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Figure 4. Model for formation of cross- �† bonded Als5 cis-nanodomains and trans-adhesions on the 
surface of a cell. In step 1, shear force unfolds the T domain, exposing the cross-�† core sequence in 
each molecule (red W symbols). In step 2, the exposed core sequences assemble into cis-
nanodomains as constrained by the length of the flexible stalk region of the proteins. Two possible 
orientations are shown. In step 3, the cis-nanodomains associate in trans to form cell-to-cell bonds. 
Again, two possible orientations are shown; either  orientation is compatible with the data so far.  

5. Biogenesis of Cross-�† Bonds in Trans 

A model for the biogenesis of these structures is illustrated in Figure 4. Initially, shear 
force unfolds the partially structured T domains in Als proteins, exposing the amyloid 
core sequences (1). These sequences then mediate assembly of adhesins into nanodomain 
arrays on the surface of a cell in cis (2), nanodomains that can exist with either parallel-
strand �†-sheets (right), or mixed parallel and anti-parallel strands (left). Finally, the 
nanodomains interact in trans through homologous cross-�† aggregation between two cells 

Figure 4. Model for formation of cross-β bonded Als5 cis-nanodomains and trans-adhesions on the surface of a cell. In
step 1, shear force unfolds the T domain, exposing the cross-β core sequence in each molecule (red W symbols). In step 2,
the exposed core sequences assemble into cis-nanodomains as constrained by the length of the flexible stalk region of the
proteins. Two possible orientations are shown. In step 3, the cis-nanodomains associate in trans to form cell-to-cell bonds.
Again, two possible orientations are shown; either orientation is compatible with the data so far.

5. Biogenesis of Cross-β Bonds in Trans

A model for the biogenesis of these structures is illustrated in Figure 4. Initially, shear
force unfolds the partially structured T domains in Als proteins, exposing the amyloid core
sequences (1). These sequences then mediate assembly of adhesins into nanodomain arrays
on the surface of a cell in cis (2), nanodomains that can exist with either parallel-strand
β-sheets (right), or mixed parallel and anti-parallel strands (left). Finally, the nanodomains
interact in trans through homologous cross-β aggregation between two cells (3, orange–
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brown, and blue). Steps 2 and 3 may generate different orientations of the arrays. Either
orientation or a mixed set of orientations would be consistent with the data so far.

Figure 4 shows only a single β-sheet layer; a model of two interacting sheets in a trans
array is shown in Figure 5A. In vivo the trans arrays are based on hundreds to thousands
of H bonds and steric zipper interactions between the cells, and so should be highly stable.
The zipper requires homologous interactions to maintain both the intra- and inter-sheet
associations, so sequence identity is key. Thus, these bonds are expected to be strong and
highly stable, as observed in assays in vitro [6,37,38]. These characteristics were recognized
and named ‘SRS adhesions’ for strong reversible specific two decades ago [37]. We now
know the molecular basis for these characteristics.
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Figure 5. Two-sheet model cross β cell–cell bonding in trans. (A) A model showing the interaction 
of β-sheets in the cross-β bonds between two cells, one cell in orange–brown and the other in blue. 
A β-sheet in front is outlined and brighter colored than the sheet behind. (B) A model showing an 
origin for the 2 nm extension quantum observed when cells are separated. In SCFM, as cells are 
separated (top arrow), the most stressed bond breaks, and the cross-β core sequence is stretched to 
its limit (~2 nm for a 6 amino acid sequence). The cells remain associated through other bonds. Sub-
sequently, the next-most stressed bond will dissociate, and the process repeats to generate the suc-
cessive 2 nm separation peaks observed in the force–distance curves [2]. 

Formation of cross-β structures is slow, because of the need for extensive conforma-
tional changes and the entropic costs of alignment [39]. Furthermore, interacting proteins 
need to remain in contact with each other during bond formation to ‘lock-in’ the cross-β 
structures as they form [39]. Clearly, cell-to-cell bond formation is facilitated by prior as-
sembly of the cis nanodomains, which are already in the appropriate conformation. Both 
nanodomain formation and cell–cell adhesion have halftimes of about 7 min, and this ob-
servation implies that nanodomain formation is a rate-limiting step [8,40,41]. 
Nanodomain assembly is probably facilitated by prior non-amyloid interactions of the 
adhesins. These interactions include hydrophobic effect clustering through the Tandem 
Repeats [42] and Ig-domain binding to peptide epitopes in other Als molecules. Ig-domain 

Figure 5. Two-sheet model cross β cell–cell bonding in trans. (A) A model showing the interaction of β-sheets in the cross-β
bonds between two cells, one cell in orange–brown and the other in blue. A β-sheet in front is outlined and brighter colored
than the sheet behind. (B) A model showing an origin for the 2 nm extension quantum observed when cells are separated.
In SCFM, as cells are separated (top arrow), the most stressed bond breaks, and the cross-β core sequence is stretched to its
limit (~2 nm for a 6 amino acid sequence). The cells remain associated through other bonds. Subsequently, the next-most
stressed bond will dissociate, and the process repeats to generate the successive 2 nm separation peaks observed in the
force–distance curves [2].

Formation of cross-β structures is slow, because of the need for extensive conforma-
tional changes and the entropic costs of alignment [39]. Furthermore, interacting proteins
need to remain in contact with each other during bond formation to ‘lock-in’ the cross-β
structures as they form [39]. Clearly, cell-to-cell bond formation is facilitated by prior
assembly of the cis nanodomains, which are already in the appropriate conformation. Both
nanodomain formation and cell–cell adhesion have halftimes of about 7 min, and this ob-
servation implies that nanodomain formation is a rate-limiting step [8,40,41]. Nanodomain
assembly is probably facilitated by prior non-amyloid interactions of the adhesins. These
interactions include hydrophobic effect clustering through the Tandem Repeats [42] and
Ig-domain binding to peptide epitopes in other Als molecules. Ig-domain ligands include
the three-residue sequence motif called τφ+ (tau, a residue common in turns; phi, a bulky


