean(cond C) std(cond C) min(cond C) max(cond C) Ratio
Random 1.95017e+007 8.99977e+007 3.50659e+005 1.30401e+009 7.06263e-001

Random Sym 2.51244e+006 1.99124e+006 3.10802e+005 1.80586e+007 7.52744e-001
Unitary 1.74074e+007 5.74201e+007 5.64628e+005 1.14934e+009 6.94290e-001

Unitary Sym 4.07143e+006 3.60756e+006 3.81003e+005 3.63847e+007 7.30504e-001
Toeplitz 5.38182e+006 1.68598e+007 2.01315e+005 2.82572e+008 7.52190e-001

Toeplitz Sym 1.32076e+006 1.67708e+006 1.31192e+005 2.79892e+007 7.96992e-001

Table 8.9: A = diag(
√

2
128i/n

)n
i=1, n = 128, r = 16, cond(A) = 1.304382e + 19

APP mean(cond C) std(cond C) min(cond C) max(cond C) Ratio
Random 9.00893e+017 3.68726e+018 9.44887e+016 7.83928e+019 9.49794e-001

Random Sym 7.54539e+017 3.69515e+018 6.76430e+016 8.14035e+019 9.55289e-001
Unitary 3.82162e+017 1.57830e+018 2.93430e+016 2.45520e+019 9.72428e-001

Unitary Sym 2.83650e+017 6.81346e+017 3.53846e+016 1.10999e+019 9.71706e-001
Toeplitz 1.52550e+018 2.65657e+019 6.31877e+016 8.36544e+020 9.54695e-001

Toeplitz Sym 5.22631e+017 2.89616e+018 4.47650e+016 8.68359e+019 9.60338e-001
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Table 8.10: A = diag(
√

2
128i/n

)n
i=1, n = 128, r = 32, cond(A) = 1.304382e + 19

APP mean(cond C) std(cond C) min(cond C) max(cond C) Ratio
Random 4.43929e+016 2.19833e+017 1.85261e+015 4.32220e+018 8.85779e-001

Random Sym 4.41166e+015 2.08244e+015 1.22571e+015 1.69976e+016 9.18730e-001
Unitary 5.56929e+016 3.02392e+017 2.78328e+015 7.77269e+018 8.81699e-001

Unitary Sym 7.33220e+015 7.35583e+015 1.78143e+015 1.06167e+017 9.08649e-001
Toeplitz 2.34964e+016 8.49708e+016 1.04679e+015 1.59832e+018 9.00039e-001

Toeplitz Sym 2.83160e+015 1.88393e+015 5.80915e+014 2.05292e+016 9.31854e-001

Table 8.11: A = diag(
√

2
128i/n

)n
i=1, n = 128, r = 48, cond(A) = 1.304382e + 19

APP mean(cond C) std(cond C) min(cond C) max(cond C) Ratio
Random 3.26233e+014 1.85918e+015 1.15524e+013 4.14182e+016 8.52546e-001

Random Sym 2.84455e+013 1.41842e+013 7.50276e+012 1.14344e+014 8.91000e-001
Unitary 8.98233e+014 1.14687e+016 1.82448e+013 3.36247e+017 8.45462e-001

Unitary Sym 4.20903e+013 2.11494e+013 9.02804e+012 1.64270e+014 8.79872e-001
Toeplitz 1.49435e+014 5.70442e+014 4.08301e+012 8.70108e+015 8.73919e-001

Toeplitz Sym 1.57012e+013 1.34157e+013 2.57722e+012 1.83051e+014 9.11638e-001

Table 8.12: A = diag(
√

2
128i/n

)n
i=1, n = 128, r = 64, cond(A) = 1.304382e + 19

APP mean(cond C) std(cond C) min(cond C) max(cond C) Ratio
Random 1.55610e+012 4.05980e+012 7.26960e+010 5.89482e+013 8.11041e-001

Random Sym 1.51627e+011 7.43880e+010 3.78576e+010 6.24300e+011 8.58232e-001
Unitary 3.31336e+012 3.82383e+013 8.62790e+010 1.09007e+015 8.05163e-001

Unitary Sym 2.33668e+011 1.33690e+011 7.05725e+010 1.65499e+012 8.44506e-001
Toeplitz 7.32596e+011 4.46140e+012 2.58278e+010 1.22060e+014 8.42763e-001

Toeplitz Sym 7.79676e+010 6.07700e+010 1.35590e+010 6.35448e+011 8.84444e-001

Table 8.13: A = diag(
√

2
128i/n

)n
i=1, n = 128, r = 80, cond(A) = 1.304382e + 19

APP mean(cond C) std(cond C) min(cond C) max(cond C) Ratio
Random 3.23207e+010 7.67489e+011 3.19383e+008 2.42563e+013 7.57295e-001

Random Sym 7.65959e+008 4.29077e+008 1.93689e+008 3.98671e+009 8.11606e-001
Unitary 1.67399e+010 1.02946e+011 4.59358e+008 1.74678e+012 7.46439e-001

Unitary Sym 1.21236e+009 6.30760e+008 2.67350e+008 5.13002e+009 7.93357e-001
Toeplitz 4.44073e+009 4.06987e+010 1.18967e+008 1.23209e+012 7.92921e-001

Toeplitz Sym 3.73584e+008 3.32574e+008 7.11037e+007 5.43107e+009 8.45268e-001
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Table 8.14: A = diag(
√

2
128i/n

)n
i=1, n = 128, r = 96, cond(A) = 1.304382e + 19

APP mean(cond C) std(cond C) min(cond C) max(cond C) Ratio
Random 2.95471e+007 8.97563e+007 1.47168e+006 1.55489e+009 6.73631e-001

Random Sym 3.73307e+006 1.99705e+006 1.12101e+006 2.70990e+007 7.32157e-001
Unitary 4.83564e+007 1.89337e+008 2.20168e+006 4.43300e+009 6.58656e-001

Unitary Sym 5.72358e+006 2.79523e+006 1.76388e+006 2.44323e+007 7.11635e-001
Toeplitz 1.21819e+007 5.33440e+007 5.71416e+005 9.04293e+008 7.20065e-001

Toeplitz Sym 1.72635e+006 1.61914e+006 3.39188e+005 3.06641e+007 7.78179e-001
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